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Relativistic Quantum Events.
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Abstract

Standard Quantum Theory is inadequate to explain the mecha-

nisms by which potential becomes actual. Is inadequate and therefore

unable to describe generation of events. Niels Bohr emphasized long

ago that the classical part of the world is necessary. John Bell stressed

the same point: that “measurement” cannot even be defined within

the Standard Quantum Theory, and he sought a solution within hid-

den variable theories and his concept of “beables.”

Today it is customary to try to explain emergence of the classical

world through a decoherence mechanism due to “environment”. But,
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we believe, as it was with the concept of measurement, “environment”

itself cannot be defined within the Standard Quantum Theory.

We have proposed a semi-phenomenological solution to this prob-

lem by introducing explicitly, from the very beginning, classical de-

grees of freedom, and by coupling these degrees of freedom, through

a Lindblad type coupling, to the quantum world. The resulting the-

ory, we call “Event Enhanced Quantum Theory”. EEQT allows us

to describe an event generating mechanism for individual quantum

systems under continuous observation. The objections of John Bell

are met and precise definitions of an “experiment” and of a “measure-

ment” have been given within EEQT. However EEQT is, essentially,

a non–relativistic theory.

In the present paper we extend the ideas of L.P. Horwitz and C.

Piron and we propose a relativistic version of EEQT, with an event

generating algorithm for spin one-half particle detectors. The algo-

rithm is based on proper time formulation of the relativistic quantum

theory. Although we use indefinite metric, all the probabilities con-

trolling the random process of the detector clicks are non–negative.
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1 Introduction.

Quantum Theory has significantly changed our perspective on what Reality

truly is. Prior to Bohr and Heisenberg, speculations about Reality were in

the domain of philosophy and not of physics. For a physicist, it was clear

that there was a Reality “out there”, and that physics was about making as

precise a description of this reality as possible. This Reality had two kinds of

concepts connected to it: static concepts and dynamic concepts. Static con-

cepts were “objects,” “properties” of these objects, and “relations” between

the objects. Dynamic concepts were those of “events”; defined as “changes

of property,” or “changes of relation.” And, “change” was understood as

“change in time”.

With the advent of Quantum Theory the existence of this kind of simple

reality was first questioned and later denied. Even if quantum physicists still

used the concept of an “object,” it was no longer possible to speak about

the actual properties and relations of said objects. A fortiori “events” also

disappeared from the vocabulary of quantum theory. Instead of objects and

events, another concept emerged as the dominant idea - that of “measure-

ment” or “observation”.
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There were however, physicists who were not dominated by the new idea.

Some of them, the most prominent ones in this camp being Albert Einstein

and David Bohm, believed that quantum theory is a temporary statistical

description of some complex nonlinear substructure - yet to be identified.

But opposition also appeared in Quantum Theory’s own camp.

John A. Wheeler stressed repeatedly [1]: “No elementary quantum phe-

nomenon is a phenomenon until it is a registered (“observed,” “indelibly

recorded”) phenomenon.” But, he did not give a definition of “being recorded”

- and we now understand why? Because such a definition could not be given

within the orthodox quantum theory.

John Bell [2, 3] was the first to clearly realize that the concepts of “mea-

surement” and “observation” were being used in Quantum Theory to brain-

wash physicists into believing that these concepts are a part of Quantum

Theory, while in reality they belong to a metastructure. He had the courage

to say [4]: “Either the wave function is not everything or it is not right...”

and he opted for an extended theory that would contain, in addition to the

quantum wave function, classical variables, which he termed “beables” - for

“being able to be” [5].

These theories were, however, inconsistent. The classical part was acted
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upon (by the wave function) but there was no back reaction. There was thus

no way to falsify these theories as no new results were predicted that would

go beyond those predicted by the textbook recipes of the standard quantum

theory.

It is our opinion that “events” are classical in nature. They obey the

classical “yes-no” decision logic. Even if the decisions are based on fuzzy

criteria - they are always sharp “yes-no” decisions. They are points at which

choices are being made. Those who adhere to the Many World Interpretation

[6] would say: they are points at which the Universe splits into branches.

Until we understand the true nature of quantum theory and the true nature

of time, these choices must be considered as irreversible. What was done in

the past cannot be undone later on.

In a series of papers (see [7] and references there) we have developed a

semi–phenomenological theory of events - Event Enhanced Quantum Theory

(EEQT). The theory is based on the linear time of Galileo and Newton. It

is a theory of a special kind of irreversible coupling between quantum and

classical systems.2 Events are defined in this theory as changes of state of

2Necessity of such a coupling was envisaged already in the works by H. Primas [8, 9]

and A. Amman [10, 11].
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the classical subsystem. They are accompanied by quantum jumps - discrete

changes of the quantum state. In this theory, the Schrödinger equation is

replaced by a piecewise deterministic algorithm that simulates the behavior

of an individual quantum system coupled to a classical “measuring device”.

We believe that the fundamental laws of Nature, that is the laws that

Nature herself uses while producing the events of the world “out there,” are

based on algorithms rather than on differential equations. These algorithms

are discrete and probabilistic. The latter property mirrors the fact that we

have to describe an infinitely complex universe with the finite means that

are, at present, at our disposal.

A brief description of EEQT will be given in the the following Section.

The simplest model that can be taken as an example for building more sophis-

ticated ones is the cloud chamber model developed in [12, 13]. It describes

an irreversible coupling between a nonrelativistic quantum particle and an

arbitrary number of detectors sensitive to the presence of the particle in lo-

calized areas of space.

From the very moment EEQT was born, we were aware of the unavoid-

able difficulties that might arise when the nonrelativistic theory would have
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to be replaced by one that is in agreement with Einstein’s Relativity. The

difficulties to be addressed in any attempt at building a relativistic theory of

quantum measurement have long been known by the experts. (see [14], and

for a recent discussion [15]). In a recent paper [16] we anticipated that the

solution to this problem would have to involve algorithms that are non-local

not only in space but also in time: “However, if you try to work out a rel-

ativistic cloud chamber model (...) the events must be also smeared out in

the coordinate time. (...). Nevertheless they can still be sharp in a different

“time”, called “proper time” after Fock and Schwinger.” The proper time

model of the cloud chamber is presented in Section 3. We have chosen rela-

tivistic spin 1
2

particle, as its proper–time quantum dynamics seems to cause

more problems than spin 0 case - this due to the lack of Lorentz invariant

positive definite scalar product in the spin space. Our solution, presented in

Section 3, consists of using positive detector coupling operators. In Section

2 we will recall the nonrelativistic detector model: its standard version, as

discussed in Refs. [7, 12, 13, 17], and also its “proper time” version, so that

a transition to the relativistic case is made easier.
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2 Nonrelativistic Quantum Events.

We reiterate, together with John A. Wheeler: No elementary quantum phe-

nomenon is a phenomenon until it is a registered phenomenon. And, physics

is about phenomena. The goal of physics is to understand Nature’s phenom-

ena; to be able to construct an “artificial Nature” much in the way the goal

of biology is to be able to construct artificial life, the same way the ultimate

goal of the computer sciences is to create artificial intelligence.

But to construct artificial Nature we must be able to reproduce, in terms

of mathematical symbols, the natural phenomena. In order to do this we

first must be able to define within mathematics what a phenomenon is. Or,

more precisely, what a “registered phenomenon” is. For this purpose, we

will call an elementary registered phenomenon an event. And now we must

define what constitutes an event in terms of the mathematical structure. We

believe that it is obviously impossible to do this within the standard math-

ematical framework of the orthodox quantum theory. The framework must

be extended, the theory must be enhanced. And, it so happens that the

extension is, in fact, only a slight one. Significantly, nothing new is needed

that has not already been discussed in the framework of a general algebraic
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quantum theory. The extension we have in mind consists of allowing alge-

braic quantities that are not in any kind of uncertainty relation to any other

quantity, that is, allowing classical (in algebraic terms they are called “cen-

tral”) quantities. In other words: a phenomenon can be registered, and an

event can happen only if there is a classical subsystem of the given quantum

system.

It could be said, strictly speaking, that in a pure quantum world nothing

could or would ever “happen.” But we see that things do happen in the world

out there. This creates an obvious contradiction. One possibility to get us

out of the contradiction is to negate events and phenomena, to call them

“illusion,” to admit only “approximate events”. This is the road that most

quantum physicists of our day are prepared to take.

The other possibility is to accept that events do happen and to then

introduce explicitly a classical subsystem. In this way, an event is defined as

a change of state of this subsystem. This then gives us two further options.

One option consists of admitting only mental events. That is to say, events

do exist, they do happen, they are not illusions, but they happen only in

mind. This is the option advocated by H. P. Stapp [18, 19].

We are taking a less adventurous position by leaving the question “what
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is truly and intrinsically classical?” open, or “to be investigated.” Therefore

our theory, at the present stage, is semi-phenomenological. That is, we are

building models that aim at reflecting some of the mechanisms of Nature,

but which always can be improved by including more and more details in the

description.

A general scheme of EEQT has been described in detail in Ref. [7] (see

also [17] for a short version). Here we will specify the scheme to the particular

but important case of a particle position detector. We must note that in the

literature it is common to meet the opinion that any quantum measurement

can be, in the last instance, reduced to position measurements. Although

we do not share this conclusion, we believe that modelling particle position

detectors is important and allows us to understand the mechanism through

which other types of quantum phenomena are being registered as events.

2.1 Particle detectors

We consider a nonrelativistic particle on a line. When no detector is switched

on then the quantum mechanical wave function Ψ(x, t) representing the quan-
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tum state of the particle obeys the Schrödinger equation:

ih̄
∂Ψ(x, t)

dt
= − h̄2

2m

d2Ψ(x, t)

dx2
+ V (x, t)Ψ(x, t) (1)

with a real potential V (x, t). In particular the norm of the wave function

is conserved. Now, according to our philosophy, the Schrödinger equation

describes a continuous evolution of “possibilities”. Nothing happens. No

phenomena. Now, let us add a particle detector that is coupled to the particle

and can “click” when the particle is “nearby”. How to describe the situation

of the coupled pair particle+detector? The detector itself is idealized as a

“yes-no” device. As such it is a two-state classical system. For simplicity we

will assume that the detector is at rest with respect to the coordinate system

we are working in. When a quantum particle is coupled to a classical detector

then we are dealing with a hybrid system. Its pure states are described by

pairs (Ψ, α), where α = 0, 1 describes the state of the detector. Statistical

states of the total system are described by pairs (ρ0, ρ1), where ρα is a positive

operator in L2(R) such that Tr(ρ0)+Tr(ρ1) = 1. Now the coupling. We will

consider here a detector that switches off after the first click and is no longer

coupled to the particle. Other, more general types of particle detectors are

described in the references quoted in [7]. The coupling is described by a
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positive operator g. For a particle detector that is sensitive to the particle

position only, we will take for g a function g(x) ≥ 0 which describes its

spatial sensitivity. One can think of g(x) as a bell like function localized

at the detector position. Thus for a point like detector the support of g(x)

would shrink to a single point. According to the general formalism of EEQT

described briefly in Section 1.1 of Ref. [7]3 the Liouville equation describing

the time evolution of the statistical state of the total system reads:

ρ̇0 = −i[H, ρ0]− 1
2
{Λ, ρ0},

ρ̇1 = −i[H, ρ1] + gρ0g,


(2)

where Λ = g2. It follows from a general theorem proved in [20], that there is

a unique Markov process on pure states of the total system that reproduces

this evolution of ensembles. It is given by a piecewise deterministic algorithm

(PDP of Ref. [7]) that governs the click time of the counter. In our case of

a single counter the algorithm reads:

PDP Algorithm 1 Suppose that at time t = 0 the system is described by a

(normalized) quantum state vector ψ0 and the counter is off: α = 0. Then

3Using the notation of Ref. [7] we put α, β = 0, 1, g10 = g, g01 = 0,Λ0 = g2,Λ1 = 0
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choose a uniform random number p0 ∈ [0, 1], and proceed with the continuous

time evolution by solving the modified Schrödinger equation

ψ̇t = (−iH − 1

2
Λ)ψt (3)

with the initial wave function ψ0 until t = t1, where t1 is determined by

∫ t1

0
(ψt,Λψt)dt = p0.

At t = t1 the counter clicks, that is its state changes from α = 0 to α = 1

and, at the same time, the state vector jumps:

ψt1 → ψ1 = gψt1/‖gψt1‖.

The evolution starts now again and it obeys the standard unitary Schrödinger

equation with the Hamiltonian H - until the counter starts its monitoring

again, in which a case the continuous evolution becomes again described by

Eq.(3), new random number p1 is selected, and so on.

2.2 “Proper time” formulation

In this subsection we will give a four-dimensional formulation of the nonrel-

ativistic counter click model. It will essentially be just another formulation
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of the model above. We will see that in a certain limit it approximates the

PDP algorithm of the previous subsection.

The Hilbert space we consider is now L2(R2, dxdt) and the dynamics will

be given by a “super-Hamiltonian”

H = H − i ∂
∂t
. (4)

There is an extra time parameter associated with the counter, we will denote

it by τ and call it a “proper time”. The coupling between the quantum

particle and the counter is described by a positive operator G on our Hilbert

space. The Liouville equation and the PDP algorithm are much the same as

above except that x is replaced by (x, t) and t is replaced by τ .

Let us now see how this formalism includes one in the previous subsection.

With the notation as in Sec. 1.1 let us take for the initial state Ψ0(x, t) a

product:

Ψ0(x, t) = φ(t)ψ0(x), (5)

where φ(t) and ψ(t) are square integrable (with respect to dt and dx respec-

tively) of norm one, and Ψ0 stands for Ψτ=0. Let us assume that G depends

on x only:

G(x, t) = g(x). (6)
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The equation (3) for ψ(x, t) is now replaced by

∂Ψ

∂τ
= (−iH − Λ

2
)Ψ− ∂Ψ

∂t
, (7)

which solves to:

Ψτ(x, t) = φ(t− τ )e(−iH−Λ
2

)τψ0(x). (8)

It is clear from this that identifying the coordinate time t with the “proper

time” parameter τ we have the same inhomogeneous Poisson process govern-

ing the detector click as in the previous subsection.

Remark We have chosen the function g to depend only on x and not on

time for the reason that in this case the operator Λ commutes with ∂/∂t,

and so Eq. (7) is easily solved.

3 Relativistic Quantum Events.

Let us now consider the relativistic case. Proper time formulation of the rel-

ativistic quantum mechanics has been considered by many authors. We shall

cite here the classical paper by Horwitz and Piron [21]. There are also two

review papers, one by Kyprianidis [22], and one by Fanchi [23] (cf. also [24]),

where more references can be found. While the case of spinless particle was
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relatively straightforward, the case of spin 1/2 caused interpretational prob-

lems because of the lack of Lorentz invariant, positive definite, scalar product.

Several possible ways out of this difficulty have been considered. Evans [25]

proposes to accept the indefinite scalar product, while in [26, 27, 28, 29]

the authors introduce an additional superselection (classical) variable n to

parametrize a family of positive definite scalar product Hilbert spaces. The

latter was then discussed by Horwitz and Arshansky [30] who noticed that

the Dirac operator was not Hermitian with respect to the positive definite

products. Our model will use indefinite metric. In fact, according to our

philosophy, there is no reason at all why scalar product is to be positive defi-

nite. This is because we do not start with the standard quantum mechanical

probabilistic interpretation. We derive the interpretation from the coupling.

So, the only thing that we have to worry about is that the probability of the

detector click is to be non-negative. And we will see that this is indeed the

case.

We will take the standard representation of gamma matrices:

γ0 =

 I 0

0 −I

 , γi =

 0 σi

−σi 0

 (9)
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and define an indefinite metric space by

< Ψ,Φ >=
∫
P̄ si(x, t)Φ(x, t)dxdt, (10)

where Ψ̄ = Ψ†γ0 . The Dirac matrices are Hermitian with respect to this

scalar product, and so is the Dirac operator:

D = iγµ(∂µ + ieAµ)−m. (11)

Let us consider now a particle position detector which, for simplicity, is at

rest with respect to the coordinate system. We associate with it the operator

G defined by

(GΨ)(x, t) =
I + γ0

2
g(x)Ψ(x, t), (12)

where g(x) is a positive, bell-like, function centered over the detector position.

4 It follows now that G is positive, Hermitian with respect to the indefinite

metric scalar product, and the same holds for Λ = G2. We postulate the

following relativistic version of the PDP algorithm:

Relativistic PDP Algorithm 1 Suppose that at proper time τ = 0 the

system is described by a quantum state vector Ψ0 and the counter is off:

4Notice that here, as in the nonrelativistic case, we assume that g depends only on x

and not on t - in the coordinate system with respect the detector is at rest.
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α = 0. Then choose a uniform random number p ∈ [0, 1], and proceed with

the continuous time evolution by solving the modified evolution equation

Ψ̇τ = (−i D
2

2M
− 1

2
Λ)ψt (13)

with the initial wave function Ψ0 until τ = τ1, where τ1 is determined by

∫ τ1

0
(Ψτ ,ΛΨτ)dτ = p.

At τ = τ1 the counter clicks, that is its state changes from α = 0 to α = 1

and, at the same time, the state vector jumps:

Ψτ1 → Ψ1 = GΨτ1/ < Ψτ1, GΨτ1 > .

If, after the first click, the detector is deactivated, then after the click the

evolution starts again and it obeys the standard unitary Schrödinger equation

with the Hamiltonian H = D2

2M
.

The algorithm contains second order, proper time, Dirac equation. This

equation can be geometrically derived by the method of dimensional reduc-

tion along an isotropic Killing vector field in six dimensional space of signa-

ture (+ + ++,−−) in an exact analogy to the derivation of Levy-Leblond

and Pauli equation from five-dimensional space of signature (+ + ++,−) -
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cf. Ref. [31]. It is clear from the definition that the algorithm works well

and can be repeated. Let us now assume that there are two detectors, both

at rest with respect to the coordinate system. They are both coupled to the

quantum particle, the coupling operators Gi, i = 1, 2 being given, as before,

by:

(GiΨ)(x, t) =
I + γ0

2
gi(x)Ψ(x, t), (14)

where the functions gi are localized at the detectors. The operator Λ is now

a sum of two contributions:

Λ = G2
1 +G2

2. (15)

The algorithm proceeds as before but now, when the event happens at τ = τ1

a decision must be made which of the two detectors reacts. The probability

pi that the i-th detector is activated is given by the same formula as in the

nonrelativistic case (cf. Ref. [7] for a general theory):

pi =
< Ψτ1, GiΨτ1 >

< Ψτ1, G1Ψτ1 > + < Ψτ1, G2Ψτ1 >
. (16)

Generalization to a larger number of detectors, that are not necessarily at

rest, is straightforward.
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4 Final Remarks.

We have proposed a relativistic PDP algorithm that allows one to model

the behavior of a detector coupled to a relativistic spin 1
2

particle. Adding

more detectors does not cause any difficulties. Our algorithm is repeatable,

thus allowing for a continuous monitoring of the particle position, as in the

nonrelativistic cloud chamber model described in [12, 13]. It would be inter-

esting to see how our relativistic event generating algorithm can be used to

test the idea of interference in time as discussed by Arshansky, Horwitz and

Lavie in [32].

In the nonrelativistic case there is a dual description: by a continuous

in time Liouville equation that describes time evolution of statistical states,

and by the PDP Algorithm that simulates Nature’s event generation for

individual systems. In the relativistic case we have restricted ourselves to the

individual description. In fact, at present, we do not know what would be the

right mathematical formalism and its physical interpretation for a relativistic

analogue of the Liouville equation. Formally we can write an equation as in

the nonrelativistic case, but now using an indefinite metric space. Some of

the relevant mathematics have been developed in the past by one of us [33].
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What is yet to be done is to study the nonrelativistic limit of the Relativistic

PDP and to see that Nonrelativistic PDP of EEQT is recovered this way.

The ideas given in the papers by Horwitz [34] and Horwitz and Rotbart [35]

can be applied for studying such a limit. Other problems that are yet to be

investigated are: quantum field theoretical generalization along the lines of

Ref. [13], and an explicit formula for time–of–click probability for a pointlike

detector and a special intitial wave packet - as in Ref. [16]. It is to be

observed that a quantum field theoretical version will have to involve, as it

was for one particle, indefinite metric.

It must be noted that the Relativistic PDP, in cases of more than one

detector, involves non-local decision making algorithm. Thus, even if the

detectors are treated as classical in our approach, nevertheless there is no

local explanation for their behavior. To decide which of the two detectors

will click at the event time involves a random choice based on probabilities

that are computed non-locally. How Nature herself is doing this - is a big

puzzle. A solution to this puzzle must be postponed till a later time when

the very nature and origin of the Planck constant, of space and of time are

better understood.
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