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Abstract

We review what we call “event-enhanced formalism”of quantum
theory. In this approach we explicitly assume classical nature of
events. Given a quantum system, that is coupled to a classical one by
a suitable coupling, classical events are being triggered. The triger-
ring process is partly random and partly deterministic. Within this
new approach one can modelize real experimental events, including
pointer readings of measuring devices. Our theory gives, for the first
time, a unique algorithm that can be used for computer generation of
experimental runs with individual quantum objects.
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1 Introduction

We will talk about “theory of events”. To be honest we should allow for

the adjective “phenomenological”. We will explain later our reasons for this

restraint. This new theory enhances and extends the standard quantum for-

malism. It provides a solution to the quantum measurement problem. The

usual formalism of quantum theory fails in this respect. Let us look, for

instance, into a recent book on the subject, “The interpretation of quantum

theory”[1]. There we can see both the difficulties as well as the methods that

attempt to overcome them. We disagree with the optimism shared by many,

perhaps by a majority of quantum physicists. They seem to believe that the

problem is already solved, or almost solved. They use a magic spell, and at

present the magic spell that is supposed to dissolve the problems is “decoher-

ence”. It is true that there are new ideas and new results in the decoherence

approach. But these results did not quite solve the problem. Real–world–

events, in particular pointer readings of measuring apparata, have never be

obtained within this approach. Decoherence does not tell us yet how to pro-

gramm a computer to simulate such events. A physicist, a human being,

must intervene to decide what to decohere and how to decohere. Which

basis is to be distinguished. What must be neglected and what must not?

Which limit to take? That necessity of a human intervention is not a sur-

prise. The standard quantum formalism simply has no resources that can be

called for when we wish to derive the basic postulates about measurements

and probabilities. These postulates are repeated in all textbooks. They are

never derived. The usual probabilistic interpretation of quantum theory is

postulated from outside. It is not deduced from within the formalism. That

is rather unsatisfactory. We want to believe that quantum theory is funda-

mental, but its interpretation is so arbitray! Must it be so?

Many physicists would oppose. They disagree with such a criticism. They

see that quantum theory is good, is excellent, because it gives excellent re-

sults. But there are other voices too. We like to recall John Bell’s opinion
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on this matter. He has studied the subject rather deeply. He emphasized it

repeatedly [2, 3]: our problems with quantum measurements have a source.

The reason is that the very concept of “measurement”can not even be pre-

cisely defined within the standard formalism. That is also our opinion. But

not only we share his criticism. We also propose a way out that is new.

Our solution does not involve hidden variables (but we like to joke that the

standard quantum state vector can be considered as a hidden variable). Our

reasoning goes as follows:

First, we point out the reason why “measurement”could not be defined within

the standard approach. It is true that the standard formalism of quantum

theory has many sophisticated tools: it has Hilbert spaces, wave vectors, op-

erators, spectral measures, POV measures. But it has no place for “events”.

What constitutes an event? The only candidate for an event that we can

think of is change of a quantum state vector. But how do we observe state

vectors? We can not see them directly. We were taught by Bohr and Heisen-

berg that any observation will disturb a quantum state. Well, unless the

state is already known to us, then we can try to be clever and not to disturb

it. But how can we know the state? We need a theory, that would help us

to unswer these questions. We are proposing such a theory. We extend the

standard formalism. We do it in a minimal way: just enough to accomo-

date classical events. We add explicitly a classical part to the quantum part,

and we couple classical to the quantum. Then we define “experiments”and

“measurements”within the so extended formalism. We can show that the

standard postulates concerning measurements – in fact, in an enhanced and

refined form – can be derived instead of being postulated.

This “event enhanced quantum theory”, as we call it, gives experimental

predictions that are stronger than those obtained from the standard theory.

The new theory gives answers to more experimental questions than the old

one. It provides algorithms for numerical simulations of experimental time

series given by experiments with single quantum systems. In particular this

new theory is falsifiable. But our programm is not yet complete. Our theory
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is based on an explicit selection of a classical subsystem. How to select what

is classical? If we want to be on a save side as much as possible, or as long

as possible, then we will shift “classical”into the observer’s mind. But will

we be save then? For how long? Soon we will need to extend our theory

and to include a theory of mind and a theory of knowledge. That necessity

will face us anyhow, pehaps even soon. But it is not clear that the cut must

reside that far from the ordinary physics. For many practical applications the

measuring apparatus itself, or its relevant part, can be considered classical.

We need to derive such a splitting into classical and quantum from some

clear principles. At present we do not know what these principles are, we

can only guess.

At the present stage placement of the split is indeed phenomenological,

and the coupling is phenomenological too. Both are simple to handle and

easy to describe in our formalism. But where to put the Heisenberg’s cut

– that is arbitrary to some extent. Perhaps we need not worry too much?

Perhaps relativity of the split is a new feature that will remain with us. We

do not know. That is why we call our theory “phenomenological”. But we

would like to stress that the standard, orthodox, pure quantum theory is not

better in this respect. In fact, it is much worse. It is not even able to define

what measurement is. It is not even a phenomenological theory. In fact,

strictly speaking, it is not even a theory. It is partly an art, and that needs

an artist. In this case it needs a physicist with his human experience and with

his human intuition. Suppose we have a problem that needs quantum theory

for its solution. Then our physicist, guided by his intuition, will replace

the problem at hand by another problem, that can be handled. After that,

guided by his experience, he will compute Green’s function or whatsoever

to get formulas out of this other problem. Finally, guided by his previous

experience and by his intuition, he will interpret the formulas that he got,

and he will predict some numbers for the experiment.

That job can not be left to a computing machine in an unmanned space–craft.

We may feel proud that we are that necessary, that we can not be replaced
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by machines. But would it not be better if we could spare our creativity for

inventing new theories rather than spending it unnecessarily for application

of the old ones?

Our theory is better in this respect. Once we have chosen a model – then

reality, with all its events as they happen in time, can be simulated by a

sufficiently powerful digital computer.

2 The formalism

Let us sketch the mathematical framework. To define events, we introduce

a classical system C, and possible events will be identified with changes of a

(pure) state of C. Let us consider the simplest situation corresponding to a

finite set of possible events. If necessary, we can handle infinite dimensional

generalizations of this framework. The space of states of the classical system,

denoted by Sc, has m states, labelled by α = 1, . . . ,m. These are the pure

states of C. They correspond to possible results of single observations of C.

Statistical states of C are probability measures on Sc – in our case just

sequences pα ≥ 0,
∑
α pα = 1. They describe ensambles of observations.

We will also need the algebra of (complex) observables of C. This will be the

algebra Ac of complex functions on Sc – in our case just sequences fα, α =

1, . . . ,m of complex numbers.

It is convenient to use Hilbert space language even for the description of that

simple classical system. Thus we introduce an m-dimensional Hilbert space

Hc with a fixed basis, and we realize Ac as the algebra of diagonal matrices

F = diag(f1, . . . , fm).

Statistical states of C are then diagonal density matrices diag(p1, . . . , pm),

and pure states of C are vectors of the fixed basis of Hc.

Events are ordered pairs of pure states α→ β, α 6= β. Each event can thus

be represented by an m×m matrix with 1 at the (α, β) entry, zero otherwise.

There are m2 −m possible events.
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Statistical states are concerned with ensembles, while pure states and events

concern individual systems.

The simplest classical system is a yes–no counter. It has only two distinct

pure states. Its algebra of observables consists of 2× 2 diagonal matrices.

We now come to the quantum system. Here we use the standard descrip-

tion.

Let Q be the quantum system whose bounded observables are from the al-

gebra Aq of bounded operators on a Hilbert space Hq. Its pure states are

unit vectors in Hq; proportional vectors describe the same quantum state.

Statistical states of Q are given by non–negative density matrices ρ̂, with

Tr(ρ̂) = 1. Then pure states can be identified with those density matrices

that are idempotent ρ̂2 = ρ̂, i.e. with one–dimensional orthogonal projec-

tions.

Let us now consider the total system T = Q×C. Later on we will define

“experiment”as a coupling of C to Q. That coupling will take place within

T .

First, let us consider statistical description, only after that we shall discuss

dynamics and coupling of the two systems.

For the algebra At of observables of T we take the tensor product of algebras

of observables of Q and C: At = Aq ⊗ Ac. It acts on the tensor product

Hq ⊗Hc = ⊕mα=1Hα, where Hα ≈ Hq. Thus At can be thought of as algebra

of diagonal m×m matrices A = (aαβ), whose entries are quantum operators:

aαα ∈ Aq, aαβ = 0 for α 6= β.

The classical and quantum algebras are then subalgebras of At; Ac is realized

by putting aαα = fαI , while Aq is realized by choosing aαβ = aδαβ.

Statistical states of Q × C are given by m × m diagonal matrices ρ =

diag(ρ1, . . . , ρm) whose entries are positive operators on Hq, with the normal-

ization Tr(ρ) =
∑
α Tr(ρα) = 1. Tracing over C or Q produces the effective

states of Q and C respectively: ρ̂ =
∑
α ρα, pα = Tr(ρα).

Duality between observables and states is provided by the expectation value

< A >ρ=
∑
α Tr(Aαρα).
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We consider now dynamics. Quantum dynamics, when no information is

transferred from Q to C, is described by Hamiltonians Hα, that may depend

on the actual state of C (as indicated by the index α). They may also depend

explicitly on time. We will use matrix notation and write H = diag(Hα).

Now take the classical system. It is discrete here. Thus it can not have

continuous time dynamics of its own.

Now we come to the crucial point – our main invention. A coupling of

Q to C is specified by a matrix V = (gαβ), with gαα = 0. To transfer

information from Q to C we need a non–Hamiltonian term which provides

a completely positive (CP) coupling. We propose to consider couplings for

which the evolution equation for observables and for states is given by the

Lindblad form:

Ȧ = i[H,A] + E (V ?AV )− 1

2
{Λ, A}, (1)

ρ̇ = −i[H, ρ] + E(V ρV ?)− 1

2
{Λ, ρ}, (2)

where E : (Aαβ) 7→ diag(Aαα) is the conditional expectation onto the diagonal

subalgebra given by the diagonal projection, and

Λ = E (V ?V ) . (3)

We can also write it down in a form not involving E:

Ȧ = i[H,A] +
∑
α 6=β

V ?
[βα]AV[βα] −

1

2
{Λ, A}, (4)

with Λ given by

Λ =
∑
α 6=β

V ?
[βα]V[βα], (5)

and where V[αβ] denotes the matrix that has only one non–zero entry, namely

gαβ at the α row and β column. Expanding the matrix form we have:

Ȧα = i[Hα, Aα] +
∑
β

g?βαAβgβα −
1

2
{Λα, Aα}, (6)

6



ρ̇α = −i[Hα, ρα] +
∑
β

gαβρβg
?
αβ −

1

2
{Λα, ρα}, (7)

where

Λα =
∑
β

g?βαgβα. (8)

Again, the operators gαβ can be allowed to depend explicitly on time.

Following [4] we now define experiment and measurement:

Definition 1 An experiment is a CP coupling between a quantum and a

classical system. One observes then the classical system and attempts to learn

from it about characteristics of state and of dynamics of the quantum system.

Definition 2 A measurement is an experiment that is used for a particular

purpose: for determining values, or statistical distribution of values, of given

physical quantities.

The universe that we know, including us, the observers, can be considered

as an “experiment”. That point is discussed in [5].

3 The algorithm for events

The definition of experiment above is concerned with the conditions that

define it. We will now describe the algorithm that simulates a typical run of

a given experiment. That algorithm can be uniquely derived from the above

formalism. One then gets the correct statistics by averaging over individual

runs.

Let us first make a side but important remark. In practical situations

it is rather easy to decide what constitutes Q, what constitutes C and how

to write down the coupling. Then, if necessary, we enlarge Q, and we shift

C towards more macroscopic and/or more classical. The new point of view

that we propose allows us to consider our whole Universe as ‘experiment’ in
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which we are witnesses and participants of one particular run. Then one can

ask: what is the true C? We do not know yet. Perhaps it has something to

do with massless particles, with light, with photon detections. But perhaps

we should not postpone any asking questions that are hard for a physicist:

what is Knowledge and what is Mind?

Back to the main subject. It can be shown that there is a unique Markov

process taking place in pure states of the total system that gives, after aver-

aging over individual runs, time evolution of statistical states as described by

Eq. (7). That process is piecewise deterministic – we call it PDP. Continuous

evolution is interspersed with random jumps. Here it is:

PDP Algorithm 1 Let us assume a fixed, sufficiently small, time step dt.

Suppose that at time t the system is described by a quantum state vector ψ and

a classical state α. Compute the scalar product λ(ψ, α) =< ψ,Λαψ >. Toss

dies and choose a uniform random number p ∈ [0, 1]. Jump if p < λ(ψ, α)dt.

Otherwise not jump. When jumping, toss dies and change α → β with

probability pα→β = ‖gβαψ‖2/λ(ψ, α), and change ψ → gβαψ/‖gβαψ‖. If not

jumping, change

ψ →
exp{−iHαdt− 1

2
Λαdt}ψ

‖ exp{−iHαdt− 1
2
Λαdt}ψ‖

, t→ t+ dt.

Repeat the steps.‡

For derivation and for a proof of uniqueness of the algorithm – see [5]. Our

algorithm resembles that known in quantum optics as Wave Function Monte

Carlo [7, 8, 9, 10, 11]. But there is an important difference: we did not

guess our process. We derived it from M.H.A. Davis’ mathematical theory

of PDP processes [12]. We were also able to prove its uniqueness. That

could not be achieved before. In fact, there is no uniqueness without an

explicit introduction of a classical system. Ten years ago Diosi [13] (see

‡There are several methods available for efficient computation of the exponential for dt
small enough – cf. Ref. [6].
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also [14]) introduced “orthojump”process as a canonical solution to a master

equation. His solution although canonical is not unique – unless one makes

Hilbert spaces corresponding to different experimental situations orthogonal

– as it is the case with our Hα-s.

We have mentioned in the beginning that our theory is falsifiable. Indeed,

the PDP algorithm predicts time series of experimental events. They are

changes of state of C. The continuous evolution between these events is

affected be the coupling – it is non–unitary and non–linear. Its non–linearity

depends on the copupling. Several examples have been already worked out.

Some of them, including a SQUID–tank model, can be found in [15]. A cloud

chamber model and its relation to GRW spontaneous localization models [16]

have been worked out in [17].
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