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Harmonic expansion and dimensional reduction in G/H 
Kaluza-Klein theories 

R Coquereauxt and A Jadczyk$§ 
t Centre de Physique ThCorique, Section 2, CNRS, Luminy, Marseille Cedex 2, France 
$ CERN, Geneva, Switzerland 

Received 6 February 1985 

Abstract. We propose a geometrical framework for harmonic expansion and dimensional 
reduction of matter fields in Kaluza-Klein theories with the most general G-invariant 
ansatz. Generalised Peter-Weyl and Frobenius theorems provide a basis for harmonic 
expansion, and a mechanism is shown by which the dimensional reduction of matter fields 
is then automatically accomplished. In particular, we discuss the dimensional reduction 
of tensor and spinor fields, and of the Laplace and Dirac operators. 

1. Introduction 

Harmonic expansion and dimensional reduction are two mechanisms used in discussing 
the effective four-dimensional content of higher-dimensional field theories admitting 
a spontaneous compactification. A general discussion of these problems was given by 
Salam and Strathdee [l] while Witten [2] gave a broad discussion of the harmonic 
expansion and dimensional reduction of spinor fields and, in particular, of the difficul- 
ties in obtaining the effective four-dimensional chiral asymmetry. Spacetime manifold 
was treated in those papers locally and no intrinsic geometrical meaning was given to 
the constructions. On the other hand, certain global aspects of the problem were 
studied by Romer [3] and Bleecker [4,4a]; however, both authors restricted their 
discussion to the case of internal space being a group manifold, and spinors were not 
discussed at all in [4,4a]. Manton C5] considered dimensional reduction of fermions 
interacting with a Yang-Mills field. His discussion was, however, restricted to invariant 
spinors (corresponding to a being the trivial representation of G according to the 
notation of § 2 )  and product metric. 

In this paper we consider a G / H  Kaluza-Klein theory as formulated in [6]. As a 
geometrical model for the extended spacetime we take a manifold E on which a global 
symmetry group G acts (G can be thought of as the internal symmetry group of a 
ground state, but the scheme is broad enough to apply to any Riemannian manifold 
with a compact group of isometries; it will also apply to the still more general case of 
G being a local isometry group, as discussed in [6a]). Then E locally looks like a 
product M x S of spacetime M and internal homogeneous space S = G / H .  The 
spacetime manifold is defined globally and unambiguously as the manifold of G orbits 
(internal spaces). What is not unique is a local product representation of E as 
M XG/H-any two such representations differ by a gauge transformation with gauge 

0 Permanent address: Institute of Theoretical Physics, University of Wroclaw, Cybulskiego 36, PL 50-205 
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group N(H)IH (see [6,7]). All the analysis given in this paper is directed by the aim 
not to distinguish any particular product representation of E (a global one may even 
not exist), and in doing so to exhibit an  intrinsic geometrical meaning of the construc- 
tions. 

The outline of the paper is as follows: we start with matter fields on E considered 
as sections of some equivariant vector bundle over E, i.e. of a vector bundle 9= 
9 ( E ;  F )  with base E and typical fibre F, with G acting on 9 by bundle automorphisms. 
The set T B  of all cross sections of 9 is the space of matter-field configurations in the 
extended spacetime E. We decompose I‘9 according to the irreducible representations 
a of G and, for each a, define harmonics of type a. This constitutes the first step: 
harmonic expansion of fields (§ 2 ) .  Then, in § 3 we show that the space of harmonics 
of a given type a (which are still fields on E )  can be interpreted as the space of sections 
of an  appropriate ‘effective’ vector bundle gm ouer M. This is the second step: 
dimensional reduction. After that we consider the particularly interesting situation when 
9 has a structure group, say, R; or, in other words, when 9 is a bundle associated to 
some principal bundle U = U (  E ;  R) via a certain representation p of R on F. The 
global symmetry group G is assumed to act on U by automorphisms. We use the 
results of [8,9] to find out the effective (‘dimensionally reduced’) gauge group k and 
the effective principal bundle f i ( M ;  k) over M. We also find the effective representa- 
tion pa of k on  an  appropriate Fe and show that the @a can also be constructed as 
the bundle associated to the effective principal bundle fi via pa. In § 4 we apply these 
results to discuss the case of U being the bundle of orthonormal frames of E endowed 
with a G-invariant metric, and in § 5 we discuss tensor and spinor fields and dimension- 
ally reduced Laplace and  Dirac operators. 

2. Harmonic expansion 

Let E be a manifold with a given action of a compact Lie group G. For instance, E 
can be a multidimensional universe with G being its global symmetry group [6], but 
the analysis given here can be applied to many other situations as well. On E consider 
linear matter fields of some fixed type. If E is topologically trivial (e.g. if E is 
contractible (see [ lo,  ch 4, cor 10.31)) then these matter fields can be described by 
vector-valued functions, i.e. by functions on E with values in some vector space F. In 
general, however, matter fields have to be described by cross sections of a certain (not 
necessarily trivial) vector bundle 9= 9 ( E ;  F )  with base E and typical fibre F 
(example: vector fields on  S2). We suppose F is a finite-dimensional vector space 
(real or complex). We also assume that the symmetry group G ‘knows’ not only how 
to act on E (by diffeomorphisms) but also, by bundle automorphisms, on 9t .  Thus 
each a E G maps a fibre F, of 9 at y E E onto the fibre FYa at ya E E by a one-to-one 
linear map: F), 3 U + ua E Fya (we shall keep to the convention of using right actions 
of G on E and on 9). 

Let r 9  denote the space of all cross sections C+6 of 9 Then rB is an infinite- 
dimensional vector space and its elements C+6 E r 9  are called fields, or field configur- 
ations. Having given the action of G on E and on 9 there is a natural representation 
of G on r9. This induced representation T is defined by the formula 

( T ( a ) 4 ) ( J J )  = C+6,Ya)a-’. (2.1) 

f 9 is then called an equivariant vector bundle or, more specifically, a G-vector bundle (see, e.g., [ll-131). 
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We now want to decompose r9-the space of field configurations-into invariant 
subspaces r,9 corresponding to the irreducible representations a of the symmetry 
group G, with r,9 consisting of field configurations transforming according to the 
irreducible representation a. But first let us introduce the notation which will be used 
throughout the rest of the paper. For each irreducible representation a let W,? be 
the representation space of a (W, is finite-dimensional since G is assumed to be 
compact), and let xa be the corresponding character. It is convenient to introduce 
&the dual of G-which is the (discrete) space of (equivalence classes of) irreducible 
representations of G. Analogously as in [ 13, p 1191 we can define, for every a E 8, a 
projection operator T,: r9+ r 9  by the formula 

where d ( a )  = dim We, and d a  is the normalised Haar measure on G.  The range of T,  

will be denoted by and its elements will be called harmonics of type a. It can 
be shown, and the proof can be adapted from [l l ,  131, that the algebraic direct sum 

r u 9  is dense in r9; more precisely, every field configuration C$ E I'9 can be 
approximated with an arbitrary accuracy by a finite superposition of harmonics in the 
following sense: for every F > 0 and for every compact K c E there is a finite subset 
A c  6 and r a 9  such that supBEK lI+(y) - 4 A ( y ) / (  < E.  The norm here is any 
continuous norm on (the fibres of) 9. This approximation theorem (which is akin to 
the classical Peter-Weyl theorem (see, e.g., [14])) is sufficient for our purposes; we do  
not need to investigate in what sense the 'inverse Fourier transform' formula 

holds. In particular we are not interested in making r 9  into a Hilbert space-this is 
because E is thought of as a model for (an extended) spacetime of a hyperbolic 
signature, and in field theory it is the space of solutions of a hyperbolic differential 
equation rather than the space of all field configurations that carries a useful Hilbert 
space structure. 

It is a general philosophy of any application of the Fourier analysis that, when the 
group G is correctly identified, the physically most important are the lowest modes, 
i.e. harmonics corresponding to a few of the lowest dimensional representations of G. 
It is therefore reasonable, and the Peter- Weyl theorem makes such a restriction also 
mathematically founded, to concentrate on the analysis of the elements of r,, with 
a E 6 arbitrary but fixed$. This is what we will do in the following. 

Let w, ( i  = 1,2 , .  . . , d,) be a basis in W, and let w' be the dual basis in W:-the 
dual of W,. We can now represent the xa factor in (2.2) as 

X, ( a - ' )  = Tr( a ( a - ' ) )  = 1 (w', a ( a - ' )  w,) = (a*( a )  w', w,) (2.3) 
I I 

where a*( a )  = ~ y ( a - l ) ~  is the contragradient representation of G on Wg. It is therefore 
natural to introduce, for each 4 E r 9  and each w E Wg, the Fourier component of 4 

+ Unless stated otherwise, F and We are assumed to be complex vector spaces. 
It may happen that such a restriction is incompatible with field equations in E which may imply the 

necessity of having infinite towers of representations (see e.g. [ 151). In  such a case a reasonable approximation 
is needed to cut the tower (consistency problem). 
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w, being any basis in W,. In other words, #J can be restored by knowing its Fourier 
components #Jw. We will now express this fact more precisely, introducing at the same 
time the concepts we shall need later on. 

the fibre bundle fibres of which are the tensor products Fy 0 W z  
of fibres Fy of 9 and Wz. 9, can also be thought of as the tensor product 90 WE 
of two vector bundles: 9 and the trivial bundle W :  = E x Wz. The Fourier components 
(or field harmonics) #Jw defined in (2.4) are now cross sections of the bundle 9,. We 
denote by TOa*  the representation of G on r9,T defined by 

We denote by 

[ ( T @ a " ) ( a ) 4 @  w ] ( y ) =  d ( y a ) a - ' @ a * ( a ) w ( y ) .  (2.6) 
This is a particular case of the general formula (2.1) provided that the action of G on 
the trivial bundle Wz is defined by 

Comparing now the formulae (2.2) and (2.4), with T replaced by T O a "  and x , ( a )  
put identically 1, we find that & are G-invariant sections of 9,. We call r,nv9, the 
space of these sections. Explicitly, #J E I',nv9e if and only if 4: E 3 y + # J ( y )  E F,O W z  
and # J ( y a )  = # J ( y ) a ,  where the right action of G on 90 Wz is the product of the 
original action of G on 9 and of ( 2 . 7 ) .  One proves then (see [ l l ,  13, 161) that (2.5) 
gives an isomorphism between r m 9  and W,0r ,nv9a$ .  Because of this fact the term 
'harmonics' will also be used for the elements of r,,,sa. 

We summarise the discussion: an arbitrary field configuration 4 can be expanded 
into harmonics according to the irreducible representations of G; we have 

( y ,  w ) a  = ( y a ,  a " ( a - ' ) w ) .  (2.7) 

where 9, = 90 Wz and I'inv9a is the space of G-invariant sections of the bundle Sa 0. 

3. Dimensional reduction of a G-vector bundle 

We have seen that the natural building blocks out of which every field configuration 
can be reconstructed are haryonics, i.e. G-invariant (or 'equivariant') sections of vector 
bundles 9, = 9-0 W z ,  (Y E G. The discussion which will now follow can be applied 
to the space of invariant sections of any equivariant vector bundle. Therefore we 
consider here rinv9, 9 being an arbitrary equivariant vector bundle over E, and at the 
end we shall apply the results replacing 5 by 9,. 

i. Observe that r(90 W t )  is naturally isomorphic to r9@ W:-thus, one can omit brackets in TB@ W ; ;  
also, we will often write W t  instead of W z .  
$When 9 is a real vector space and CY is a real irreducible representation, then r,9 is isomorphic to 
W, 0' r,""9@ W,*, where the tensor product 0' is taken over the commuting ring of (Y which is R, C or 
H (see [ l l ]  and also [17] for the concept of a commuting ring). 
5 Observe that r l n v 9 m = H o m G ( r 9 ,  Wz). Thus T , S =  Wm@HomG(rS, W:)-the fact also known as a 
Frobenius reciprocity theorem. 
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Let us recall the situation we are dealing with: G-a compact Lie group-acts on 
a manifold E and on a vector bundle 9 = 9( E ;  F )  over E. In the following we shall 
always assume that E is a simple G space, i.e. that the stability groups of the points 
of E are all conjugated to a standard one, denoted by H. Every orbit is then isomorphic 
to G/H and the space M of all orbits is a manifold. With this preparation the very 
essence of the dimensional reduction mechanism of matter fields can be expressed by 
the following result. 

Theorem 3.1. There is a natural isomorphism between the space rinV9 of invariant 
sections of an equivariant vector bundle 9 over E and the space of all sections of a 
certain vector bundle 3 over M. 

A proof of this result can be found in [18]. Here we indicate only how the bundle 3 
is built out. The construction goes in two steps: first an invariant subbundle 9,, of 9 
is constructed, and next 4 is defined as the quotient 90/G.  To define denote by 
G, the stability group at y E E. Then G, acts by endomorphisms on F,, and (F,)o is 
defined as the subspace of F, consisting of Cy-invariant vectors. The collection 
90=u, (F,)o is a G-invariant subbundle of 9. One then shows that the quotient 
$= go/G can be given the structure of a vector bundle over M = E / G .  

As was said at the beginning of this section this construction is now to be applied 
to the bundles sa = 9.10 W: rather than to 9 itself, although the 9 of § 2 is a particular 
case of the 

Although the above recipe is rather straightforward, it has one serious disadvantage: 
it does not tell us how the effective structure group of is to be found when the 
initial structure group of 9 is known. The rest of this section will be devoted to an 
alternative construction of the which will make the problem of reduction of the 
structure (or 'gauge') group explicit. In the construction below, as well as in the rest 
of this paper, we shall exploit the results of our earlier work [7-91. For the reader's 
convenience let us first briefly recall the concepts and results which will be needed in 
the following. 

We start, as before, with a simple G space E, G being a compact Lie group. Let 
P be the submanifold of E consisting of all points with the stability group H (assumed 
connected): 

family, namely 9= for a-the trivial representation of G. 

P = { y  E E : G,, = H}. 

One proves then that P is a principal bundle over M with structure group N(H)IH, 
N(H) being the normaliser of H in G: N(H) = { a  E G: aHa- '=  H}. Suppose now 
U =  U ( E ;  R) is a principal bundle over E with structure group R, and let G act also 
on U by principal bundle automorphisms. (Such a situation is, for instance, studied 
when considering symmetries of Yang-Mills fields.) The action of G on U is charac- 
terised by a certain homomorphism A :  H + R [8]. By applying the same method which 
was used to define P, but now replacing E by U and G by R x G one constructs a 
submanifold fic U which is a principal bundle over M with the effective structure 
group 6 = N( H)/H,  where H = diag(A (H) ,  H) c R X G is the standard stability group 
for the R x G  action on U. One also proves [8] that k is locally a product of N(H)(H 
and the centraliser 2 of A(H) in Rt .  

T The earlier papers dealing with the problem of symmetric gauge fields [19-211 did not consider the N(H)(H 
term. 
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With the above information at  hand let us consider again our vector bundle 9, but 
now assuming it to have a structure group R. Or, in other words, we assume there is 
given a representation p of R on a vector space F, and S= 9 ( E ;  F )  is the bundle 
associated to U via the representation p. The standard notation is 9- U X, F or, 
better U X ,  F. We remind the reader (for more information see [22,23]) that 9 is 
constructed out of the Cartesian product U x F by identifying those pairs (U, U )  and 
(U', U') for which U'= ur and U' = p (  r - ' )v  for some r E R. The equivalence class of 
(U, v )  is conveniently denoted as U . U, and we have ur . v = U * p (  r )v ,  which gives a 
formal justification for the notation used. We interpret U '  U as 'the object having 
coordinates U in the frame U'. Observe that the action of G on U induces, in a natural 
way, the action of G on 8: 

( U .  v ) a = u a .  U. 

Thus 9 is automatically an  equivariant vector bundle and the construction given by 
theorem 3.1 can be applied to 9, to give the vector bundle 9, over M. But now we 
are prepared to describe an  alternative construction of &,: we shall construct it as a 
bundle associated to fi via a certain representation pa of k on a vector space Fa which 
we presently describe. First of all observe that p 0 a* is a representation of R x G on 
F O  W:. Denote by F, = F Or, Wz the subspace of F O  WE consisting of vectors 
invariant under the subgroup H = diag(h (H),  H) c R X  G. Then S, is invariant (as a 
set) under the action of N(H) and, since H acts on F OH W %  trivially, we effectively 
obtain a representation of N(H)IH on F,. This representation will be denoted by pa. 
We then have the following. 

Theorem 3.2. The bundle @, constructed out of S, according to theorem 3.1 is 
naturally isomorphic to the bundle fi x P e  F, associated to fi via the representation 
pa of ii on F,. 

The only interesting part of a proof of this theorem is to show how the isomorphism 
in question is constructed: given q . v E fi xpe F, we have q E U and v E F, c FO Wz,  
so that we can consider q v as an element of SO W:. It is easy to check that q U 

is in fact in ( S O  W2)o (see the discussion following theorem 3.1). The isomorphism 
is then given by the map fi x p e  F, 3 q 9 v -+ ( q  - v)G E (SO WZ),/G, where ( 4 .  v)G 
denotes the orbit (i.e. equivalence class under the quotient map) of q .  U under the 
action of G on (9C3 W$)o.  It is easy to see that the map above is well defined, i.e. 
the result does not depend on the choice of representatives q and v in the class 
q * v E U xpe Fa. 

We end this section with a brief discussion of dimensional reduction of linear 
differential operators acting on the fields. Here we have the following result. 

* 

Theorem 3.3. Every G-invariant linear differential operator D on I'% induces a linear 
differential operator E, on 9,. 

The construction of 6, is straightforward: one first extends D to D, = D O  I on 
r S O  W: and observes that rin\,(%O W:) is invariant under D O  I. But rinv(9C3 W,*) 
is isomorphic to rga by theorem 3.1. Thus E, is defined as the image of D,, restricted 
to T i n v ( 9 0  WE), under this isomorphism. It remains to prove that fi, so defined is 
again a differential operator, and  a proof of this fact can be found in [18]. 
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4. Dimensional reduction of the bundle of orthonormal frames 

So far we considered a quite general abstract vector bundle 9 over E. In particular 
we had to assume that some action of G on 9 is somehow given-it had to agree with 
the action of G on E but it did not follow from the latter. In the following we shall 
focus our discussion on the particular case of 9 being the bundle of tensors or spinors 
on E. For this we have to apply the reduction process U -+ fi in a particular case of 
U being the bundle of orthonormal (or spin) frames. It is important to notice that 
the action of G on E essentially determines its action on tensors and spinors. But first 
we have to discuss in some details Riemannian geometry of simple G spaces. We 
recall here the relevant concepts and facts; more information can be found in [6-81. 

Let us assume that E is equipped with a G-invariant metric g, (we shall assume 
that the induced metric on orbits of G in E is either positive or negative definite). 
Then, because of G invariance, g, generates a metric g, on M = E / G ,  gauge field 
A, on M with gauge group N(H)JH,  and a certain number of scalar fields on M. The 
Lie algebra 9 can be decomposed into 9 = X + YE + 3, where N = X +  YE is the Lie 
algebra of N( H), Y = YC + 2 can be identified with the tangent space to S = G/ H at the 
origin, and both decompositions 9 = X +  3 and 9 = E+ Y are reductive. We recall 
that H is assumed to be connected. Then YC, which caii be identified with the Lie 
algebra of K = N(H)IH, can also be characterised as the space of Ad(H)-invariant 
elements of 9. 

We denote by O E  the bundle of orthonormal frames of E. The structure group of 
O E  will be denoted by 0 ( v E )  or, shortly, O ( E ) .  It consists of matrices A satisfying 
A 'vEA = vE where T~ is the canonical diagonal form of g,; if E is a multidimensional 
universe then it is natural to take qE = idiag(-1, +1, +1,. . . , +l) .  Since G acts on E 
by isometries the action of G on E lifts automatically to O E ;  indeed, point transforma- 
tions induce transformations of tangent vectors and of frames and, being isometric, 
they map orthonormal frames into orthonormal ones. But O E  and O ( E )  are not yet 
our U and R of § 3-the bundle O E  is unnecessarily large and we shall first use the 
extra information we have to reduce its structure group. This can be done as follows: 
for every P E  P define YEp and LZp as the subspaces of TpE spanned by the Killing 
vectors from YC and 9, respectively. For an arbitrary y E E there always exist p E P 
and a E G such that y = p a ;  we define YEy = YEpa and LZy = LZpa. Because Ad(H) leaves 
the subspaces YE and LZ of '3 invariant (with Y' being even pointwise invariant), our 
definitions are unambiguous. 

Dejinition 4.1. An orthonormal frame e A ( y )  at y E E is called adapted if eA = (epL, ea, e , )  
with ea E YEy, e,  E Lfy and e, orthogonal to Yy = YEYO TyT. 

The set of all adapted orthonormal frames will be denoted by AOE-it is a principal 
bundle with structure group AO( E )  = O( M )  x O( K )  x O( L ) ,  where O( M )  is the 
(pseudo-)orthogonal group of T,-the standard flat metric of M, while O ( K )  and 
O( L )  are orthogonal groups in k = dim( YE) and 1 = dim( 2) dimensions, respectively. 
The group G acts on AOE by automorphisms. It is only now that we shall apply the 
dimensional reduction mechanism discussed in 5 3 by putting U A O E  and R =  
AO( E ) ;  but first we have to identify the homomorphism A : H -+ R. Let T, be a basis 
in 9 with Ti E YC, T, E 3 and T, = (T; ,  T , ) .  We denote by ~ , ( y )  the fundamental vector 

+ For p E P the vectors e , ( p )  span the horizontal subspace of the induced N(H)/H connection A,. 
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fields on E (Killing vectors) generated by T+ The vectors ~ , ( y )  then span the vertical 
subspace Yy, provided y is not too far from P. In a neighbourhood of P we can 
therefore always write 

e , (y )  = Ep(Y)@P,(e; Y )  (4.1) 

and if e, is replaced by e ;  = e,hee then @ ( e h )  = @ ( e ) h t .  For eA EAOE,  @(e)  has 
the block diagonal form (@-,)-= ( @ ' g ,  (a",). Now, let e ( p )  E AOE. Then the action 
of any k E H leaves p invariant and thus rotates eA( p )  by an orthogonal transformation; 
in fact it is only the e, which are rotated. Thus we have 

e,k-' = e,h(e; h ) b e  k E H  

A : H + O( L )  being a group homomorphism. Observe that 

A ( e h ;  k )  = A-'A ( e ;  k ) A .  

Let A )  be the matrix of the adjoint representation of G on 9. Then, since eh-' = EA( k ) ,  
we find that 

A(e ;  h )  = @ - ' ( e ) A ( k ) @ .  

Although it is by no  means necessary, it is very convenient to choose a basis T, in 9 
in such a way that, for some p o  E P, the Killing vectors E ,  ( p o )  are orthonormal. Then 
A ( E (  p o ) ;  k )  = A( k )  is the matrix of the adjoint representation of H in Y. We now apply 
the results discussed in Q 3 to U = AOE, R = AO(E)  and A = A to get the following 
result. 

Theorem 4.1. The effective 'gauge' group A @ E )  is locally isomorphic to the product 
N ( H ) / H  x O ( M )  x O ( K )  X Z ,  where Z is the centraliser of Ad(H) in O ( L ) .  

Although we will not need this fact, it is worthwhile to notice that one can easily get 
rid of the O ( K )  factor of the effective gauge group. Indeed, we can always reduce 
the bundle by demanding that ea( p )  are fixed, e.g. by a standard orthonormalisation 
process of ~ ' ( p ) .  That means that the effective internal gauge group is N ( H ) / H  xlOcZ. 
In the particular, well known, case when E is a principal bundle, the internal spaces 
are group manifolds, H is trivial, 2 is trivial, 2 is trivial and N(H)lH = G as expected. 

According to the algorithm of the dimensional reduction discussed in Q 3 (for more 
details see [7-91) the reduced bundle A 6 E  consists of those pairs ( p ,  e A ( p ) )  for which 
A(e; h )  = A ( k ) .  The following result gives an  explicit description of the reduced frame 
bundle. 

Theorem 4.2. The frames e A ( p )  E A 6 E  are characterised by @ satisfying 
(i) @A( h )  = A( k ) @ ,  
(ii) Qrg@ = 7 

where g ( p ) = ( g e p )  are the components of the metric in the E basis, and 7 = * I  
depending on whether the metric in the orbit is positive or negative definite. Such 
frames exist for every p E P and any two such frames at the same p E P are connected 
by an  orthogonal transformation A,  x h ,  with hl E O ( K )  and A2 E 2, 2 being the 
centraliser of A d ( H )  in O ( L ) .  

i The indices Q, p ,  a, b, etc., will correspond to an orthonormal internal frame e,. Thus bPe is an internal 
vielbein and c$em is its inverse. We have g,Pc$"yc$ps = ?)ys,  qYBc$ayc$Ps = gmP, etc. 
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ProoJ: The non-evident part of the statement is the existence result. To prove the 
existence of a @ satisfying (i) and (ii) one starts with an arbitrary adapted frame (i.e. 
the result of a standard orthonormalisation of E ) ,  with e = E @  (we omit the non- 
interesting e, vectors and observe that @ satisfies (i i))  and h ( e )  =@'- 'A@ is an 
orthogonal matrix. It follows that @aT commutes with A(h).  Let @ = QoA be the 
polar decomposition of @, with Q0> 0 and A orthogonal. Then Qo = ( @ @ T ) " z  com- 
mutes with A ( h ) ,  and it also satisfies (ii) since Q0=@A-'  and A is an orthogonal 
transformation. 

With the information given by the above theorem we can also explicitly describe the 
reduced structure group AGE. Indeed, let e ( p )  and e ( p ' )  be in AGE, p'  and p being 
in the same fibre of P. Then we first choose n E N( H) such that p '  = pn ,  and then define 
A E O( L )  by the relation 

e ( p ) n  = e ( p ' ) A - '  

(we again omit e, and e;, which are uninteresting). Since both e and e' are in AGE, A 
must satisfy the constraint that A ( n - ' ) A  commutes with A(H) on 9. But n is unique 
only modulo h E H. Thus ( n ,  A )  should be identified with (hn, A( h ) A ) .  Consequently 
we have the following result. 

Theorem 4.3. The effective structure group A 6 ( E )  is the product O ( M )  x O ( K )  xR,,  
where R, consists of pairs ( n ,  A) with n E N(H) and A E  O ( L )  such that A ( n - ' ) A  
commutes with A( H); the pairs ( n ,  A) and (hn,  A( h)A),  h E H, define the same element 
of RI.  

We can now interpret the Q as a cross section of a bundle associated to AGE. Indeed, 
with e E ACE and ( n ,  A) as in theorem 4.3 we find 

@( en A) = A( n ) - ' @ (  e ) A  

and the condition (i) of theorem 4.2 ensures that the above transformation law effectively 
depends on the equivalence class of ( n ,  A) only. 

5. Dimensional reduction of tensor and spinor fields 

For calculating the dimensionally reduced Laplace and Dirac operators we shall need 
explicit expressions for the affine connection wABC ( p ) ,  p E P. These expressions will, 
in general, depend on a moving frame eA which we will choose in AGE at the points 
of P. More specifically we proceed as follows. 

(i) Choose a local cross section (T: x + a ( x )  of the bundle P. 
(ii) At every point ~ ( x ) E  P choose an adapted frame e , ( a ( x ) ) E A h ) E .  Then 

(iii) Extend e A ( u ( x ) )  to an open neighbourhood of (T in E defining e A ( a ( x ) e * ) =  

With the moving frame eA introduced as above we write e, = E ~ @ ~ ~  as in (4.1), 

( a ( x ) ,  e A ( a ( x ) ) )  is a local cross section of the bundle AGE. 

e A ( a ( x ) ) e S  for 6 running through a neighbourhood of zero in 9. 

and from (iii) we easily find 

&&Pa) = -C:$'ya. (5.1) 
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Observe that now e, is a horizontal (i.e. orthogonal to the orbits of G in E )  lift of a 
certain moving frame, denoted by a,, on M. The Christoffel symbols in the (e, ,  E , )  

basis have been given in [7]. Here we have to transform them to an  orthonormal basis 
(e,, e , ) .  The results of a straightforward calculation read as follows ( w , , ~ ~  the affine 
connection of M in the d, basis?)), 

W,,,” = -w,,”, =a,,,, = - -3(77@-’)apF;y= -;77,@4eyF;” 

We,@, = --U,,,@ = 4 W ( ~ , g ) @ ) , p  =;4YeD,gys4s@ 

- w,,ee = t(@ (, D,g)@),e + ( 77 @-I e, (@I  I,@ = 14 y ,  (D,g,s 14 + T a y 4  yse, ( 4  1 

F , ” = ~ , A ~ - ~ ~ A ~ + ; c ~ , A ~ A ~ ,  

D&,p = a , ( g , p )  + C:,A:gsp + C;:A:g,S 

(5.2) 

where FE,, # 0 for a = â  only, and 

is the field strength of the N ( H ) / H  gauge field, 

is the covariant derivative of gap, and e , ( @ )  is given by 

e , ( @ )  =a,(@) -A&&,-(@) .  
D We also used the flat metric 

By theorem 4.3 the effective structure group AGE is the product O( M )  x O( K )  x R,, 
where RI = N ( H ) / H x Z .  We have already identified the O ( M )  and N(H)IH parts 
of the effective gauge field-they are w , “ ~  and A: respectively. It still remains to find 
the O ( K )  X Z  part. A general construction of the effective, dimensionally reduced 
gauge field has been given in [8]. The construction given there in proposition 3.5 is 
formal but the idea behind it is quite simple: the effective horizontal lift of a path 
from M to AGE is obtained by a composition of a horizontal lift from M to P and 
a horizontal lift from P to A 6 E .  With that geometrical picture it is easy to find the 
remaining O ( K )  X Z  part of the effective connection: with respect to the local moving 
frame chosen above we have B:e=w,.Be, where we have identified the Lie algebra 
( O ( K )  X Z )  with a subalgebra of Y =  X+2. Explicitly, one has 

of E to lower the index of w A R C :  w ~ , ~ ~  = ~ B ~ w A  

IOC 

B E @  = - 4 a y e ~ 6 Y @  - 1 4 ‘ y g y S (  Dpg&A 16”. (5.3) 
With this preparatory knowledge at hand we now consider several examples. We 

start with the simplest one. 

5.1. Laplace operator on scalarjields 

A (real) scalar field on E is a section of the trivial bundle B= E Xlw which is associated 
to the trivial representation of O ( E )  on R. According to the discussion in § 3 the 
effective fibre bundle 9, over M has the fibre F, = F OH Wz = R O H  W: = ( W:),, 
i.e. F, consists of H singlets in W;. The effective field on M therefore gets the index 
4 -+ 4L from the representation space W ;  and is constrained by 

Q ( h I L M 4 L  = 4M h E H  (5.4) 
where a ( / ~ ) ~ , ~  is the matrix of the representation a. Knowing the connection 
coefficients wABC one easily finds the effective Laplace operator acting on = ( + L ) :  

AeE+ = g’””9,DL,+ -kgapT,Tp&) + v’*D,+ (5.5) 

f Notice that in spite of the notation d, is an anholonoinic orthonormal moving frame of M. 
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where D,+ =a,( +) + A t  Ta+ is the N(H)IH-covariant derivative, 9, contains also 
the gravitational part and U" is given by 

U, =$Tr(g-'D,g) =$Tr(g-'s,(g)) (5.6) 

which measures a rate of change of the volume of the internal space. In the derivation 
of the above formulae we used the fact that G, being compact, is unimodular thus; in 
particular, Czp = 0, C:, being the structure constants of G. In the particular case when 
g,, comes from a fixed Killing metric g, on G the effective mass term in (5.5) is 
nothing but the Casimir operator of G acting on ( Wz)o. Indeed, owing to the constraint 
(5.4) we can extend the summation of the indices a, p in gmPT,Tp to ggTiT, which is 
the Casimir operator. In general, however, gap is non-constant and the term D,g,, 
contributes to the effective Laplacian. 

5.2. l-forms 

Here the vector bundle 9 is the cotangent bundle T" E with the typical fibre F = R N *  = 
Rm*ORk*ORf*. The effective fibre bundle 9, over M has the fibre F, = RN*OH Wz = 
[Rm*O( W2)o]@[Rk*O( W2)o]O[R'*OH W:]. In other words a l-form 4A on E gives 
rise to a multiplet ( $ p L ,  4 d L ,  4nL) where each term has got an extra index from the 
representation space Wz constrained by 4.M for the first two members 
of the multiplet and 

for the last one. Each member of the multiplet will, in general, split into submultiplets 
according to the colour charge of the gauge group K = N(H)IH. 

5.3. Spinor j e lds  

The group O ( E )  is not simply connected and we denote by Pin(E) its two-fold simply 
connected spin covering. A spin structure? on E consists of a principal bundle PinE 
over E with structure group Pin(E) and of a covering bundle homomorphism PinE + 
O E  commuting with the group homomorphism (T: Pin(E) + O( E). The elements of 
PinE are called spin frames. Thus over each orthonormal frame e E O E  there sit two 
spin frames which differ by the transformation ' - 1 ' ~  Pin(E). When a spin frame s is 
rotated by a transformation A E Pin( E )  then the corresponding orthonormal frame e 
is rotated by an orthogonal transformation u(h) E. O( E ) .  The group homomorphism 
U is given explicitly by 

RTaA-' = rB(T(A)Ba 

where r A  are generators of the Clifford algebra of T~ satisfying { r A ,  r,} = 2 ~ ~ ~ .  As 
we have seen in $ 4  the G-space structure of E allows us to reduce the bundle O E  to 
the subbundle AOE of adapted frames, the structure group being reduced from O ( E )  
to AO(E).  Here we will take AO(E) = O ( M )  xO(S) as there is no gain in a subtler 
reduction O ( S )  + O( K )  x O ( L ) .  We denote by APinE the counterimage of AOE under 
the covering homomorphism. The elements of APinE are called adapted spin frames. 
Thus over each adapted orthonormal frame there sit two adapted spin frames. The 

t For a discussion of spin structures see [24-261. To avoid complications with orientation and time orientation 
we have replaced Spin+(E) by Pin(E) .  
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structure group of APinE is APin(E) = (Pin(M) xPin(S)/Z,, where the quotient 
identifies the two 'minus identities' of Pin(M) and Pin(S) respectively?. Let a , ( x )  be 
a fixed orthonormal frame at x E M and consider the set of all spin frames at the points 
of the internal space S, over x which project onto (e,, e , )  with e, being the horizontal 
lift of a,. This set of spin frames is a spin structure for S,. Thus existence of a spin 
structure on E implies existence of a spin structure on the internal spaces S,., x E M, 
but not, in general, on M. 

Let us assume that the action of G on AOE lifts to an action on APinES; then, 
since H is assumed to be connected, the homomorphism A : H + O( S) induces a unique 
homomorphism x: H -+ Pin(S). Repeating now the arguments used in 0 4 we deduce 
that the resulting effective gauge group is now (Pin(M) x N(H)IH)/Z, where H = 
diag(X(H), H) c Pin(S) xG.  Therefore M is endowed with a generalisation of a Spin' 
structure (for a discussion of Spin' structures see, e.g., [ 2 9 , 3 0 ] ) .  To derive the 
dimensionally reduced Dirac operator we use a local moving spin frame corresponding 
to the orthonormal moving frame introduced at the beginning of this section. Let F 
be a representation space (real or complex) of the Clifford algebra C ( E ) .  The 
generators of the representation of Pin(E) on F are then 

x A 5  = :[rA, rB]  
and the Dirac operator is§ 

D~ = TA(  eA + ~ W ~ , ~ ~ X ' ~ ) .  

The typical fibre Fe of the dimensionally reduced spinor of type a is then F X, Wz.  
Thus the spinor II' gets an extra index T = (TL) of the representation space Wz and 
satisfies the constraint 

(a*( T&) -;c,,,,zP')w = 0 

where T,- ( &  = 1,2,. . . , dim H) are the generators of 2. The dimensionally reduced 
Dirac operator can now be written down as 

D~~ = D~ + D~ + A ,  + A* 

with the four terms described as follows. 
(i) DM is the covariant Dirac operator on M. It is given by 

D M  = r@D, 

where D,, is the covariant gravitational plus gauge derivative: 

D,, = a , , + q ~ , , ~ , x ~ ~ + A ~ a * ( T ~ ) + i B , , , , z , " ~  

with B, defined in (5 .3 ) .  
(ii) 0, is the internal Dirac operator of type a :  

D, = r@(-@,..*( T,) +;W,,Qyx@~). 
(iii) A, is the anomalous non-minimal interaction term// 

A ,  = $ " ~ P , F ~ , X @ " ~ , , .  

t The action of the 'minus identity' on a spin frame corresponds to a 2 7 ~  rotation of an orthonormal frame. 
$ Action of Lie groups on spin manifolds in a connection with a G index is discussed in [27]. See also [28] 
and [29] for U(1) actions. 
§ For more information on the Dirac operator on manifolds, in particular, in a connection with the index 
theorem see [31-351. Also [36] for the Dirac operator on G/H. 
11 For a discussion in case of Einstein-Cartan theory, principal bundle and invariant spinors, see e.g. [37]. 
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(iv) A2 is analogous to the last term of (5.5): 

A -1 I*. 
2 - Z l -  up 

with U, given by (5.6). 
Let us consider now the case of M four-dimensional of signature (-+++) and S 

the typical internal space of signature (++ . . . +). The Clifford algebra C ( E )  of E is 
then isomorphic to a tensor product C (  E )  = C (  M )  0 C( - S ) ,  the isomorphism being 
given by r p  = yp 0 I, r, = y 5 0  ya with { yp ,  yv} = 2 ~ ~ ”  and {ye,  y p }  = -277+ where 
y5 = yay, y2y3. Since C( M )  = L(R4)-the 4 x 4 real matrix algebra-it follows that the 
real spinor space F can be realised as the tensor product F = R4 0, F’ where F’ is a 
representation space of C (  -S ) .  The simplest example is the five-dimensional Kaluza- 
Klein theory. Here S is one-dimensional and the Clifford algebra C(-1) is isomorphic 
to the algebra @ of complex numbers. Thus F = R4 0, C = C4. The group G is, in this 
example, U( l )  and all its irreducible representations a are realised on @. Since H is 
now trivial the effective fibre is therefore Fa = F0C = C4. The effective structure group 
is then Pin‘(3, 1) = (Pin(3, 1 )  xU(l)) /Z, .  
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