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We propose a mathematically consistent model of interaction between classical and quantum systems.

1. Introduction

According to Bohr (see e.g. ref. [1]) there is an in-
dispensable furidamental duality between the classical
and the quantum levels of nature. Our approach pro-
vides a mathematical form to such a view, and thus
transfers its contents from the realm of philosophy
into that of physics. The model that we present below
shows that a mathematically consistent description of
interaction between classical and quantum systems is
feasible. Following Bohr, we believe that the very fact
that we can communicate our discoveries to our fel-
low men constitutes an experimental proof that inter-
actions of the type that our model describes do exist
in nature.

We believe that our approach solves one of the con-
ceptual puzzies of quantum theory. From the point of
view of quantum measurement theory, our model has
two attractive features. First, it shows that the pre-
dicted results of a quantum measurement on an ini-
tial quantum state can be read from the evolution of
a coupled classical system. Secondly, the initial state
of the quantum system evolves into the mixture sug-
gested by quantum measurement theory based on the
projection postulate.

It is also quite possible that a similar model can pro-
vide e.g. a statistically consistent description of an in-

teraction between quantized Fermi fields and a clas-
sical gravitational field, including the source action
of the quantized matter on the classical geometry. In
view of known difficulties with the interpretation of
quantized gravity and because of the growing interest
in the black hole evaporation etc., further work along
the lines of the present paper could shed some new
light on these interesting topics.

As a summary of our project we think that our re-
sults reduce the number of puzzles to one i.e. that
of the “arrow of time” whereas initially we believed
that two important ones had to be solved i.e. the puz-
zle of irreversibility and that of quantum measure-
ment*! . We also believe that this remaining puzzle
can be solved only after we have acquired a radically
new understanding of the nature of time *2.

The most natural mathematical framework for our
presentation is that of C* - algebras. However, in order
to make our discussion as simple as possible we will
use only matrix algebras. This has the advantage that

#1 As exemplified, for instance, by the paradoxes of
von Neuman’s infinite chain, Schrédinger’s cat and of
Wigner’s friend.

#2 An intensive research towards a similar end has been
inspired by Prigogine (see e.g. ref. [2] and, for a more
technical account, ref. [3] and the references quoted
there).
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the reader should be able to follow easily our mathe-
matical reasoning. The price paid for this simplifica-
tion is that it will not be always evident why we choose
a particular form for the description of states, of ob-
servables and of the time evolution of the systems.
It should be stressed that speaking of states, we will
always mean statistical states - they encode knowl-
edge or information about the system in question, and
are used for computing of probabilities or, sometimes,
propensities of (simple or complex) events.

Our model has two essential ingredients: super-
selection rules and dissipative dynamics. By superse-
lection rules we mean here classical parameters which
label different Hilbert spaces that are needed for a
complete description of a given system. Superposi-
tions of pure states (i.e. vectors or, better, rays) from
two Hilbert spaces with different labels are not ob-
servable. In our model the distinct pure states of the
classical system (Dirac measures) define superselec-
tion rules of the total system. Thus we label coherent
Hilbert spaces of the total system by the pure states of
the classical system. Usually superselection quantities
(e.g. electric charge) are taken to be constants of mo-
tion. It should be stressed that it is not the case with
our model. Thus, to avoid misunderstandings, the
term “superselection rules” should be avoided. A bet-
ter name would be for instance “central quantities”,
where the term “central” means they are commensu-
rable with all other quantities, i.e. that the operators
representing the quantities in question commute with
all the observables of the system and thus belong to
the centre of its algebra of observables *> . By dissipa-
tion we mean that the time evolution is generically
described not by a unitary group but by a more gen-
eral concept of a completely positive semigroup. The
main characteristic of a dissipative evolution is that
it does not map pure states into pure states. Thus it
is well defined on the level of density matrices where
it preserves convexity, positivity and trace, but not
on the level of pure states, i.e. vectors or rays**.
Each of the ingredients, central quantities and dissi-

#3 Thus, for example, time is a central quantity in Galilean-
relativistic quantum mechanics (see refs. [4-7]).

#4 Notice however that some nonlinear and stochastic evo-
lutions of Hilbert space state vectors can lead to dissi-
pative evolutions of statistical states. See e.g. ref. [8]
and references therein.
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pative evolutions have already been discussed sepa-
rately before by other authors. It is only by putting
them both into action simultaneously that we obtain
a completely new perspective: central quantities rep-
resenting the classical degrees of freedom can now
evolve with time, with their evolution depending on
the actual state of the quantum subsystem. It is thus
allowing for both central quantities and for dissipa-
tive dynamics that makes possible a description of
interaction between classical and quantum degrees
of freedom - as shown explicitly in our model

The reader will notice that, according to the stan-
dard terminology, our joint system is open. Thus one
is tempted to try to understand its behaviour as an ef-
fective evolution of a subsystem of a unitarily evolv-
ing larger, coherent, quantum system. Although math-
ematically possible, such an enlargement (the math-
ematical term is dilation) is, without further postu-
lates, non-unique and neglects the fact that central
quantities (like the electric charge) seem not only to
exist but also to play a rather important role in our
universe. Therefore it is wise, in our opinion, to ex-
tend the prevailing paradigm and learn as much as
possible how to deal directly with open systems and
incomplete information.

It seems appropriate to try to answer a possible ob-
jection against our paper: one could object that once
we have a positive semigroup then the problems of
measurement as well as irreversibility are automati-
cally resolved. But if so, if positive semigroups solve
all the problems then, we may ask, why not to assume
positive semigroups from the very beginning? The
only non-metaphysical reason that we know is this: a
lack of simple principles of universal validity. And it
is the main objective of our paper to propose such a
simple principle. We propose to discuss the hypoth-
esis that the yes-no-flip mechanism that we exploit
in our model may constitute an elementary building
block used by nature in the communication between
her quantum and classical levels*

The philosophical motivation for this investigation
came from the works of Bohr and Popper. The phys-
ical ideas were influenced by the works of Jaynes and
also of Prigogine and his school. The mathematical
model came out mainly from our studying of the pa-

#5 We thank LE. Antoniou for his criticism. It prompted
us to express more explicitly our actual position.
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pers of Jauch [9,10], Hepp [11], Piron [4-6], Gisin
[12,13,8] and Araki [14], and also from the papers
by Primas (cf. [15,16])*¢.

2. The model

Our model consists of constructing a particular in-
teraction of a quantum system g with a classical sys-
tem c/. We assume that the pure states of ¢ are given
by rays in a complex, finite or infinite dimensional,
Hilbert space H,. The observable algebra of g is the
algebra A, = L(H,) of all bounded linear operators
on H;. The statistical (mixed) states of g are then
given by positive, normal (i.e. weakly continuous)
functionals @ on A4, with w(I) = 1. We denote by
S, the convex set of these states. By the Gleason the-
orem the elements of S, are in one to one correspon-
dence with positive operators w € H, of trace 1, the
correspondence being given by w(a) = Tr(wa).

We assume that there is a distinguished, finite,
family of mutually orthogonal nonzero projections
e1,...,en in Hy. Such a family may come from spec-
tral resolution of a distinguished observable of g -
for instance of an observable to be measured. In that
case we would have e, + --- + e, = I. However, in
order to allow the following formulae to be slightly
more general than necessary, we will not assume that
the projections ¢; add to I. Thus we will put e =
3" ,erand f = I—e. Notice that a measurement of
e, ...,ey, is automatically a measurement of /. The
discussion below will cover both cases, f/ = 0, and
S # 0. We will use the above distinguished family in
our construction of a particular interaction of ¢ with
cl.

The classical system ¢/ is supposed to have n + 1
distinct pure states. If X,; denotes the set of pure states
of cl, then A, is the Abelian algebra of complex func-
tions on X, i.e. Ay = C*"*'*7 while S, coincides

#6 However, we do not share with Primas the view that
“The dynamics of the exophysical measurement process
has to be derived from the intrinsic endophysical dy-
namics” (cf. ref. [16], section 5.1). The idea that auto-
morphic time evolution cannot solve the measurement
problem has been also discussed by Landsman [17].
Notice that because X, is finite here, we do not have to
worry about continuity of these functions. In particular
the Dirac measures are normal functionals on 4.

#7
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with the space of probability measures on X,. For the
set X,; of pure states of A,; we shall use the notation
Xy = {Sa} = {50,-..,5:}. The state 5o will be a dis-
tinguished state and will play the role of the initial
(or “neutral”) state. States p € S; of ¢/ are (n + 1)-
tuples P = (Pg,....Pn)s Pa 2 0,3 pa = 1%,

The joint, total system, tot = g + ¢/ has as its
algebra

n
Aior = 4 ® A = L(Hy) 8 C"™*' = DL (H,).
a=0

It is convenient to realize A4, as an algebra of oper-
ators on some auxiliary Hilbert space. We put

Htal = Hq ®Cn+l = @Hq.
=0

The algebra A is then isomorphic to the algebra
of block diagonal (n + 1) x (n + 1) matrices 4 =
diag(ayo, ..., an), whose entries a, are bounded linear
operators on H;. The quantum algebra is embedded
into A, via the embedding i,:

igga€ L(Hy) —a® I = diag,,(a,...,a). (1)

The classical algebra A, is embedded into A4, via the
map i.:

ic: A = (Ao,...,An) — diag(Aol,...,Anl),
Ae € C. 2)

By a straightforward generalization of the Gleason
theorem, states 2 of A, are now represented by
block-diagonal matrices

W = diag(wo,...,wn), (3)

where w, are positive trace class operators in L(H,),
with }° Tr(w.) = 1. For the expectation value of
an observable 4 € A, in a state 2 € S;,,; we have
Q(A4) = Za Tr(w.a.). In the following we shall
identify states £ with operators ¥ representing them.
Each state W of A4, projects, by taking partial traces,

#8 we will take the convention that Greek indices run
through 0,..., n, the latin ones through 1,...,n.
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onto the states 7, (W) of A; and n. (W) of A, re-
spectively. We have

nq(W) = Zwa, (4)
and
e (W) = (Tr(wp),..., Tr(wn)). (5)
Thus

Tr(W iz(a)) = Tr(ng (W) a)

and
Tr(W ie(A) = Y 7e(W )aka.

Given states P = (po,...,pn) € S and w € Sy, their
product

w® P = diag(pow, ..., prw) (6)

projects via the maps #n. and n; on P and w respec-
tively. It corresponds to a unique state of the joint sys-
tem tot = g + c that can be described by the words:
“g is in the state w, c/ is in the state P, and there are
no correlations between both™.

We will construct now a particular time evolution
of the joint system. It will be given by a semigroup
o, t = 0, of completely positive maps *® of A4, with
o' (I) = I. We remind the reader that an element b
of a C*-algebra B is positive iff it is of the form b =
a*a for some a € B. Alinear mapa : B — B of
B into itself is said to be positive if it maps positive
elements of B into positive ones; it is called m-positive
if a ® Iy is a positive map of B ® M,,, M, being the
m x m complex matrix algebra. Finally « is said to be
completely positive (in short: CP) if it is m-positive
forall m*'° Givena semigroup o', ¢ > 0, of CP maps
o' of the algebra of observables, the time evolution
of states is given by the one parameter semigroup of
dual maps a;: Sior — Sior With

#9 We adhere here to the view that the positive and convex
structure is more primary than the algebraic one (cf. e.g.
ref. [18]).

#10 A brief discussion of the relevant concepts can be found
in ref. [19], cf. also ref. [20].

160

PHYSICS LETTERS A

12 April 1993

a (W) (4) = W(a'(4)).

It follows directly from the definition that «; maps
states into states, preserving their positivity and nor-
malization (but nof necessarily maps pure states into
pure states). In the following we shall not use any
of these C*-algebraic concepts. Instead, we will use
the fact that owing to the theorems by Stinespring
and Lindblad (cf. refs. [21,22]) any norm continu-
ous semigroup of CP maps o' must be be of the form

a' = exp(tL), (7
with L of the form *!!

N

L(4) = [iH, 4] + >_ VAV - }{R, 4}. (8)
1=1

Here [, ] ({, }) stands for a commutator (anticom-

mutator),

R=Y Wi € du, (9)

V; being arbitrary linear operators in L ( H;,, ) such that

Z VAV, € Ay whenever 4 € A, (10)
1

while H is an arbitrary Hermitian operator in Ayo:

H =H" € A

Notice that we have L(/) = 0, and so o/ (I) = I for
all ¢ > 0. It is important to observe that the operators
Vi need not belong (and in our model do not belong)
to the algebra A,,, the only requirement being that in
eq. (10).

Let us denote W (¢) = a,(W). The above evolution
of observables of the system leads to the following
Liouville evolution equation for states:

W) = —i[H W O]+ ) VWO
—3{W (), R}. (11)

The condition L(I) = 0 translates here to Tr(W (¢))
= 0 or, equivalently, to Tr(W (¢)) = 1, and is auto-
matically guaranteed by the above form of the Liou-

#11 Notice that the representation of L in terms of ¥} is not
a unique one.
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ville equation *'2, In our model we will neglect com- 0 e 0 ...0 0\
pletely the Hamiltonian part of the interaction and e 00 00
concentrate on the dissipative part. The reason for n=|0 00 001,
this being that it is only the dissipative part that mat- : :
ters for interactions between classical and gquantum 0 0 O 00 }
subsystems. Indeed, the observables A, of the clas-
sical subsystem form the centre of the total algebra / 0 0 e 00
Aior = Aq ® Ay, and the centre of any algebra is in- 0 00 00
variant under all automorphisms; in particular it is Ve = e 0 0 00
invariant under any automorphic unitary evolution. 2 000 0 0
In other words the Hamiltonian part of the Liouville : :
operator L is always passive in the process of transfer \ 0 0 O 00 )
of information from a quantum subsystem to a clas-
sical one®!®. And it is only the dissipative part that / 0 00 ..0 ""\
can cause such a transfer in a finite time. 0 00 00

We propose a particular Liouville operator that will Va=1: S,
describe an interaction of ¢ and c/: it is of the form (8) 0 0O 0 0
withN = n,r = 1,2,...,nand V; = ¢,®0,, where o, \e,, 00 .. 0 0)

is the flip transformation of X,; that transposes sp with
sy ¥14_ The idea behind this particular form is that it
corresponds to a process in which the logical values
yes or no of the observables e, are being recorded.
This would give a maximal possible information gain
about the quantum subsystem iff the projections ¢, are
minimal and add to I (i.e. f = 0). One could think,
for instance, that each “elementary e, yes—-no event”
induces a “flip” 5o < s, in the classical subsystem.
We can write V; explicitly as a block matrix in Hyo,:

#1214t is to be noticed that the quoted theorem of Lindblad
(cf. also the result by Gorini and Kossakowski, ref. [23])
on generators of completely positive semigroups assumes
norm-continuity. This assumption presents no problems
in the particular model that we are discussing. It needs
not be satisfied, however, in a model with Hj infinite
dimensional and X, infinite.

#13 Notice however that additional effects may result if the
conservative and dissipative parts of the evolution do
not commute.

#14 One can arrive at this form by applying the theorem of
Arveson on extremal completely positive maps (cf. ref
[24]) to the Christensen form (see e.g. ref. [20], p. 240,
and references therein) of a generator of a completely
positive semigroup. One arrives in this way at simple
generators. They form a basis in the convex space of
all generators of CP semigroups. Our generator is not a
simple one, but a symmetric combination of two such
(an antisymmetric one acts exactly the same way). We
could put any operators in place of the e’s, but not
the unitaries as they would not give rise to a nontrivial
interaction of our two subsystems.

The Liouville evolution equation (11) takes now the
following explicit form:

wo = Y _ (erwrer — ${er, wo}), (12)
r=1
’lb, = erw()er - %{er, wr}. (13)

These equations can be solved explicitly by summing
up of the Taylor series. A straightforward computation
gives
W(t) = L[V(W) + EOW)] + EWE — {E, W}
+W + 2 ({E,W} - 2EWE)
+ e '[EWE —E(W)]
+ie ¥ [EW) -V (W)], (14)

where we have put W for W (0) and used the notation

n n
E, = V2 E=ZE,, V(W) =ZV;WV,,
r=1

r=1

n

EW) =Y EWE,. (15)
r=1 .

It is especially illuminating to apply these formulae

to a particular class of initial states of A, namely

to uncorrelated product states. Such a state W (0) =

w ® P which is a product of a state w of the quantum
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subsystem and of a state P(0) = {p.} of the classical
one. Then for W(t) = diag(wqo(2),...,wa(t)) we
get *15

wo(t) = polye(w) + fwfl+ 3> pewe

r

Ppolewf + fwe) + e’ polewe — e(w)]

+1 e~ (poe(w) - Zprerwer) , (16)

r

+ e

w;i(t) = spoeiwe; + pi(w + 3e;we; — {e;, w})

4

+ e pi({ei,w} — 2eiwe;)

+45 e ¥ (pieswe; — poeswe;), i=1,....n, (17)

where we have used the notation e(w) = ), e,wer,
e =Y e, f =1I-e Owing to an interaction be-
tween ¢ and ¢/, the state W (¢) for ¢ > 0 is not a prod-
uct state; the partial state of the classical subsystem
becomes correlated to that of the quantum one. In the
following we shall specialize to the case of f = 0, i.e.
e =e¢ + ---+ e = I Itis instructive to consider
a special class of initial states P¢(0) of the classical
system parametrized by €, 0 < € < 1;

Po(0)=1—n+1, (18)
(0) = — (19)

P =0T

Thus for € = 0 the classical system starts from a

pure state P(0) = (1,0,...,0), while on the other
extreme, for € = |, it starts from the maximal en-
tropy state P(0) = (1/(n+ 1),...,1/(n + 1)). By
taking trace in eq. (17) we can compute now p;(¢) =
Tr(w;(¢)), and thus the normalized distribution

~ pi(t)

pi(l) = &—— (20)
l Z, Dr(2)

as read off from the outputs sy, ..., s, of the classical

system. The result reads

#15 Replacing the reversible flip s — s, by the irreversible
jump sg — $r, 8 — S$r (i.e. putting the upper-right tri-
angular matrix of V; above equal zero) would give even
simpler formulae. We have chosen to present here the
slightly more complicated, but less irreversible coupling
between the two systems.
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pi(t) = qi
€(1 —ngi)
, 21
+6n+%(1—6)(n+1)(1—e*2‘) (21)
where we introduced the notation
qgi = Tr(e,-w), (22)

for the initial quantum probabilities to be measured.
We see by inspection that for € = 0 we have

pi(t) =q (23)

Jorallt > 0. That means that in this case the measure-
ment gives a result that coincides with the measured
distribution {q;} immediately after switching on of
the interaction. In the other extreme, for ¢ = 1, we
get instead

pi(t) = 24)

S| -

\2

Jorallt = 0. The maximum entropy state is a station-
ary state of the classical subsystem and, in this case,
we get no information at all about the quantum sys-
tem by observing the time evolution of the classical
one. In the intermediate regime, for 0 < € < 1, we de-
duce from formula (21) that |p; () — ¢;| decreases at
least as 2e (1 + e~ %) with € — 0 and with ¢ — .
For € = 0, that is when the measurement is exact,
we get for the limiting partial state of the quantum sub-
system (by using formula (4) applied to (16), (17):

we(t) = e(w) + e [w—e(w)], (25)
so that
wq(oo) = e(w) = Ze,we,. (26)

Thus, in this case, not only the quantum probabili-
ties g; are exactly mirrored by the state of the classi-
cal system, but also the partial state of the quantum
subsystem tends to a limit which agrees with that re-
quired by the standard quantum measurement pro-
jection postulate. Notice that the relative distance be-
tween wy (¢) and its ¢t = oo limit is given by the for-
mula

d (we (1), w (o)) _

LA\Vg VL AR 1 et 7
dw0),wloo)) — L7 (27)

where the distance d (w, w, ) isgiven by Tr (|w, —ws,])
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An important comment is due at this place. The
particular model described above is minimal with re-
spect to the number of classical degrees of freedom
involved. It is mathematically the simplest one but
physically not realistic. There are two immediate ame-
liorations of the model which are based on the same
principle and have exactly the same form of time evo-
lution (14). The first improvement consists of replac-
ing one “reservoir” sy with n reservoirs o, ..., Son,
and taking po, = 1/n, p, = 0 for the initial classi-
cal state. This version is better suited to meet the lo-
cality demands, but it is statistically inefficient (for
each event there is only 1/n chance of registering a
“flip”). The second improvement consists of putting
an independent classical flipping device for each of
the n quantum yes-no alternatives. Now the classi-
cal system has 2" states parametrized by sequences
{s1,..-,5s}, s = 0,1 and the initial classical (pure)
state is the sequence {0,...,0}. The operators V; are
products of e, with the flips on rth place. The conclu-
sions are exactly as before as they are based on the
same yes—no-flip algebra that leads to the semigroup
(14). The probability that the rth device s, will flip
from the initial value O to 1 during time ¢ is

Pro—1(t) = 3(1 =2 e ¥)g,. (28)

3. Concluding remarks

We formulated a model that provides an answer to
one of the important conceptual problems of quan-
tum theory, the problem of how and when a quantum
phenomenon becomes real as a result of a suitable dis-
sipative time evolution. In our model we did not at-
tempt to indicate any particular physical mechanism
that leads to the kind of interaction that we have dis-
cussed. We leave this question open for future inves-
tigations. As we have remarked in the introduction
there may be more than one answer to this question
(as for instance hidden variables and/or stochastic
realizations). At the present stage we would prefer to
refrain from stating additional hypotheses. However,
we want to stress one point: when there are several
competing individual descriptions that lead to our Li-
ouville equation for statistical states, then the prior-
ity should be given to those that tackle the problem of
locality better. The last mutation of our model, with

PHYSICS LETTERS A

12 April 1993

n independent flipping devices, described at the end
of the previous section, seems to be best suited in this
respect.

As we have already noticed, with a properly cho-
sen initial state, our model gives an immediate ex-
act mirroring of the quantum probability distribution
in the statistics of flips of the classical system. Al-
though mathematically correct, this statement should
be properly understood. First of all each real imple-
mentation of the model will have a characteristic time-
scale 1, and time ¢ will appear in the exponentials as
t/7. As seen from eq. (28) one has then to wait %‘r In2
for one of the devices s,...,s; to flip with probabil-
ity 0.25. During this time the quantum state travels
1 —1/v2 ~ 0.3 of its distance (cf. eq. 27)) towards
e(w). To reduce this distance is to increase the num-
ber of necessary data by about the same factor. A non-
demolition measurement, i.e. such that the quantum
state does not change much during the interaction in-
terval, would then need proportionally more data to
get a reasonable statistics.

The central idea of these models is based on a mod-
ification of quantum mechanics by introducing dissi-
pative elements in the basic dynamical equation and
on allowing for a nontrivial dynamics of central quan-
tities. In conclusion it is tempting to interpret physi-
cally the relaxation time 7. In fact modern technolog-
ical developments allow a complete measurement in
a very short time of the order of nanoseconds. On the
other hand, in applications to quantum cosmology 7
can be of the order of the age of the universe. A few
words may be also useful to suggest possible applica-
tion of models of this type in biology. Living organ-
isms are coherent open systems with a program de-
pendent on molecular recording processes. Variations
take place there on the quantum level and are trans-
lated and amplified to generate macroscopic varia-
tions.

Last but not least there comes the question about
a continuous limit of the model (as for instance in
a measurement of the position). There are four evi-
dent options here: naive coarse-graining, using non-
standard analysis (cf. ref. [25]), using non-normal
expectations (thus states are no longer described by
density matrices - cf. ref. [26]) or using Gaussian fil-
ters and means over groups (cf. ref. [27]). The last
option seems to be the easiest to implement although
the idempotent property is lost and the simple semi-
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group formula (14) becomes replaced by an infinite
series in exp{(—kt). Even if a continuous implemen-
tation of the flip mechanism may do approximately
the same job as the discrete one, it must be remarked
that the natural “milieu” for this mechanism is a dis-
crete one #16 .
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#16 Thus if the universality hypothesis expressed in the in-
troduction is to be taken seriously, it will naturaily lead
to consequences that are at variance with some of the
elements of the prevailing paradigm. Space (and thus
also time) is to be built out of the discrete elements.
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