
Index terms— tensor algebra, Clifford algebra, exterior algebra, Cheval-
ley’s isomorphism, gauge tranformations

1



On the bundle of Clifford algebras over the
space of quadratic forms

Arkadiusz Jadczyk
Laboratoire de Physique Théorique, Université de Toulouse III and

Ronin Institute, Montclair, NJ 07043

December 13, 2023

Abstract

For each quadratic form Q ∈ Quad(V ) on a vector space over a
field K, we can define the Clifford algebra Cl(V,Q) as the quotient
T(V )/I(Q) of the tensor algebra T(V ) by the two-sided ideal gener-
ated by expressions of the form x⊗x−Q(x), x ∈ V. In the present paper
we consider the whole family {Cl(V,Q) : Q ∈ Quad(V )} in a geomet-
ric way as a Z2-graded vector bundle over the base manifold Quad(V ).
Bilinear forms F ∈ Bil(V ) act on this bundle providing natural bijec-
tive linear mappings λ̄F between different Clifford algebras Cl(V,Q).
Alternating (or antisymmetric) forms induce vertical automorphisms,
which we propose to consider as ‘gauge transformations’. We develop
here the formalism of N. Bourbaki, which generalizes the well known
Chevalley’s isomorphism Cl(V,Q) → End(

∧
(V )) →

∧
(V ). In par-

ticular we realize the Clifford algebra twisting gauge transformations
induced by antisymmetric bilinear forms as exponentials of contrac-
tions with elements of

∧2(V ∗) representing these forms. Throughout
all this paper we intentionally avoid using the so far accepted term
“Clifford algebra of a bilinear form” (known otherwise as “Quantum
Clifford algebra"), which we consider as possibly misleading, as it does
not represent any well defined mathematical object. Instead we show
explicitly how any given Clifford algebra Cl(Q) can be naturally real-
ized as acting via endomorphisms of any other Clifford algebra Cl(Q′)
if Q′ = Q + QF , F ∈ Bil(V ) and QF (x) = F (x, x). Possible physical
meaning of such transformations is also mentioned.
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This paper is dedicated to the memory of Zbigniew Oziewicz.

1 Introduction
This paper was inspired by my studies of previous works dealing with Clif-
ford algebra of multivectors for general, not necessarily symmetric or non-
degenerate, bilinear forms. Here I will mention only a few of these works
that were the main basis of my own research: Z. Oziewicz [1], R. Abłamow-
icz and P. Lounesto [2], B. Fauser [3], R. Abłamowicz and B. Fauser [4].1
All these works are based on Chevalley’s construction published in 1954 - cf.
Ref. [6, p. 102]. Chevalley is using there an explicitly nonsymmetric bilinear
form to realize an algebra homomorphism from the Clifford algebra Cl(V,Q)
of a quadratic form Q on a finite-dimensional vector space V over an arbi-
trary field K into the algebra of endomorphisms End(

∧
(V )). The specially

constructed bilinear form (called B0 in Ref. [6]) is explicitly defined to be
non-symmetric in order to cover the case of characteristic 2. Chevalley him-
self did not develop this idea any further. But it was subsequently developed
a great deal (probably with his participation) in the 1959 algebra textbook
“Algèbre, Chapitre 9, Formes Sesquilinéares et Formes Quadratiques” [7] by
N. Bourbaki. This particular volume of “Algebra" by N. Bourbaki is the only
one that was not translated into English and, as it seems to me, is totally
unknown in the Cliffordian community. In the present paper I am presenting
the relevant part from Bourbaki, developing it further so as to make it usable
for applications of Clifford algebras, and in particular of ‘Clifford algebras of
multivectors’, to physics. In doing it, I am trying to keep as much generality
as possible, therefore, most of the time, not requiring the characteristic to be
different from 2. Much of the constructions developed in the present paper
can be done for general modules over rings, but I am deliberately restricting
myself to vector spaces, usually not requiring them to be finite-dimensional
(unless specifically mentioning otherwise).2

1More relevant references can be found in the cited papers, and also in a more recent
paper by R. Abłamowicz et al. [5].

2In applications to physics, when discussing Clifford algebras, we usually need only
finite-dimensional vector spaces. A possible exception is the application of Clifford algebras
in the discussion of Canonical Anticommutation Relations (CAR) in quantum field theory,
but in this case we need functional analysis and C∗ algebras rather than pure algebraic
constructions with infinite-dimensional vector spaces equipped with Hamel bases.
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One important distinctive feature of the Bourbaki approach consists of
the use of operators ex, x ∈ V of left multiplication, and Z2-graded deriva-
tions if , f ∈ V ∗ already at the level of the tensor algebra T(V ), where if
is defined recursively through if (1) = 0, if (x ⊗ u) = f(x)u − x ⊗ if (u) for
x ∈ V, u ∈ T(V ).3 Usually, Z2 derivations (antiderivations) are introduced
only at the level of the exterior or Clifford algebra, that is after passing to
the quotient T(V )/I(Q), where I(Q) is the two-sided ideal generated by the
expressions x ⊗ x − Q(x), x ∈ V, where Q is a quadratic form (Q = 0 for
the exterior algebra). The point is that T(V ) is naturally Z-graded, and
the reduction to Z2-gradation may seem to be somewhat artificial. And yet
the Bourbaki original approach allows for the construction of natural lin-
ear mappings λF : T(V ) → T(V ) that map every two-sided ideal I(Q) to
I(Q−QF ), where, for any bilinear form F ∈ Bil(V ), QF is the quadratic form
QF (x) = F (x, x). I consider Bourbaki’s mapping λF : T(V ) → T(V ) to be
the most important tool for developing the subject of deformations of Clifford
algebra products.4 For x ∈ V and F ∈ Bil(V ), one first defines iFx as if for the
linear form f defined as f(y) = F (x, y). Then λF : T(V )→ T(V ) is defined
recursively as λF (1) = 1 on T0(V ), and λF (x⊗ u) = x⊗ λF (u) + iFx (λF (u)).
Using λF way we can “travel” between different Clifford algebras already at
the level of T(V ). In fact, one can define the analogue of the Chevalley map,
I call it ΛF : T(V ) 7→ End(T(V )), already at the level of the tensor algebra.
Then λF (u) = ΛF (u)(1), 1 ∈ T(V ), in a full analogy to Chevalley’s con-
struction of the representation of a Clifford algebra by endomorphisms of the
exterior algebra, and then realizing the Clifford product within the exterior
algebra. All these operators ex, if , iFx , λF ,ΛF pass to the quotient and define
corresponding operators within and between Clifford algebras.5 In this paper
I am following Bourbaki’s convention and denote the descendants of these op-
erators, acting at the level of Clifford algebras, with a bar ēx, īf , īFx , λ̄F , Λ̄F .6

3Cf. [7, §9.2]. The antiderivation if acting on the tensor algebra can be also found in
Ref. [8, Ch. 2.2.9].

4While it is possible to consider all Clifford algebras as deformations of one algebra, the
exterior algebra, invoking the tensor algebra allows us to have a ’bird view’ of the whole
structure: all Clifford algebras, including the exterior algebra, have one ‘mother’, and this
mother is the tensor algebra.

5The operators īFx , ēx, Λ̄F
x , λ̄

F
x can be also found in Ref. [9, Ch. 5.7], denoted there as

∆x, Lx,Λx,Ω(x) resp.
6Bourbaki’s text is not exactly consistent here, because ex is denoted the same way for

T(V ), where ex(u) = x ⊗ u, and for exterior or Clifford algebra, where ex(u) = x ∧ u or
ex(u) = xu.
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It is because of its importance that the explicit form of λF is developed in
Proposition 1.13, and then λF is shown to be an exponential of an analogue
of a two-fermion annihilation operator in Sec. 1.3.1.7 Later on, in Sec. 3.3.1,
at the level of Clifford (or exterior) algebras, and for F restricted to be an
alternating form A ∈ Alt(V ), λ̄A is shown to be the exponential of īA∗ , where
A∗ ∈

∧2(V ∗) represents A via the duality 〈A∗, x∧ y〉 = A(x, y), cf. Eq. (73).
This allows us to write the formula for a deformation of a Clifford product
by an alternating form as (cf. Eq. (76)):

xu
A

= eīA∗
(
x e−īA∗ (u)

)
, x ∈ V, u ∈ Cl(V,Q),

which I propose here instead of the “Wick isomorphism” based on the expo-
nential of an element of

∧2(V ) suggested in Ref. [4, Sec. 3].8
More generally, and in an arbitrary characteristic, we can use the mapping
λ̄F to deform a given Clifford multiplication by an arbitrary bilinear form F :

xu
F

= λ̄F
(
xλ̄−1

F (u)
)
, x ∈ V, u ∈ Cl(V,Q), (1)

which is usually written on the background of the exterior algebra (the case
of Q = 0) as

xu
F

= λ̄F
(
x ∧ λ̄−1

F (u)
)
, x ∈ V, u ∈

∧
(V ). (2)

Since λ̄F has the exponential property λ̄F+G = λ̄F ◦ λ̄G, when F = g + A9,
with g symmetric and A antisymmetric10, we get

xu
F

= λ̄F (x ∧ λ̄−1
F (u)) = λ̄A

(
λ̄g(x ∧ λ̄g(λ̄A(u))

)
= λ̄A(x ·g λ̄−1

A (u)) = x ∧ u+ īgx(u) + īAx (u).

The product defined by x ·F u is a twisted (with respect to x ·g u) represen-
tation of the Clifford algebra Cl(V,Qg) on the exterior algebra

∧
(V ). In Ref.

[2] it is denoted Cl(V, F ) and referred to as “Quantum Clifford algebra”. Yet
it is just a different but equivalent realization of the same Clifford algebra
Cl(Qg), and therefore it has the same irreducible representations (ungraded

7In characteristic 6= 0, instead of the usual exponential power series, an exponential
series with divided powers is given.

8Cf. Note 3.8
9Here we use the notation of Ref. [4].

10In characteristic 6= 2 antisymmetric and alternating bilinear forms coincide.
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and Z2 graded) - cf. Sec. 3.2.2. In particular the twisted representation of
the Clifford algebra Cl(V,Qg) for g of signature (2, 2), twisted by a nontrivial
antisymmetric form A, on its 8-dimensional left ideal, suspected to be irre-
ducible in Ref. [2], turns out to be reducible.11

It is instructive to think of the family of Clifford algebras {Cl(V,Q) :
Q ∈ Quad(V )} as a Z2-graded vector bundle Cl(V ) over the space Quad(V )
of all quadratic forms on V . While each fiber Cl(V,Q) carries an algebra
structure, we will assign an important role to the maps λ̄F , F ∈ Bil, that
are linear bijections preserving the Z2-gradation, but not algebra homomor-
phisms. The additive group of the vector space Bil(V ) acts on the base
space via F : Q 7→ Q + QF , and it acts on the bundle space Cl(V ) via
the maps λF , mapping fibers onto fibers. The elements from the subgroup
Alt(V ) ⊂ Bil(V ) do not move the points of the base and transform each
fiber Cl(V,Q) into itself, deforming the product within each algebra. In the
theory of fiber bundles transformations of the bundle space that map bijec-
tively fibers into fibers, and therefore induce a transformation of the base
manifold, are called bundle automorphisms. Bundle automorphisms that do
not move base points, so called “vertical automorphisms", are often referred
to as gauge transformations, more precisely, as global active gauge transfor-
mations - cf. [10, Ch. 3.2] and [11, Appendix H]. Instead of considering the
usual Dirac equation, where the Clifford algebra acts on an irreducible graded
“spin module” one considers the so called Ivanenko-Landau-Kähler equation
[12,13], where spinors are represented by differential forms - elements of the
exterior bundle of the cotangent space. The idea of representing spinors as
differential forms has its clear physical justification that was stated explicitly
by P. Lounesto in the following form (cf. Ref. [14, p. 145]):

“. . . However the physical justification of the theory of spin
manifolds could be questioned on the following basis: why should
we need to know the global properties of the universe if we want
to explore the local properties of a single electron?”

Lounesto was at the same time well aware of the fact that choosing a global
minimal graded ideal of the Clifford algebra bundle over space-time is ques-
tionable (cf. Ref. [14, p. 145]):

11I am indebted to R. Abłamowicz for an informative and extensive discussion of this
subject.
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“. . . In curved manifolds it is more appropriate to use abstract
representation modules as spinor spaces and not minimal left ide-
als [not even subalgebras] of Clifford algebra. The injection ties
these spaces together in a manner that singles out special direc-
tions in R1,3.”

The only acceptable solution to these problems is by using the whole exte-
rior algebra of differential forms, as in Ivanenko-Landau-Kähler equation on
a curved spacetime manifold M , where gravitation is described via telepar-
alellism, along the lines outlined in Ref. [15]. There are at least two ways in
which the deformations of the Clifford algebra action by antisymmetric forms
can enter into field equations for matter fields in a gravitational background.
The first way is by twisting the action of the Dirac gamma matrices γµ on
the exterior algebra: γµ → eīA∗γµe−īA∗ . If A is an antisymmetric form that
does not depend on space-time coordinates xµ, then this can be compensated
by redefining the matter field Φ(x) ∈

∧
(T ∗x (M)) via Φ → eīA∗Φ. When A

depends on space-time coordinates, we then get extra terms in the Ivanenko-
Landau-Kähler equation resulting from the derivatives of A(x). We can then
treat A as a non-minimal interaction in matter equations, or, alternatively,
we can consider Φ(x)→ eīA∗(x)Φ(x) as a local gauge transformation, in which
case we should expect appearance of a certain non-closed 3-form Ψ in the
equation, that transforms under these gauge transformations as Ψ→ Ψ+dA.
These ideas about a possible physical significance of twisted Clifford algebra
products are in a need of further investigation, and they complement those
already suggested in Refs. [3, 4].

1.1 General setup

A reasonably general formulation of the theory of Clifford algebras starts
with the definition of the Clifford algebra of a module over a commutative
ring, equipped with a quadratic form, see, e.g., Ref. [7, p. 139]. Here we
will not aim for such a generality, and we restrict ourselves to Clifford alge-
bras over a vector space V over a field K, equipped with a quadratic form
Q.12 Unless explicitly stated we will not assume V to be finite dimensional.
Initially, following Ref. [7] we will not even demand for K to be of charac-
teristic 6= 2. In electrodynamics, gauge transformations are implemented via

12A vector space is a (projective) module over a (commutative) field.
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exponentials of the type exp(iφ), where φ is a real scalar. These exponen-
tials act on complex wave functions changing their phase. In our case we
have exponentials of the type exp(̄iA∗), where A is an antisymmetric bilinear
form. These exponentials twist algebra products in Clifford algebras Cl(V,Q)
acting on the exterior algebra

∧
(V ). This brings us the idea of representing

physical fields, including those corresponding to spin 1/2, as multivectors,
that is, the elements of the exterior algebra, as it was extensively discussed
in Ref. [16]; while it is instructive to see how the case of characteristic 2 is
being dealt with in Ref. [7], our main interest will be the case of K being the
field of real numbers R or complex numbers C.

In linear algebra, one shows that every vector space has a basis, possibly
infinite, of linearly independent vectors (Hamel basis). Moreover, every two
bases have the same cardinal number called the dimension of the vector space
- cf. e.g. [24, p. 103]. Every system of linearly independent vectors can be
extended to a basis.

1.2 Tensor algebra of V

Let V be a vector space over K. An algebra T is called a tensor algebra over
V (or “of V ") if it satisfies the following universal property13

(i) T is an associative algebra with unit containing V as a linear subspace,
and is generated by V,

(ii) Every linear mapping φ of V into an associative algebra A with unit
over K, can be uniquely extended to an algebra homomorphism θ of T
into A:

Denoting by ι the embedding of V into T mentioned in (i) the universal
property expressed in (ii) reads:

φ = θ ◦ ι.

Let T(V ) be the tensor algebra of V . The multiplication in T(V ) is denoted
by the symbol ⊗. If {ei}i∈I(V ) is a basis in V , then 1 ∈ T0(V ) ⊂ T(V )

13In all standard textbooks, see e.g. [6,9,17,18], the above characterisation of the tensor
algebra of a module is always completed by an explicit construction. We also notice that
the property of T(V ) to be ‘generated by V ’ in (i) is superfluous (and even ‘forbidden’),
as it is a consequence of the ‘uniqueness’ that is the part of the universal property (ii).
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together with ei1 ⊗ · · · ⊗ eip , (p = 1, 2, . . .) form a basis in T(V ). The tensor
algebra T(V ) of V is Z-graded. We have

T(V ) =
∞⊕
p=0

Tp(V ),

where
Tp(V ) = V ⊗p = V ⊗ · · · ⊗ V︸ ︷︷ ︸

p factors

is the subspace spanned by ei1⊗· · ·⊗eip . It is understood here that T0(V ) =
K and T1(V ) = V. The fact that T(V ) is a graded algebra means that for
any x ∈ Tp(V ), y ∈ Tq(V ) the product xy is in Tp+q(V ) for all p, q = 0, 1,· · ·.

By using the universal property, one defines the main involution α and
the main anti-involution τ of T(V ).14 Explicitly, on homogeneous elements,
we have:

α(x1 ⊗ · · · ⊗ xp) = (−1)px1 ⊗ · · · ⊗ xp, (3)
τ(x1 ⊗ · · · ⊗ xp) = xp ⊗ · · · ⊗ x1, (4)

for x1, . . . , xp ∈ V.
The algebra T(V ) is Z2-graded into even and odd parts. The main invo-

lution α respects this Z2-gradation, For even u ∈ T(V ) we have α(u) = u,
and for u odd we have α(u) = −u.

1.2.1 Operators ex, if , iFx .

For any vector space W we denote by End(W ) the algebra of all endomor-
phisms (linear maps) of W. For x ∈ V , we denote by ex the linear operator
ex ∈ End(T(V )), Tp(V )→ Tp+1(V ), of left multiplication by x:

ex : u 7→ ex(u) = x⊗ u, u ∈ T(V ).

We denote by V ∗ the dual vector space, that is the space of all linear func-
tions from V to K. The following Proposition associates to each f ∈ V ∗ an
antiderivation of the graded algebra T(V ).15

14The mapping α is an involutive algebra homomorphism, while τ is an involutive algebra
anti-homomorphism.

15C.f. also [6, Lemma 3.2, p. 43],[19, Lemma 1, p. 141]. Usually if is defined on the
exterior algebra rather than on the tensor algebra. Notice however that if defined here is
not the same as if defined in Ref. [17, A III.161-165] and[20, A.15.2.1, p. 367], where if
on T(V ) is defined as the transpose of the operator ef acting on T(V )∗, and where if (u)
is also written as fcu and called a a contraction in the direction of f .
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Proposition 1.1. Let f be an element of V ∗. There exists a unique linear
mapping if from T(V ) to T(V ) such that

1. We have
if (1) = 0, (5)

2. For all x ∈ V we have

ex ◦ if + if ◦ ex = f(x)1 (6)

The map f 7→ if from V ∗ to linear transformations on T(V ) is linear. We
have

(i) For all x ∈ V ⊂ T(V ), u ∈ T(V ),

if (x⊗ u) = f(x)u− x⊗ if (u), (7)

(ii) if (Tp(V )) ⊂ Tp−1(V ),

(iii) i2f = 0,

(iv) if ig + igif = 0, for all f, g ∈ V ∗.

For x1, . . . , xp ∈ V we have

if (x1 ⊗ · · · ⊗ xp) =

p∑
i=1

(−1)i−1f(xi)x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ xp. (8)

Proof. The formula (7) in (i) is an explicit expression of Eq. (6). The
uniqueness of if follows from the fact that Eq. (5) determines if on T0(V ),
and Eq. (7) determines if on Tp(V ) once it is given on Tp−1(V ). To prove
the existence we notice that for p ≥ 1 the map

(x1, . . . , xp) 7→
p∑
i=1

(−1)i−1f(xi)x1 ⊗ · · · ⊗ x̂i ⊗ · · · ⊗ xp

from V ×· · ·×V to T(V ) is p-linear, and therefore, by the universal property
of tensor products, extends to a unique linear map, denoted here by i(p)f , from
Tp(V ) to Tp−1(V ). The mappings i(p)f , together with Eq.(5) determine if on
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T(V ), so that Eq. (8) holds, and then Eq. (7) follows by linearity. To prove
(iii) we apply if to both sides of Eq. (7) to obtain

i2f (x⊗ u) = f(x)if (u)− f(x)if (u) + x⊗ i2f (u)

= x⊗ i2f (u).

Since if (1) = 0, thus i2f (1) = 0, by recurrence we get that i2f (u) = 0 for all
u ∈ T(V ). Then (iv) follows by noticing that i2f+g = 0 for all f, g ∈ V ∗.

Definition 1.2 (iFx ). Let F be a bilinear form on V. Then every x ∈ V
determines a linear form fx on V defined as fx(y) = F (x, y). We will denote
by iFx the antiderivation ifx described in Proposition 1.1. In particular we
have:

(i) iFx (1) = 0,

(ii) For all y ∈ V , w ∈ T(V ) we have

iFx (y ⊗ w) = F (x, y)w − y ⊗ iFx (w), (9)

Proposition 1.3. With the same notation as in the Definition 1.2, for
y1, . . . , yn in T(V ) we have

iFx (y1 ⊗ · · · ⊗ yn) =
n∑
j=1

(−1)j−1F (x, yj)y1 ⊗ · · · ⊗ ŷj ⊗ · · · ⊗ yn,

where ŷj means that this factor is omitted in the product.

Proof. The proof follows immediately from the definition.

1.3 Bourbaki’s map λF

Bourbaki’s book on sesquilinear and quadratic forms [7] is one of the very
few in the N. Bourbaki “Éléments de mathématique” series that has never
been translated into English.16 That is probably one of the main reasons
why the idea of constructing a family of maps λF , parametrized by bilinear
forms F and acting as bundle automorphisms in the Z2 graded vector bundle

16It has been translated into Russian though [22].
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of Clifford algebras over the space of bilinear forms, did not receive the de-
served attention in the Clifford algebra community.17 Here we will introduce
Bourbaki’s operators ΛF by modifying Chevalley’s method as described in
[6, Ch. 2.1], [24, Ch. 5.14], [9, Ch. 5.7].18,19

Definition 1.4. Let F be a bilinear form on V . For each x ∈ V let ΛF (x) ∈
End(T(V )) be defined as

ΛF (x) = ex + iFx .

The map x 7→ ΛF (x) is linear, therefore, by the universal property of T(V ),
it extends to a unique algebra homomorphism, denoted ΛF , from T(V ) to
End(T(V ))

ΛF : T(V ) 3 u 7→ ΛF (u) ∈ End(T(V )).

In particular,
ΛF (1) = IdT(V ) . (10)

For u, v ∈ T(V ), we have

ΛF (u⊗ v) = ΛF (u) ΛF (v), (11)

and, in particular, for x ∈ V , u ∈ T(V ) we have

ΛF (x⊗ u) = (ex + iFx )ΛF (u). (12)

Finally, for x1, . . . , xp ∈ V , we have

ΛF (x1 ⊗ · · · ⊗ xp) = (ex1 + iFx1) · · · (exp + iFxp). (13)

Proposition 1.5. For u ∈ Tp(V ) and f ∈ V ∗ we have

if ◦ ΛF (u) = ΛF (if (u)) + (−1)pΛF (u) ◦ if . (14)
17Ref. [23, pp. 30-31] seems to be an exception. The author there considers Bour-

baki’s mapping λF , though without quoting Bourbaki, for unexplained reason he calls it
‘antiderivation’, and fails to distinguish between its actions on the tensor, exterior and
Clifford algebras.

18Here we use the tensor algebra, instead of the exterior algebra as it is done in the
quoted references.

19In Ref. [21] the authors discuss deformations of Clifford algebras, but they do it in
their own way, difficult to follow for the present author.
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Proof. We prove by induction. Since ΛF (1) = Id, the statement evidently
holds for u = 1. Let us suppose that the statement holds for all u ∈ Tp(V ),
p ≥ 0. Then with u ∈ Tp(V ), x ∈ V we have

if ◦ ΛF (x⊗ u) = if ◦ (ex + iFx ) ΛF (u) = (ifex + if i
F
x )ΛF (u)

= (f(x)− exif − ifxif )ΛF (u)

= f(x)ΛF (u)− (ex + iFx )if ◦ ΛF (u)

= f(x)ΛF (u)− (ex + iFx )
(
ΛF (if (u)) + (−1)pΛF (u) ◦ if

)
= ΛF (f(x)u)− ΛF (x⊗ if (u)) + (−1)p+1ΛF (x⊗ u) ◦ if
= ΛF (if (x⊗ u)) + (−1)p+1ΛF (x⊗ u) ◦ if .

Therefore the statement holds also on Tp+1(V ).

Lemma 1.6. Let F,G be two bilinear forms on V . For u, v ∈ T(V ) we have

ΛF (ΛG(u)(v))(w) = ΛF+G(u)(ΛF (v)(w)) (15)

for all w ∈ T(Rad(G)) ⊆ T(V ), where Rad(G) = {w ∈ V : G(v, w) =
0, ∀v ∈ V }.
Proof. The proof is by induction. From Eq.(10) for u = 1 we get, on the left
hand side ΛF (ΛG(1)(v))(w) = ΛF (v)(w), and the same result on the right
hand side ΛF+G(1)(ΛF ((v)(w)) = ΛF (v)(w), for all w ∈ V. Let us assume
that the statement holds for u ∈ Tp(V ). We will show that then it also holds
for u ∈ Tp+1(V ). Indeed, for u ∈ Tp(V ), v ∈ Tq(V ), and x ∈ V we have:

ΛF (ΛG(x⊗ u)(v))(w) = ΛF ((ex + iGx ) ΛG(u)(v))(w)

= ΛF (ex ΛG(u)(v))(w) + ΛF (iGx ΛG(u)(v))(w)

= (ex + iFx ) ΛF

(
ΛG(u)(v)

)
(w)

+ iGx ΛF

(
ΛG(u)(v)

)
(w)− (−1)qΛF

(
ΛG(u)(v)

)
(iGxw)

= (ex + iF+G
x ) ΛF

(
ΛG(u)(v)

)
(w)− (−1)qΛF (ΛG(u)(v))(iGxw).

By the induction hypothesis for w ∈ T(Rad(G)) we have ΛF

(
ΛG(u)(v)

)
(w) =

ΛF+G(u)
(
ΛF (v)(w)

)
, therefore

ΛF (ΛG(x⊗ u)(v))(w)

= (ex + iF+G
x ) ΛF+G(x⊗ u)(v))(w)− (−1)qΛF

(
ΛG(u)(v)

)
(iGxw)

= ΛF+G(x⊗ u)(ΛF (v)(w))− (−1)qΛF

(
ΛG(u)(v)

)
(iGxw).

Now, if w ∈ T(Rad(G)), the last term vanishes, which proves the lemma.
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We notice that if G is nondegenerate, then Rad(G) = {0}, and

T(Rad(G)) = T0(V ) = K1.

Definition 1.7. Let F be a bilinear form on V . We define λF ∈ End(T(V ))
as

λF (u) = ΛF (u)(1), (16)

where 1 denotes 1 ∈ K = T0(V ).

Proposition 1.8. The map λF defined above has the following properties

(i)
λF (1) = 1, λF (x) = x, (x ∈ V ), (17)

(ii)
λF (x⊗ u) = iFx (λF (u)) + x⊗ λF (u), (x ∈ V ), (18)

(iii) For all f ∈ V ∗ we have

λF ◦ if = if ◦ λF . (19)

(iv) If F and G are two bilinear forms on V, then

λF ◦ λG = λF+G. (20)

(v) For F = 0, λF is the identity mapping:

λ0 = IdT(V ) .

(vi) For every bilinear form F, the linear mapping λF : T(M) → T(M) is
a bijection.

(vii) The map λF preserves the parity (even-odd), i.e. with α defined as in
Eq. (3) for x1, . . . , xp ∈ V we have

α(λF (x1 ⊗ · · · ⊗ xp)) = (−1)p λF (x1 ⊗ · · · ⊗ xp).

14



Proof. We have
λF (1) = ΛF (1)(1) = IdT(V )(1) = 1,

and λF (x) = (ex + iFx )(1) = x, therefore (i). From Eq. (14) we have

λF (x⊗ u) = ΛF (x⊗ u)(1) = (ex + iFx )ΛF (u)(1) = (ex + iFx )λF (u).

Therefore (ii) holds. Applying Eq. (14) to 1 ∈ T(V ), and using if (1) = 0, we
get (iii). To prove (iv) we set v = w = 1 in Eq. (15). On the left hand side
we get ΛF (ΛG(u)), while on the right hand side we notice that w is now in
T(Rad(G)) and we use ΛF (1)(1) = 1 to get ΛF+G(u), as required. To show
(v) notice that i0x = 0, and therefore from Eq. (13) we have Λ0(x1⊗· · ·⊗xp) =
ex1 · · · exp . It follows that λ0(x1⊗ · · · ⊗ xp) = ex1 · · · exp1 = x1⊗ · · · ⊗ xp, and
therefore λ0 = IdT(V ). Now, using (iv) and (v), we get λF ◦λ−F = λ−F ◦λF =
λ0 = IdT(V ), therefore λ−F = (λF )−1, and so λF is invertible. Thus (vi) holds.
To prove (vii) notice that ΛF,x = ex + iFx changes the parity:

ΛF,x ◦ α = −α ◦ ΛF,x.

Therefore, using Eq. (13)we obtain

ΛF (x1 ⊗ · · · ⊗ xp) ◦ α = (−1)pα ◦ ΛF (x1 ⊗ · · · ⊗ xp).

Applying both sides of the above equation to 1 ∈ T(V ) we get (vii).

Definition 1.9. For u ∈ T(V ) =
⊕∞

p=0 Tp(V ) we will denote by (u)p the
component of u in Tp(V ).

From the definition of the algebraic direct sum, it follows that for each
u ∈ T(V ) we have that (u)p = 0, except for a finite number of p.

Lemma 1.10. For x1, . . . , xp ∈ V we have that

(λF (x1 ⊗ · · · ⊗ xp))p+k = 0, for all k > 0.

Proof. Since λF (1) = 1 and λF (x) = x, the statement in the lemma is true
for p = 0 and p = 1. Let us assume that it holds for a given p, and we will
show that then it also holds for p+ 1. Indeed, with x, x1, . . . , xp ∈ V we have

λF (x⊗ x1⊗ · · · ⊗ xp) = x⊗ λF (x1⊗ · · · ⊗ xp) + iFx (λF (x1⊗ · · · ⊗ xp)). (21)

From our induction assumption λF (x ⊗ x1 ⊗ · · · ⊗ xp) has no nonzero com-
ponents of order higher than p. Thus the first term on the right hand side of
Eq. (21) has no nonzero components of order higher than p + 1, while the
second term does not have nonzero components of order higher than p − 1.
Thus the assertion in the lemma holds.
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Definition 1.11. For integers p, k, with p ≥ 2, 2 ≤ 2k ≤ p, let Pp,k denote
the set of permutations π of {1, ..., p} such that

1. π(1) < π(2), π(3) < π(4), . . . , π(2k − 1) < π(2k),

2. π(1) < π(3) < · · · < π(2k − 1) (if k ≥ 2),

3. π(j) is increasing for j = 2k + 1, . . . , p.

Note 1.12. In the proof of Proposition 1.13 an expression like Pp,k may also
be used for permutations π of a set of integers {i1, i2, . . . , ip} that may be
different from {1, 2, . . . , p}. If i1 < i2 < · · · < ip, Definition 1.11 remains
meaningful when 1, 2, . . . , p have been replaced respectively with i1, i2, . . . , ip.

Proposition 1.13. Let F be a bilinear form on V, and assume p ≥ 2,
x1, . . . , xp ∈ V . Then

λF (x1 ⊗ · · · ⊗ xp) = x1 ⊗ · · · ⊗ xp
+
∑

2≤2k≤p

∑
π∈Pp,k

sgn(π)F (xπ(1), xπ(2))F (xπ(3), xπ(4)) · · ·

· · ·F (xπ(2k−1), xπ(2k))xπ(2k+1) ⊗ · · · ⊗ xπ(p).

(22)

Note. For p = 2 we have

λF (x1 ⊗ x2) = x1 ⊗ x2 + F (x1, x2).

For p = 3:

λF (x1 ⊗ x2 ⊗ x3) = x1 ⊗ x2 ⊗ x3 + F (x1, x2)x3 − F (x1, x3)x2 + F (x2, x3)x1.

In general, when p is even and 2k = p, the tensor product of the empty set
of vectors in Eq. (22) is to be understood as 1, as in the example with p = 2.
If p is odd, and if 2k + 1 = p, instead of tensor products of several vectors
we have simply vectors, as in the example above with p = 3.

Proof. From Proposition 1.8 and from Lemma 1.10 we know that if u ∈
Tp(V ) then only the components (λF (u))p−2k for which p − 2k ≥ 0 can be
non-vanishing. It remains to prove that for p− 2k ≥ 0 we have

(λF (x1 ⊗ · · · ⊗ xp))p−2k =∑
π∈Pp,k

sgn(π)F (xπ(1), xπ(2))F (xπ(3), xπ(4)) · · ·

· · ·F (xπ(2k−1), xπ(2k))xπ(2k+1) ⊗ · · · ⊗ xπ(p).

(23)
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The proof is by induction. We know that λF (1) = 1 and λF (x) = x. Therefore

λF (x1 ⊗ x2) = x1 ⊗ x2 + iFx1(x2) = x1 ⊗ x2 + F (x1, x2).

Thus, in this case, we have p = 2 and only one term of the type as in Eq.
(23), namely for k = 1. Let us assume now that Eq. (23) holds for p smaller
than or equal to a given p − 1 ≥ 2. We will show that then it is also valid
for p, i.e. that

(λF (x0 ⊗ · · · ⊗ xp))p+1−2k =∑
π∈Pp+1,k

sgn(π)F (xπ(0), xπ(1))F (xπ(2), xπ(3)) · · ·

· · ·F (xπ(2k−2)), xπ(2k−1))xπ(2k) ⊗ · · · ⊗ xπ(p),

(24)

where Pp+1,k denotes the set of permutations of {0, 1, 2, . . . , p} satisfying the
conditions suggested by Note 1.12. We have

(λF (x0 ⊗ x1 ⊗ · · · ⊗ xp))p+1−2k

= x0 ⊗ (λF (x1 ⊗ · · · ⊗ xp))p−2k + iFx0 (λF (x1 ⊗ · · · ⊗ xp)p+2−2k)

The first term in the formula above gives those terms in Eq. (24) for p+ 1 in
which x0 does not participate as an argument of F . We can extend the set
of indices setting π(0) = 0, with the correct signs of the permutations (as 0
must be transposed with an even number of indices). The second term gives
the terms in Eq. (24) in which x0 participates as an argument of F . In that
case it must participate as the first argument, and the operator iFx0 makes
sure that this happens. In order to obtain

(λF (x0 ⊗ · · · ⊗ xp))p+1−2k

we need to take
iFx0((λF (x1 ⊗ · · · ⊗ xp))p+2−2k).

From Eq. (19) we know that iFx0 commutes with λF , therefore we need to
calculate

(λF (iFx0(x1 ⊗ · · · ⊗ xp)))p+1−2k.

We know the action of iFx0

iFx0(x1 ⊗ · · · ⊗ xp)

=

p∑
l=1

(−1)l−1 F (x0, xl)x1 ⊗ · · · ⊗ x̂l ⊗ · · · ⊗ xp,
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where the hat denotes the factor omitted in the product. Therefore we need
to calculate

p∑
l=1

(−1)l−1 F (x0, xl)(λF (x1 ⊗ · · · ⊗ x̂l ⊗ · · · ⊗ xp))p+1−2k.

For this term not to be automatically zero, we need to take k ≤ [(p− 1)/2].
We set k′ = k−1, then p+1−2k = (p−1)−2k′. According to the induction
assumption we have

(λF (x1 ⊗ · · · ⊗ x̂l ⊗ · · · ⊗ xp))p−1−2k′

=
∑

π∈Pp−1,k′

sgn(π)F (xπ(1), xπ(2)) · · ·

F (xπ(2k′−1), xπ(2k′))xπ(2k′+1) ⊗ . . .⊗ xπ(p)

where Pp−1,k′ now means a set of permutations of {1, 2, . . . , l̂, . . . , p}, that
is {1, 2, . . . , p} without l. Now, since (−1)l−1 sgn π is the signature of the
permutation (0, 1, . . . , p) 7→ (0, l, π(1), . . . , π̂(l), . . . , π(p)), the formula (22)
holds also for x0, . . . , xp.

1.3.1 λF as an exponential

Definition 1.14. Using the same notation as in Proposition 1.13 we define

aF0 = IdT(V ),

and for k > 0 and p ≥ 2k

aFk (x1 ⊗ · · · ⊗ xp) =
∑

2≤2k≤p

∑
π∈Pp,k

sgn(π)F (xπ(1), xπ(2))F (xπ(3), xπ(4)) · · ·

· · ·F (xπ(2k−1), xπ(2k))xπ(2k+1) ⊗ · · · ⊗ xπ(p).

For p < 2k we set aFk (x1 ⊗ · · · ⊗ xp) = 0.

It is clear from the Proposition 1.13 and from the definition of ak that we
have:

λF =
∞∑
k=0

aFk . (25)

We will show now that the sequence (aFk )k∈N satisfies the relations that are
characteristic for an exponential sequence - as discussed, for example, in Ref.
[25, A IV 87]:
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Proposition 1.15. With ak defined as in the Definition 1.14 we have

aFl a
F
k =

(
k+l
k

)
aFk+l = aFk a

F
l , (26)

where
(
k+l
k

)
is the binomial coefficient

(
k+l
k

)
=
(
k+l
l

)
=

(k + l)!

k!l!
.

Proof. With u ∈ Tp(V ), for aFk (u) to be non-zero it is necessary that p ≥ 2k,
then u′ = aFk (u) is of grade p′ = p − 2k. For aFl (u)′ to be nonzero, we must
have p′ − 2l ≥ 0, i.e. p ≥ 2(k + l), as required by the statement. Assuming
now p ≥ 2(k + l), we have

aFl (aFk (x1 ⊗ · · · ⊗ xp)) =
∑
π∈Pp,k

sgn(π)F (xπ(1), xπ(2))F (xπ(3), xπ(4)) · · ·

· · ·F (xπ(2k−1), xπ(2k)) a
F
l

(
xπ(2k+1) ⊗ · · · ⊗ xπ(p)

)
.

(27)

Each of the terms in the expansion of aFk+l(x1 ⊗ · · · ⊗ xp) is of the form

sgn(π)F (xi1 , xj1) · · ·F (xik+l
, jk+l)X(i1...jk+l),

where i1 < i2 < · · · < ik+l, i1 < j1, . . . , ik+l < jk+l, and X(i1...jk+l) stands for
x1 ⊗ · · · ⊗ xp with xi1 , . . . , xjk+l

removed. Every such term can be obtained
in (k + l)!/(k!l!) ways from the terms obtained in Eq. (27) by selecting a
subsequence of k pairs (im, jm), and extending it to the whole sequence of
(k + l) pairs via the action of aFl as in Eq. (27). All these terms will come
with the required signature.

Remark 1.16. It is clear from the proof above that, for any two bilinear
forms F,G the operators aFk and aGl commute. Therefore the family {aFk },
with k running through all natural integers and f running through all bilinear
forms generates a commutative subalgebra of End(T(V )).

Corollary 1.17. Assuming the characteristic of K is 0, and setting aF = aF1 ,
we have

λF = exp(aF ). (28)

Proof. From the definition and from Eq. (26) we have

(aF )2 = aF1 a
F
1 = 2! aF2 ,
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(aF )3 = aF (aF )2 = 2! aF1 a
F
2 = 2!

3!

2!
aF3 = 3! aF3 ,

and, in general,
(aF )n = n! aFn . (29)

Thus, from Eq. (25) we have

λF =
∞∑
n=0

1

n!
(aF )n = exp(aF ).

The series is finite when applied to any element u ∈ T(V ), because T(V ) =⊕∞
p=0 Tp(V ), by the definition of the algebraic direct sum, consists of ele-

ments u = ⊕∞p=0 up, up ∈ Tp(V ), for which up 6= 0 only for a finite number of
indices p.

1.3.2 The case of an alternating F - the Pfaffian

A bilinear form F on V is called alternating if F (x, x) = 0 for all x ∈ V. If F
is alternating, then F (x+y, x+y) = 0 for all x, y ∈ V , and therefore, by bilin-
earity, the form F is antisymmetric: F (x, y) = −F (y, x). Let x1, . . . , xp ∈ F.
Then the matrix fij = F (xi, xj) is alternating, i.e. fii = 0, fij = −fji.

For an even-dimensional alternating matrix f one defines the Pfaffian
Pf (f) as follows20

Definition 1.18. The Pfaffian of a 2n× 2n alternating matrix f = (fij) is
defined as

Pf (f) =
∑
π

sgn(π )fi1j1fi2j2 . . . finjn ,

where the sum is over the set of all permutations π on the set {1, 2, . . . , 2n}
of the form

π =

(
1 2 3 4 · · · 2n
i1 j1 i2 j2 · · · jn

)
,

for ik < jk and i1 < i2 < · · · < in. The signature sgn(π) of the permutation
π is given by (−1)m, where m is the number of transpositions in π.

It is well known21 that the square of the Pfaffian of an even-dimensional
alternating matrix is equal to its determinant. Comparing the Definition

20See e.g. Ref. [7, pp. 82-83].
21See e.g. Ref. [7, p.83].
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1.18 with the formula (22) in Proposition 1.13 and Definition 1.14, we arrive
at the following Corollary:

Corollary 1.19. Let F be an alternating bilinear form on V , let x1, . . . , xp ∈
V, with p ≥ 2, p even, p = 2n. Then∣∣∣∣∣∣∣∣∣∣∣∣

F (x1, x1) F (x1, x2) · · · F (x1, xp)
F (x2, x1) F (x2, x2) · · · F (x2, xp)

. . · · · .

. . · · · .

. . · · · .
F (xp, x1) F (xp, x2) · · · F (xp, xp)

∣∣∣∣∣∣∣∣∣∣∣∣
= ω2,

where
ω = (λF (x1 ⊗ · · · ⊗ xp))0 = aFn (x1 ⊗ · · · ⊗ xp).

2 Clifford algebras

2.1 Quadratic forms

Given a module M over a commutative ring R there are two definitions
possible of a quadratic form on M , one more general than the other if rings
with an arbitrary characteristic are being considered. The following, more
general, definition is used, in particular, in Bourbaki [17], Chevalley [6], and
Helmstetter & Micali [21]:

Definition 2.1 (Quadratic form I). Let M be a module over a commutative
ring R. A mapping Q : M → R is called a quadratic form on M if the
following conditions are satisfied:

1.
Q(αx) = α2Q(x) for all α ∈ R, x ∈M, (30)

2. There exists a bilinear form Φ(x, y) on M such that for all x, y ∈ M
we have

Φ(x, y) = Q(x+ y)−Q(x)−Q(y). (31)
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We say that the bilinear form Φ is the polar form associated with the quadratic
form Q. Sometimes Φ is also called the polar form of Q. It follows from its
very definition that Φ is symmetric: Φ(x, y) = Φ(y, x) for all x, y ∈M.

We can combine Eqs. (31) and (30) into:

Q(αx+ βy) = α2Q(x) + β2Q(y) + αβΦ(x, y). (32)

The short discussion of consequences given below is taken directly from
Ref. [21].

Note 2.2. From the very definition we find that

Φ(x, x) = Q(2x)− 2Q(x) = 4Q(x)− 2Q(x) = 2Q(x). (33)

It follows that if R is of characteristic 2, then Φ(x, x) = 0 for all x ∈ R.
Such a form is called alternating . In that case, since also Φ(x+y, x+y) = 0,
we have that

0 = Φ(x+ y, x+ y) = Φ(x, x) + Φ(x, y) + Φ(y, x) + Φ(y, y)

= Φ(x, y) + Φ(y, x),

so that in this case the form Φ is antisymmetric Φ(x, y) = −Φ(y, x).

Getting back to a general characteristic, we may also notice at this point
that if the mapping x 7→ 2x is surjective in M, then the form Φ determines
Q. Indeed, setting y = 2x we get Q(y) = Q(2x) = 4Q(x) = 2Φ(x, x).
We also observe that the quadratic form Q is determined by the associated
bilinear form Φ when the mapping α 7→ 2α is injective in R, in particular if
multiplication by 1

2
makes sense in R. In that case we can solve Eq. (33) to

obtain Q(x) = 1
2
Φ(x, x).

In applications to Clifford algebras, unless we are interested in very special
cases like characteristic 2, it is more convenient to use a little bit different
definition of a quadratic form, as given, for instance, in Ref. [26, p. 199]:

Definition 2.3 (Quadratic form II). Let M be a module over a commutative
ring R. A function Q : M → R is called a quadratic form if there exists a
bilinear form F : M ×M → R such that

Q(x) = F (x, x). (34)
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It follows from this last definition that the condition in Eq.(30) is then
automatically satisfied, and also the condition in Eq.(31) is automatically
satisfied with

Φ(x, y) = F (x, y) + F (y, x). (35)

Remark 2.4. If the module M admits a basis (in particular, when it is a
vector space), then given a quadratic form Q as in Def. 2.1 one can always
construct a bilinear form F (in general a non symmetric one) such that
Q(x) = F (x, x) (cf. Sec. 2.1.1 below).

Definition 2.5. If F is a bilinear form on V , then the mapping x 7→ F (x, x)
is a quadratic form. We will denote this form by QF :

QF (x) = F (x, x), x ∈ V.

2.1.1 Constructing a bilinear form in characteristic 2

The construction here is taken from Ref. [19, Proposition 2, p. 55]).22

Let Q be a quadratic form on a vector space V over a field K. We start
with noticing that V, being a vector space, has a basis {ei}i∈I . We select one
such basis. By the well-ordering theorem every set can be well ordered, and
we will assume that the index set I is well ordered. Since {ei}i∈I is a basis,
every bilinear form F is uniquely determined by the coefficients fij, i, j ∈ I.
Let Φ be the bilinear form associated to Q. We first observe that if {αi}i∈I
is any family of elements of K with only a finite number of αi 6= 0, then

Q(
∑
i

αiei) =
∑
i

α2
iQ(ei) +

∑
{i<j}

αiαjΦ(ei, ej), (36)

where the last sum is over all two-element subsets {i, j} of I.23

It is understood that each sum is over a finite set determined by non-
zero αi-s. We prove Eq. (36) by induction with respect to the number n
of nonzero coefficients αi. If there are only two nonzero coefficients, then
(36) follows from Eq. (32), i.e. from the definition of the quadratic form

22The construction can be also found in Ref. [6, I.2.2, p.76], but under the assumption
that V is finite dimensional.

23Thus if ai1 and ai2 are nonzero, with i1 < i2, then only Φ(ei1 , ei2) enters the sum, and
not Φ(ei2 , ei1), because {i2, i1} is the same subset as {i1, i2}.
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2.1. Assume now that Eq. (36) holds for subsets {i1, . . . , in} of n non-zero
coefficients αi, and let us add another non-zero coefficient αin+1 . Then

Q(αi1ei1 + · · ·+ αin+1ein+1) = Q ((αi1ei1 + · · ·+ αinein) + αin+1ein+1) =

Q(αi1ei1 + · · ·+αinein) +Q(αin+1ein+1) + Φ(αi1ei1 + · · ·+αinein , αin+1ein+1).

Using now the quadratic form property, in particular for the sum of two
elements, the assumed property for the sum of n elements, as well as linearity
of Φ in the first argument leads to the desired result. Nowhere do we need
to assume that the basis {ei}i∈I is finite.

Given a quadratic form Q we can now define a bilinear form F satisfying
Q(x) = F (x, x) by defining its coefficients fij, i, j ∈ I, as follows:

fii = Q(ei),

fij = Φ(ei, ej), i < j,

fij = 0, i > j. (37)

We now check that Q(x) = F (x, x) for every x in V. If x ∈ V then x =∑
i αiei, with only a finite number of non-zero terms in the sum. Therefore,

using Eq. (36) we have

Q(x) =
∑
i

α2
iQ(ei) +

∑
i<j

αiαjΦ(ei, ej). (38)

On the other hand, from bilinearity of F we have

F (x, x) = F (
∑
i

αiei,
∑
j

αjej) =
∑
i

α2
i fii +

∑
i 6=j

αiαjfij = Q(x)

from the definition of the coefficients fij above (because fij = 0 for i > j) .

2.1.2 Action of bilinear forms on quadratic forms

Let V be a vector space over K. The set of quadratic forms on V is a vector
space. We will denote it Quad (V ). We will denote Bil(V ), Sym(V ), Alt(V )
the vector spaces of bilinear, symmetric, and alternating forms respectively.
If Q ∈ Quad(V ) and F ∈ Bil(V ) we will write Q + F for the quadratic
form Q′(x) = Q(x) + QF (x). By Remark 2.4 this action is transitive. If the
characteristic of K is 6= 2, then, given Q,Q′ there is a unique symmetric form
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F such that Q′ = Q + F. On the other hand, in characteristic 2 there are
quadratic forms Q that are not of the form Q = QF , for F ∈ Sym(V ).24

2.2 Clifford algebra - definition

Let V be a vector space over the (commutative) field K, let Q be a quadratic
form on V (see Def. 2.1), and let I(Q) be the two-sided ideal in T(V )
generated by elements of the form x⊗x−Q(x)1, where x ∈ V ⊂ T(V ). The
ideal I(Q) consists of all finite sums of elements of the form x1 ⊗ . . .⊗ xp ⊗
(x⊗ x−Q(x)1)⊗ y1 ⊗ . . .⊗ yq, where x, x1, . . . , xp, y1, . . . , yq are in V.

Definition 2.6 (Clifford algebra). 25 With V and Q as above the quotient
algebra Cl(V,Q) = T(M)/I(Q) is called the Clifford algebra associated to V
and Q.

Denoting by πQ : T(V ) → Cl(V,Q) the canonical mapping, πQ(V ) is a
subspace of Cl(V,Q) that generates (together with πQ(1)) Cl(V,Q) as an
algebra.

The case of Q = 0 is special. The ideal I(Q) is then generated by homoge-
neous elements x⊗ x and the algebra Cl(0) (i.e. Cl(Q) for Q = 0) is nothing
but the exterior algebra

∧
(V ) of V. All homogeneous elements of I(0) are

then of degree at least 2, therefore no non-zero element of V can belong to
this ideal. It then easily follows that in this case the mapping x 7→ πQ(x) is
an embedding and V can be always identified with the grade 1 subspace of
Λ(V ) = Cl(0).

Remark 2.7 (A note on the non-triviality of I(Q).). How to make sure that
1T(V ) is not in I(Q)? This is easy for the exterior algebra

∧
(V ) = Cl(V, 0),

which is Z-graded and the ideal I(Q) is generated by homogeneous expressions
x⊗x. To show that I(Q) 6= T(V ) in a general case, one can proceed as follows.
Let F be a bilinear form such that26 Q(x) = F (x, x), and consider the linear
map LF : V → End(

∧
(B)) defined as LF : x 7→ Λ̄F (x) = ēx + īFx , where ēx

and īFx are defined as in Sec.1.2.1, except that we use them on
∧

(V ) instead
of on T(V ).27 By the universality of the tensor algebra T(V ), LF extends

24For a simple example of such a Q, for K = Z/Z2, in the two dimensional space K2,
see ref. [14, p. 295, Example].

25Here we follows the standard definition as in [6, p. 35]. An alternative definition can
be found e.g. in [27, p. 8]

26Cf. Sec. 2.1.1.
27We will discuss these operations in extenso in the next section.
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uniquely to an algebra homomorphism of unital algebras (denoted by the same
symbol) LF : T(V ) → End(

∧
(V )). It is easy to see that ē2

x = (̄iFx )2 = 0,
and ēx īFx + īFx ēx = F (x, x) = Q(x), and therefore LF vanishes on the ideal
I(Q). But, on the other hand, LF (1) = Id∧

(V ), therefore 1T(V ) /∈ I(Q),
and πQ(1T(V )) can be identified with the unit element of K ⊂ Cl(Q). In the
following we will often simply write 1 instead of πQ(1) or 1Cl(Q).

Moreover, since LF (x)(1∧
(V )) = x ∈

∧
(V ), it follows that the mapping

V 3 x 7→ πQ(x) is injective.

The following proposition is an immediate consequence of the universal
property of the tensor algebra and of the definition of the Clifford algebra
above (c.f. [7, Proposition 1, p. 140]).

Proposition 2.8 (Universal property). Let φ be a linear map from V into an
algebra A (with unit 1), such that φ(x)2 = Q(x)1 for all x ∈ V. Then φ can
be extended to a unique algebra homomorphism φ̄ : Cl(Q) → A. If A is Z2-
graded, and φ maps V into an odd subspace of A, then φ̄ is a homomorphism
of Z2-graded algebras.

Proof. As mentioned above, the first part of the proposition follows from
the universal property of the tensor algebra and the definition 2.6 of Cl(Q).
The second part follows from the fact that V generates Cl(V ), and that the
even (resp. odd) part of Cl(V ) is generated by products of even (resp. odd)
number of elements of V.

The ideal I(Q) is stable under the main involution α and the main anti-
involution τ (Eqs. (3) and (4)). Therefore α and τ descend to the quotient
Clifford algebra Cl(Q). We shall use the same symbols α, τ to denote the
induced involution and anti-involution on Cl(Q). While the tensor algebra
T(V ) is Z−graded, the Clifford algebras Cl(Q) for Q 6= 0 are only Z2-graded:

Cl(Q) = Cl+(Q)⊕ Cl−(Q),

where Cl±(Q) are the images of even/odd parts of the tensor algebra. If the
mapping x 7→ 2x of Cl(Q) to itself is injective, then

Cl±(Q) = {u ∈ Cl(Q) : α(u) = ±u}.

Alternatively Cl+(Q) (resp. Cl−(Q)) can be defined as the linear subspace of
Cl(Q) generated by the products x1 · · ·xp, xi ∈ V , with p even (resp. odd).
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We have

Cl(Q)+ Cl(Q)+ ⊂ Cl(Q)+, Cl(Q)+ Cl(Q)− ⊂ Cl(Q)−,

Cl(Q)−Cl(Q)− ⊂ Cl(Q)+.
(39)

In particular Cl(Q)+ is a subalgebra of Cl(Q). It is called the even Clifford
algebra.

3 Natural operations within and between Clif-
ford algebras

In this section, the main section of this paper, we will study the natural
linear operations acting within and between Clifford algebras over the same
vector space V. Connecting Clifford algebras Cl(V,Q) and Cl(V,Q′) can be
achieved by operations at the higher level, namely at the level of the tensor
algebra T(V ) - the one source of all Cl(V,Q)’s, through the quotient maps.

3.1 Anti-derivations īf .

Lemma 3.1. If Q is a quadratic form on V then the ideal I(Q) is stable
under if , that is if (I(Q)) ⊂ I(Q), and thus if defines an endomorphism īf
on the Clifford algebra Cl(Q) = T(V )/I(Q):

πQ ◦ if = īf ◦ πQ. (40)

In particular
īf (1) = 0.

Proof. Let S denote the set of all u ∈ I(Q) for which if (u) ∈ I(Q). Using
Eq. (7) we instantly get that S is a left ideal. On the other hand, if u =
(x⊗ x−Q(X))⊗ v, then a simple calculation shows that

if (u) = (x⊗ x−Q(x))⊗ if (u), (41)

and therefore S contains the right ideal generated by (x⊗x−Q(x)). It follows
that I(Q) ⊂ S, and thus I(Q) is stable under if , so that if defines the linear
mapping īf on the quotient algebra Cl(Q), with the property

īf ◦ πQ = πQ ◦ if . (42)

In particular, by Eq. (5), we have īf (1) = 0.
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The operators ex : T(V ) → T(V ), x ∈ V, of left multiplication in the
tensor algebra evidently map the ideal I(Q) into itself, and therefore de-
scend to the quotient Cl(Q) = T(V )/I(Q), and become the operators of left
multiplication in Cl(Q) We will denote these quotient operators ēx :

πQ ◦ ex = ēx ◦ πQ. (43)

It follows from the very definition that for x, y ∈ V

ē2
x = Q(x), ēxēy + ēyēx = Φ(x, y). (44)

Proposition 3.2. On Cl(Q) we have28

(i) īf (1) = 0, (1 ∈ Cl(Q))

(ii) For all x ∈ V, f, g ∈ V ∗ we have

ī2f = 0, īf īg + īg īf = 0, (45)

īf ēx + ēxīf = f(x), (46)

or, explicitly: for all x ∈ V , w ∈ Cl(Q), we have

īf (xw) = f(x)w − x īf (w). (47)

(iii) For x1, . . . , xp ∈ V we have

īf (x1 · · · xp) =

p∑
i=1

(−1)i−1f(xi)x1 · · · x̂i · · ·xp. (48)

Proof. We have already established (i). The formulas in (ii) follows immedi-
ately by applying πQ to Eqs. (iii) and (iv) in Proposition 1.1, and to Eq. (8),
and taking into account the fact that πQ is an algebra homomorphism.29

28The right hand sides in Eqs. (44),(46) are to be understood as multiplication by
scalars in End(Cl(Q)).

29The formula (48) is usually proven for the Z-graded exterior algebra
∧

(V ) rather than
for a general Clifford algebra Cl(Q) which is only Z2 graded. See e.g. [19, Exerc. 5, p.
155].
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As it was in the case with īf , we will denote by īFx the antiderivation īf
for f(y) = F (x, y) :

īFx = īf , for f(y) = F (x, y), (x, y ∈ V ).

The mapping V 3 x → īFx ∈ End (Cl(Q)) is linear and has the property
(̄iFx )2 = 0. Therefore it extends to a unique algebra homomorphism

∧
(V ) 3

u 7→ īFu ∈ End(Cl(Q)). In particular, if Q = 0, we have the map u 7→ īFu ,∧
(V )→ End (

∧
(V )), sometimes written using the contraction symbol c:

u c
F

v
.
= īFu (v).

3.2 The mapping λ̄F
The Proposition below encapsulates one of the most important properties of
λF . For an alternative proof cf. [19, Proposition 3, p. 143].

Proposition 3.3. Let Q and Q′ be two quadratic forms on V such that
Q′(x) = Q(x) + F (x, x), where F (x, y) is a bilinear form. The mapping λF
maps the ideal I(Q′) onto the ideal I(Q), λF (I(Q′)) = I(Q), and therefore it
defines a linear isomorphism, denoted λ̄F of Cl(Q′) onto Cl(Q):

πQ ◦ λF = λ̄F ◦ πQ′ . (49)

Proof. To show that λF (I(Q′)) ⊂ I(Q) it is enough to show that λF (u⊗ (x⊗
x−Q′(x))⊗ v) is in I(Q) for all u, v ∈ T(V ), x ∈ V. Using the fact that ΛF

is an algebra homomorphism ΛF : T(V )→ End(T(V )) and Eq. (10) we have

λF (u⊗ (x⊗ x−Q′(x))⊗ v) = ΛF (u)
(
ΛF (x⊗ x−Q′(x))(λF (v))

)
. (50)

A straightforward calculation, using the properties 2 and (iii) of Proposition
1.1, gives

ΛF (x⊗ x−Q′(x)) = ex ◦ ex −Q(x) Id, (51)

where Id denotes the identity endomorphism of T(V ). It immediately follows
that ΛF (x⊗ x−Q′(x))(λF (u)) = (x⊗ x−Q(x))⊗ λF (u) is in I(Q). Now it
suffices to prove that ΛF (u) maps I(Q) into I(Q). It suffices to do it when u
is a vector y in V, and ΛF (y) = ey + iFy . On one side, since I(Q) is an ideal,
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it is evident that ey(I(Q)) ⊂ I(Q); on the other side, we know from Lemma
3.1 that iFy (I(Q)) ⊂ I(Q). All this proves that I(Q) ⊂ λF (I(Q′)), and since
λ−F = λ−1

F , it follows that I(Q) ⊂ λF (I(Q′)), and finally λF (I(Q′)) = I(Q).

Proposition 3.4. For all x ∈ V , w ∈ Cl(Q′) we have

λ̄F (1) = 1, (52)
λ̄F (x) = x, (53)

λ̄F (xw) = īFx (λ̄F (w)) + xλ̄F (w), (54)

where in Eq. (54) the multiplication xw on the left is in the algebra Cl(Q′),
while the multiplication xλ̄F (w) on the right is in the algebra Cl(Q). Equa-
tions (52) and (54) define λ̄F uniquely on Cl(Q).

For p ≥ 2 and x1, . . . , xp ∈ V , we have30

λF (x1 · · ·xp) = x1 · · ·xp
+
∑

2≤2k≤p

∑
π∈Pp,k

sgn(π)F (xπ(1), xπ(2))F (xπ(3), xπ(4)) · · ·

· · ·F (xπ(2k−1), xπ(2k))xπ(2k+1) · · ·xπ(p).

(55)

where the Pp,k is as in Definition 1.11.
If F,G are bilinear forms, if Q′′(x) = Q′(x)+G(x, x) and Q′(x) = Q(x)+

F (x, x), then
λ̄F+G = λ̄F ◦ λ̄G. (56)

:
Cl(Q′)

Cl(Q′′) Cl(Q)

λ̄Fλ̄G

λ̄F+G

(57)

We have
(λ̄F )

−1
= λ(−F ), (58)

therefore, in particular, λ̄F is injective.

Proof. Eqs. (52) and (54) follows immediately by applying πQ to both sides
of Eqs. (17) and (18) and making use of Eqs. (47) and (49), with w = πQ(u).

30For the notation convention cf. Note before the proof of Proposition 1.13.
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Eq. (56) follows directly from Eq. (20) and the definition of the quotient
mappings, as we have the general property of compositions of quotients of
mappings. Eq. (55) follows directly from Eq. (22) by applying πQ.

Corollary 3.5. If x1, . . . , xn are in V and if F (xi, xj) = 0 for i < j, then

λ̄F (x1 · · ·xn) = x1 · · ·xn,

where the product in the argument of λ̄F is taken in Cl(Q′) and the product
on the right hand side is in Cl(Q).

Proof. The statement follows directly from Eq. (55).

3.2.1 The mapping Λ̄F

The mapping Λ̄F defined below is a straightforward generalization of the
Chevalley’s construction, cf. [6, p. 70].

Let Q be a quadratic form and F a bilinear form on a vectors space V
over a field K. With x ∈ V let Λ̄F

x ∈ End (Cl(Q)) be defined as

Λ̄F
x = ēx + īFx .

Using Eqs. (44),(45),(46) we find that

(Λ̄F
x )2 = Q′(x)1Cl(Q),

where Q′(x) is the quadratic form

Q′(x) = Q(x) + F (x, x).

Therefore, by the universal property (see Proposition 2.8), Λ̄F
x extends to a

unique algebra homomorphism, denoted Λ̄F ,

Λ̄F : Cl(Q′)→ End(Cl(Q)).

Since every Clifford algebra has a natural Z2-gradation , the algebraf End(Cl(Q))
is also naturally Z2-graded. In general, if W1,W2 are graded vector spaces,
the gradation of the space Hom (W1,W2) is given by

Homk(W1,W2) = {φ ∈ Hom (W1,W2) : φ(W i
1) ⊆ W i+k

2 }.
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Since Λ̄F
x is an odd element of End(Cl(Q), it follows that Λ̄F , is also a homo-

morphism of Z2-graded algebras Λ̄F : Cl(Q′)→ End(Cl(Q)). It follows from
the definition that for x1, . . . , xp ∈ V we have

Λ̄F (x1 · · ·xp) = (ēx1 + īFx1) · · · (ēxp + īFxp).

From Eqs. (13),(40),(43) we have the relation between Λ̄F and ΛF , namely,
for all F ∈ Bil(V ), Q ∈ Quad(V ), u, v ∈ T(V ) we have

Λ̄F (πQ′(u))(πQ(v)) = πQ(ΛF (u)(v)). (59)

From Eq. (15) we obtain now

Λ̄F

(
Λ̄G(u)(v)

)
(w) = Λ̄F+G(u)

(
Λ̄G(v)(w)

)
, (60)

for all F,G ∈ Bil(V ), Q ∈ Quad(V ), u ∈ Cl(Q + QF+G), v ∈ Cl(Q + QF ),
w ∈ πQ(T(Rad(G))) = Cl(Rad(G), Q).

Let us recall that from Eqs. (13),(16) we have

λF (x1 ⊗ · · · ⊗ xp) = ΛF (x1 ⊗ · · · ⊗ xp)(1) = (ex1 + iFx1) · · · (exp + iFxp)(1).

Applying πQ to both sides we obtain:

λ̄F (x1 · · ·xp) = Λ̄F (x1 · · ·xp)(1),

or
λ̄F (u) = Λ̄F (u)(1) for all u ∈ Cl(Q′). (61)

We thus obtain the following commutative diagram

End(Cl(Q))

Cl(Q′) Cl(Q)

ev(·,1)Λ̄F

λ̄F

where ev is the evaluation map. Since, (cf. Proposition 3.4) λ̄F is injective,
it follows that Λ̄F is injective as well, that is that Λ̄F is a graded algebra
isomorphism from Cl(Q) onto its image in End(Cl(Q′)).
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3.2.2 A comment on representations of Clifford algebras Cl(V,Q)
on
∧

(V )

Let F be a bilinear form on V, and let Q = QF , i.e. Q(x) = F (x, x), x ∈ V.
The mapping Λ̄F , defined above in Section 3.2.1, is then an algebra homo-
morphism from Cl(V,Q) to End(

∧
(V )). In other words

∧
(V ) becomes a

Clifford module, and u 7→ Λ̄F (u) becomes a (a faithful) representation of the
algebra Cl(V,Q) on

∧
(V ). Let us denote this representation ρF :

ρF (u) = Λ̄F (u).

If F ′ is another bilinear form with the property QF ′ = QF = Q, then
F ′ = F + A, where A is an alternating form. In this case we have two
representations, ρF and ρF ′ of the same algebra Cl(V,Q) on

∧
(V ).

Let us recall (see e.g. [28, p. 49]) that two representations ρ and ρ′ of
the same algebra A on a vector space W are said to be equivalent if there is
a vector space automorphism ψ :W →W such that

ρ′(a) = ψ ◦ ρ(a) ◦ ψ−1 for all a ∈ A.

Proposition 3.6. With the assumptions as above, the representations ρF
and ρF ′ of Cl(V,Q) on

∧
(V ) are equivalent. Namely, we have

ρF ′(a) = λA ◦ ρF (a) ◦ λ−1
A , for all a ∈ Cl(V,Q).

Proof. Indeed, replacing (F,G,w) with (A,F,1) in Eq. (60), and using Eq.
(61) we obtain

λ̄A
(
Λ̄F (u)(v)

)
= Λ̄F ′(u)

(
λ̄A(v)

)
,

or
λ̄A ◦ ρF (u) = ρF ′(u) ◦ λ̄A.

3.3 Automorphisms and deformations in the bundle of
Clifford algebras

We have arrived at the following picture: We have an action, let us denote
it by λ̃, of the additive group of bilinear forms Bil(V ) on the manifold of
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quadratic forms Quad(V ), the stability subgroup being Alt(V ) - the additive
group of alternating forms:

λ̃ : Bil(V )×Quad(V ) → Quad(V )

λ̃(F,Q) = Q′, (62)
Q′(x) = Q(x) + F (x, x).

The group Bil(V ) acts on the basis of the Z2-graded vector bundle Cl(V )
whose fibers are Clifford algebras Cl(Q). And we know that this action admits
what is called a lifting, and we denote it with the letter λ̃, to the bundle
Cl(V ) :

λ̃(F, u) = λ̄−F (u), u ∈ Cl(Q),

where λ̄F have been defined in Proposition 3.3.31 Now λ̃(F,Cl(Q)) = Cl(Q′).
Thus fibers are mapped onto fibers by linear isomorphisms - see Fig. 1. For
F ∈ Alt(V ) we have Q′ = Q, and so each fiber Cl(Q) is mapped linearly
onto itself. The linear morphisms above are also preserving the natural Z2-
gradations of the Clifford algebras..

In characteristic 6= 2 the Z2-graded vector bundle Cl(V ) admits a natural
parallelization. If Q and Q′ are any two quadratic forms, then there is a
unique symmetric bilinear form F, such that Q′ = Q + QF , where QF is
given by Definition 2.5, namely F = 1

2
(Φ′−Φ), where Φ,Φ′ are given by Eq.

(31). In that case λ̄F provides a natural Z2-graded vector space isomorphism
between Cl(V,Q′) and Cl(V,Q). In characteristic 2 the bundle Cl(V ) is also
parallelizable, and the parallelization can be achieved using a non-symmetric
bilinear form F defined, for instance, by the construction in Section 2.1.1. In
that case the parallelization depends on the choice of a basis in V.

Given two quadratic forms Q and Q′, such that Q′ = Q + QF , we can
use the mapping λ̄F to realize the Clifford algebra Cl(Q′) as a deformation
of the Clifford algebra product in Cl(Q) as follows. For u, v ∈ Cl(Q) let uv
stand for the product of u and v in Cl(Q). Then λ̄−F (u) and λ̄−F (v) are in
Cl(Q′). We multiply them in Cl(Q′) and transform their product back to
Cl(Q) using λ̄F . This way we obtain the Cl(Q′), product, with Q′ = Q+QF ,
realized within Cl(Q):

uv
F

= λ̄F
(
λ̄−F (u) λ̄−F (v)

)
. (63)

31By definition the mapping λ̄F is from Cl(Q′) to Cl(Q). To map Cl(Q) to Cl(Q′),
where Q′ = Q+QF , we need to take the inverse map λ̄−F = λ̄−1F .
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Cl(V )

Quad(V )

Q Q′

Cl(Q′)Cl(Q)

λ̃

λ̄

λ̄

Figure 1: Every bilinear form F ∈ Bil(V ) defines an automorphism of the
Z2-graded vector bundle of Clifford algebras mapping linearly fibers onto
fibers. Alternating forms in Alt(V ) ⊂ Bil(V ) define vertical automorphisms
- they do not move points on the base and map every fiber into itself. Such
automorphisms are also called gauge transformations
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Since V generates any Clifford algebra Cl(V,Q), in particular Cl(Q′), it is
enough to have the formula (63) for u = x ∈ V. In that case we can use the
fact that λ̄−F (x) = x - see Eqs. (53),(54) - to obtain

xv
F

= λ̄F
(
λ̄−F (x) λ̄−F (v)

)
= λ̄F

(
x λ̄−F (v)

)
= x λ̄F

(
λ̄−F (v)

)
+ īFx

(
λ̄F (λ̄−F (v))

)
= xv + īFx (v). (64)

3.3.1 The action of alternating forms

In this section we will assume that V is a finite-dimensional vector space
over an arbitrary field K. Later on in this section, when discussing the
exponential, we will additionally assume that K is of characteristic zero.

There is a natural linear mapping from
∧2(V ∗) to Alt(V ) defined by

〈f ∧ g, x ∧ y〉 = g(x)f(y)− f(x)g(y), (65)

for f, g ∈ V ∗ and x, y ∈ V . Since we have assumed that V is finite-
dimensional, the mapping above is a bijection - cf. e.g [17, p. 591, Proposition
7]. Every element A∗ ∈

∧2(V ∗) defines an alternating form A ∈ Alt(V ):

A(x, y) = 〈A∗, x ∧ y〉. (66)

In particular, for A∗ = f ∧ g we have

A(x, y) = g(x)f(y)− f(x)g(y). (67)

From Section 3.1 we know that we have a linear map V ∗ 3 f 7→ īf ∈
End(Cl(V,Q)) that associates to every linear form f ∈ V ∗ the antiderivation
īf ∈ End(Cl(V,Q)) with the property ī2f = 0. From the universal property of
the exterior algebra it then follows that this mapping has a unique extension
to an algebra homomorphism∧

(V ∗) 3 u∗ 7→ iu∗ ∈ End(Cl(V,Q)),

thus making Cl(V,Q) a left
∧

(V ∗) module. In particular, for f, g ∈ V ∗ we
have

īf∧g = īf ◦ īg. (68)
One often writes u∗yv for u∗ ∈

∧
(V ∗), v ∈ Cl(V,Q), and calls it the interior

product of u∗ and v - cf. e.g. [21, Ch. 4.4]. We will be interested in the
action of iA∗ = A∗y · for A∗ ∈

∧2(V ∗). It is evident that īA∗(1Cl(V,Q)) = 0.
On the other hand, with īFx defined as in Section 3.1 we have:
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Proposition 3.7. For all x ∈ V , u ∈ Cl(V,Q) we have

iA∗(xu) = x īA∗(u) + īAx (u). (69)

Proof. Let us first consider the case of A∗ being a simple two-form A∗ = f∧g,
f, g ∈ V ∗, in which case we can use Eq. (65) relating A∗ ∈

∧2(V ∗) to
A ∈ Alt(V ). In this case we have

īA∗(xu) = īf (̄ig(xu)) = īf (g(x)u− xīg(u))

= g(x)̄if (u)− f(x)̄ig(u) + xīf (̄ig(u))

= g(x)̄if (u)− f(x)̄ig(u) + x īA∗(u).

We will now show that

g(x)̄if (u)− f(x)̄ig(u) = īAx (u). (70)

To show (70), let us fix x and write (67) as

A(x, y) = g(x)f(y)− f(x)g(y) = h(y), where h = g(x)f − f(x)g.

Consequently īAx = īh = g(x)̄if − f(x)̄ig, as in (70).
Thus, for simple A∗ = f ∧ g we have obtained

īA∗(xu) = īAx (u) + xīA∗(u). (71)

But then Eq. (71) extends by linearity to the whole
∧2(V ∗).

It will be convenient to write Eq. (69) as a commutator

[̄iA∗ , ēx] = īAx , (72)

where ēx is the operator of left multiplication by x ∈ V - c.f Eq. (43).
The following Corollary is a stripped down and application oriented version
of a much more sophisticated and general result to be found in Ref. [21,
Theorem 4.7.13, p. 208]. Here we use the ordinary exponential of a linear
operator, as it is done in physics oriented formulations. Our version is simply
aimed to replace the ‘Wick isomorphism’ of Ref. [4].

Note 3.8. In Ref. [4, Sec. Wick isomorphism] the authors consider two
bilinear forms g and F related by F = g + A, where g is symmetric, while
A is alternating and realized as A(x, y) = īgF (x ∧ y), where x, y ∈ V, F ∈
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∧2(V ), and, for u, v ∈ V, īgu∧v = īgu ◦ īgv. The Clifford algebras Cl(V, g) and
Cl(V, F ) are realized as

∧
(V ) equipped with the algebra products defined by

the general Chevalley’s formula (64). The authors then state that ‘The Wick
isomorphism is now given as Cl(F, V ) = φ−1(Cl(g, V )) = e−F∧ ∧Cl(Q, V )∧eF∧ ,’
where φ is not defined apart of this one formula. I have doubts about the
validity of this construction. It is clear that φ−1 ∧ z ∧φ = z for all z ∈

∧
(V )

if φ is an invertible element of
∧+(V ). Moreover, concerning the following

‘contraction’, (as in the formula (3.1),(ii) of the paper), z 7→ (xygF ) ∧ z is
an operator of degree +1 which cannot be equal to an operator of degree −1.

Corollary 3.9. Assuming K to be of characteristic zero, for any u ∈ Cl(Q)
and any alternating form A we have

eīA∗ (u) = λ̄A(u), (73)

where λ̄A is given by Eqs. (52),(53),(54).

Proof. When the field K contains the field of rational numbers, the exponen-
tial exp(iA∗) ∈ End(Cl(Q)) is well defined. It follows then from Eqs. (45),(68)
that [ īf∧g, īh] = 0 for all f, g, h ∈ V ∗, and therefore [ īA∗ , īh] = 0 for all
A∗ ∈

∧2(V ∗), h ∈ V ∗. In particular [ īA∗ , ī
A
x ] = 0 for all A∗ ∈

∧2(V ∗), x ∈ V .
Therefore

eīA∗ ēxe
−īA∗

= ēx + [ īA∗ , ēx] +
1

2
[ īA∗ , [ īA∗ , ēx]] +

1

3!
[ īA∗ , [ īA∗ , [ īA∗ , ēx]]] + · · ·

= ēx + īAx +
1

2
[ īA∗ , ī

A
x ] +

1

3!
[ īA∗ , [ īA∗ , ī

A
x ]] + · · ·

= ēx + īAx ,

(74)

which we can rewrite as32

eīA∗ (xu) = x
(

eīA∗ (u)
)

+ īAx

(
eīA∗ (u)

)
. (75)

Since īA∗
(
1Cl(Q)

)
= 0, we have eīA∗

(
1Cl(Q)

)
= 1Cl(Q), which together with Eq.

(75) shows that exp(̄iA∗) satisfies Eqs. (52),(53), and therefore exp(̄iA∗) =
λ̄A.

32Note that the exponential series in Eq. (74) de facto terminate at 1 + īA∗ , because
all higher commutators vanish. Therefore, with such an understanding, our formulae also
make sense in characteristic other than 0. In fact, we could also express λ̄F in terms
of divided power exponential, as we have done it for λF in Sec. 1.3.1, rewriting those
formulas using the appropriately changed notation.
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With F = A, x ∈ V , v ∈ Cl(V,Q), we can now rewrite the second line in
Eq. (64) as

xv
A

= eīA∗
(
x e−īA∗ (v)

)
. (76)

3.4 Symbol map and quantization map

Let V be a vector space over a field of characteristic 6= 2, Q a quadratic
form, and Φ the associated bilinear form. Let F (x, y) = 1

2
Φ(x, y), so that

Q(x) = F (x, x). We denote by σQ the linear map

σQ : Cl(Q)→
∧

(V )

defined as σQ = λ̄F , and by qQ :
∧

(V )→ Cl(Q) the inverse of σQ:

qQ = σ−1
Q = λ−F .

Following Ref. [8, Ch. 2.2.5, p. 32] we call σQ the symbol map, and qQ
the quantization map. The following property of the symbol map follows as
an immediate application of Corollary 3.5.

Corollary 3.10. If V is vector space over a field of characteristic 6= 2, if
x1, . . . , xn are in V , and if they are pairwise orthogonal, i.e. if F (xi, xj) = 0
for i 6= j then

σQ(x1 · · · xn) = x1 ∧ · · · ∧ xn. (77)

We also notice the following important property of the quantization map:33

Proposition 3.11. If V is vector space over a field of characteristic 6= 2,
then for any sequence y1, . . . , yn ∈ V we have

n!qQ(y1 ∧ y2 ∧ · · · ∧ yn) =
∑
σ

(−1)σ yσ(1)yσ(2) · · · yσ(n). (78)

33Corollary 3.10 and Proposition 3.11 are stated as an exercise in Ref. [7, Exercise 3c,
p. 154].
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Proof. Suppose y1, . . . , yn ∈ V are arbitrary. Then they span a finite-dimensional
vector subspace of V , and we can choose there an orthogonal basis eµ,
µ = 1, 2, . . . , p, p ≤ n (see e.g. Ref. [7, Th. 1, p. 90]). Since both sides of
Eq. (78) are linear in y1, . . . , yn, it is enough to verify the equality on basis
vectors. Let us therefore assume that y1, . . . , yn are taken from the set of ba-
sis vectors e1, . . . , ep. If any two yi, yj are identical, then the left hand side of
(78) vanishes because of the properties of the wedge product. But then also
the right hand side vanishes, because, owing to the orthogonality of the basis
vectors, we can always arrange the product on the right hand side in such a
way that the coinciding vectors are next to each other, and then there will
be an identical term with the transposition of the coinciding vectors, with
the minus sign - and the two terms will cancel. On the other hand, when all
yi are different vectors from the basis (eµ), and this can happen only when
p = n, the result follows by applying qQ to both sides of Eq. (77) and taking
into account the fact that the wedge product changes sign when two of its
factors are transposed.
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