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Weproposea mathematicallyconsistentmodelof interactionbetweenclassicalandquantumsystems.

1. Introduction teractionbetweenquantizedFermi fields and aclas-
sical gravitational field, including the sourceaction

Accordingto Bohr (seee.g. ref. [1]) thereis anin- of the quantizedmatteron theclassicalgeometry.In
dispensablefundamentaldualitybetweentheclassical view of known difficulties with the interpretationof
andthequantumlevels of nature.Ourapproachpro- quantizedgravity andbecauseof thegrowinginterest
vides a mathematicalform to sucha view, andthus in theblackholeevaporationetc.,furtherworkalong
transfersits contentsfrom the realmof philosophy the lines of the presentpapercouldshedsome new
into thatof physics.Themodelthatwe presentbelow light on theseinterestingtopics.
showsthata mathematicallyconsistentdescriptionof As a summaryof our projectwe think thatour re-
interactionbetweenclassicalandquantumsystemsis suits reducethe numberof puzzlesto one i.e. that
feasible.FollowingBohr,we believethattheveryfact of the“arrow of time” whereasinitially we believed
that we cancommunicateour discoveriesto our fel- that two importantoneshadtobesolvedi.e. thepuz-
low menconstitutesanexperimentalproofthatinter- zle of irreversibility and that of quantummeasure-
actionsof the typethatour modeldescribesdo exist ment~.We also believethat this remainingpuzzle
in nature. canbesolvedonly afterwehaveacquireda radically

Webelievethatourapproachsolvesoneof thecon- newunderstandingof the natureof #2~

ceptualpuzzlesofquantumtheory. Fromthepointof The mostnaturalmathematicalframeworkfor our
view ofquantummeasurementtheory,our modelhas presentationisthatofC* - algebras.However,in order
two attractivefeatures.First, it showsthat the pre- to makeour discussionassimpleaspossiblewe will
dictedresultsof a quantummeasurementon an mi- useonly matrix algebras.This hastheadvantagethat
tial quantumstatecanbe readfrom the evolutionof
a coupledclassicalsystem.Secondly,the initial state
of the quantumsystemevolvesinto themixture sug- #1 As exemplified, for instance, by the paradoxesof
gestedby quantummeasurementtheorybasedon the von Neuman’sinfinite chain, Schrodinger’scatand of

Wigner’s fnend.
projectionpostulate. #2 An intensive researchtowardsa similar end hasbeen

It isalsoquitepossiblethata similarmodelcanpro- inspiredby Prigogine(see e.g. ref. [2] and,for a more
vide e.g. astatisticallyconsistentdescriptionof an in- technical account,ref. [31 and the referencesquoted

there).
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the readershouldbeableto follow easily our mathe- pative evolutionshavealreadybeendiscussedsepa-
matical reasoning.The pricepaid for this simplifica- rately beforeby otherauthors.It is only by putting
tion isthatit will notbealwaysevidentwhy we choose them bothinto action simultaneouslythat we obtain
a particularform for the descriptionof states,of ob- a completelynew perspective:centralquantitiesrep-
servablesand of the time evolution of the systems. resentingthe classicaldegreesof freedom can now
It shouldbe stressedthat speakingof states,we will evolve with time,with their evolutiondependingon
always meanstatisticalstates— they encodeknowl- the actualstateof the quantumsubsystem.It is thus
edgeor informationaboutthesysteminquestion,and allowing for bothcentralquantitiesand for dissipa-
areusedfor computingofprobabilitiesor, sometimes, tive dynamicsthat makespossible a descriptionof
propensitiesof (simple or complex)events, interaction betweenclassicaland quantumdegrees

Our model has two essentialingredients: super- of freedom— as shownexplicitly in our model
selectionrules and dissipativedynamics.By superse- The readerwill notice that, accordingto the stan-
lection ruleswe meanhereclassicalparameterswhich dardterminology,our joint systemis open.Thusone
label different Hilbert spacesthat are neededfor a is temptedto try to understandits behaviourasanef-
completedescriptionof a given system.Superposi- fective evolutionof a subsystemof a unitarily evolv-
tions of purestates(i.e. vectorsor,better,rays)from inglarger,coherent,quantumsystem.Althoughmath-
two Hilbert spaceswith different labelsare not ob- ematicallypossible,suchan enlargement(the math-
servable.In our model thedistinct purestatesof the ematicalterm is dilation) is, without further postu-
classicalsystem(Dirac measures)definesuperselec- lates,non-uniqueand neglectsthe fact that central
tion rules of thetotal system.Thuswe label coherent quantities(like theelectriccharge)seemnot only to
Hilbert spacesof thetotalsystemby thepurestatesof exist butalso to play a rather importantrole in our
theclassicalsystem.Usuallysuperselectionquantities universe.Thereforeit is wise, in our opinion, to ex-
(e.g.electriccharge)aretakento beconstantsof mo- tend the prevailingparadigmand learn as much as
tion. It shouldbe stressedthat it is not thecasewith possiblehow to deal directlywith opensystemsand
our model. Thus, to avoid misunderstandings,the incompleteinformation.
term “superselectionrules” shouldbe avoided.A bet- It seemsappropriateto try to answera possibleob-
ter namewould be for instance“central quantities”, jection againstour paper:onecould objectthat once
wheretheterm “central” meanstheyarecommensu- we havea positive semigroupthen the problemsof
rablewith all otherquantities,i.e. that the operators measurementas well as irreversibility are automati-
representingthequantitiesin questioncommutewith cally resolved.But if so, if positivesemigroupssolve
all the observablesof the systemandthus belongto all theproblemsthen,we mayask,why notto assume
thecentreof its algebraof observables*3.By dissipa- positive semigroupsfrom the very beginning? The
tion we meanthat the time evolutionis generically only non-metaphysicalreasonthat we know is this: a
describednot by a unitary groupbutby a moregen- lack of simpleprinciplesof universalvalidity. And it
eral conceptof a completelypositivesemigroup.The is the mainobjectiveof our paperto proposesucha
main characteristicof a dissipativeevolutionis that simpleprinciple. We proposeto discussthe hypoth-
it doesnot map purestatesinto purestates.Thus it esis that the yes—no-flip mechanismthatwe exploit
is well definedon the level of densitymatriceswhere in our model may constitutean elementarybuilding
it preservesconvexity, positivity andtrace,but not blockusedby naturein the communicationbetween
on the level of pure states,i.e. vectors or #4~ herquantumandclassicallevels~.

Eachof the ingredients,centralquantitiesanddissi- Thephilosophicalmotivationfor this investigation
camefrom the worksof Bohr andPopper.Thephys-
ical ideaswere influencedby theworksof Jaynesand

~ Thus,for example,time isacentralquantityinGalilean- also of Prigogineandhis school. The mathematical
relativistic quantummechanics(seerefs. [4—7]). model cameout mainly from our studyingof thepa-
Noticehoweverthat somenonlinearandstochasticevo-
lutions of Hubertspacestatevectors canlead to dissi-
pativeevolutions of statistical states.See e.g. ref. [8] *5 We thankI.E. Antoniou for his criticism, It prompted
andreferencestherein, us to expressmoreexplicitly ouractualposition.
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persof Jauch[9,10], Hepp [11], Piron [4—6],Gisin with thespaceofprobabilitymeasureson X,~1.Forthe
[12,13,8] andAraki [14], andalso from the papers set X~jof purestatesof Act we shall usethe notation
by Primas(cf. [15,16]) #6 X~.1= {s~~}= {so, . . . ,s,,}.The state~owill be adis-

tinguishedstateand will play the role of the initial
(or “neutral”) state.Statesp E S~iof ci are (n + I)-

2. The model tuplesP= (p~ Pn),Pc,?‘ 0, ~ = 1*8.
The joint, total system, tot = q + ci hasas its

Ourmodel consistsof constructinga particularin- algebra
teractionof a quantumsystemq with a classicalsys-
temci. We assumethatthe purestatesof q aregiven A,0, = Ag® A~i= L(Hq) ® f~fl+l = ~L(Hg).
by raysin a complex, finite or infinite dimensional,
Hilbert spaceH~.The observablealgebraof q is the
algebraAg = L (Hq) of all boundedlinear operators It is convenientto realizeA,0, asan algebraof oper-
Ofl Hg. The statistical (mixed) statesof q are then atorson someauxiliary Hilbert space.Weput
given by positive, normal (i.e. weakly continuous)
functionalscv on Ag, with w(I) = 1. We denoteby H,0, — H ® c”~’=
Sg the convexset of thesestates.By the Gleasonthe- — g.
oremthe elementsof Sg arein oneto onecorrespon- -

dencewith positiveoperatorsw e Hg of trace 1, the The algebra A,0, is then isomorphic to the algebra
correspondencebeinggiven by co(a) = Tr(wa). of block diagonal (n + 1) x (n + 1) matricesA =

We assumethat there is a distinguished,finite, diag(ao,.. . , as),whoseentriesa0 areboundedlinear
family of mutually orthogonal nonzeroprojections operatorson Hg. The quantumalgebrais embedded
e1,... ,e~in Hg. Sucha family may comefrom spec- into A,0, via theembeddingig:
tral resolution of a distinguishedobservableof q —

for instanceof anobservableto bemeasured.In that ig: a eL(Hg) ~ a ® I = diag0~1(a a). (I)
casewe would havee1 + ‘‘ + e~= I. However, in
order to allow the following formulaeto be slightly TheclassicalalgebraA~iis embeddedinto A,0, via the
moregeneralthan necessary,we will not assumethat map Ic:

the projectionse add to I. Thus we will put e =

erandf = I — e. Noticethatameasurementof
— . . £~:2 = (A~ ... 2~)‘—~ diag(201 ... 2~I)e1,. . . , e~is automaticallya measurementof f. The

discussionbelow will cover bothcases,f = 0, and 2a E C. (2)

f � 0. Wewill use theabovedistinguishedfamily in
our constructionof a particularinteractionof q with By a straightforwardgeneralizationof the Gleason
ci. theorem, statesQ of A,0, are now representedby

The classicalsystemc/is supposedto haven + 1 block-diagonalmatrices
distinctpurestates.If Xci denotesthesetofpurestates
of cl, thenA~iis theAbelianalgebraof complexfunc- W = diag(wo,.. . , wa), (3)
tions on Xci, i.e. Act = ~ #7, while Sci coincides

wherew0 arepositivetraceclassoperatorsin L (Hg),
#6 , with ~ Tr(w0) = 1. Forthe expectationvalueofHowever, we do not sharewith Pnmasthe view that

“The dynamicsof theexophysicalmeasurementprocess an observableA E A,0, in a stateQ E S~0~we have
has to be derivedfrom the intrinsic endophysicaldy- Q(A) = >~Tr(waaa). In the following we shall
namics” (cf. ref. [16],section5.1).The idea that auto- identifystatesQ with operatorsW representingthem.
morphic timeevolution cannotsolvethe measurement EachstateW of A,0, projects,by takingpartialtraces
problemhas beenalsodiscussedby Landsman[17].

#7 NoticethatbecauseXci is finite here,we donothaveto
worry aboutcontinuity of thesefunctions.In particular #8 We will take the conventionthat Greek indices run
the Dirac measuresare normal functionalson A~i. through0 n, the latin onesthrough 1 n.
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onto the stateslEg (W) of Ag and lEc (W) of Act re- a,(W)(A) = W (a’ (A)).
spectively.We have

It follows directly from the definition that a, maps

lEg (W) = w
0, (4) statesinto states,preservingtheir positivity andnor-

malization (but notnecessarilymapspurestatesinto
purestates). In the following we shall not use any

and of theseC*~algebraicconcepts.Instead,we will use
the fact that owing to the theoremsby Stinespring

lEc(W) = (Tr(wo) Tr(w~)). andLindblad (cf. refs. [21,22]) anynorm continu-

Thus oussemigroupof CPmapsa’ mustbe beof theform

a’ = exp(tL), (7)
Tr(W iq(a)) = Tr(irq(W)a) . *11

with L of theform
and N

L(A) = [iH,A] + ~ J’AI’~ — !{RA} (8)

Tr(W Ic(2)) = ~7tc(W)aAa.

a Here [ , ] ({ , }) standsfor a commutator(anticom-
mutator),

Given statesP = (po,...,Pn)E Sci andwE Sq,their
product R = ~ j7j,* E A,0,, (9)

w®P = diag(pow,...,p~w) (6)
V~beingarbitrarylinearoperatorsinL (H,01) suchthat

projectsvia themaps,r~and lEg on P and w respec-

tively. It correspondsto auniquestateofthejoint sys- ~ J4AI’7 E A,0, wheneverA E A,0,, (10)
tern tot = q + c thatcanbe describedby thewords:
“q is in the statew, cl is in the stateP, and thereare while H is an arbitraryHermitianoperatorin A,0,:
no correlationsbetweenboth”.

We will constructnow a particulartime evolution H — H~E A
of thejoint system.It will be given by a semigroup —

a’, t ~ 0,of completelypositivemaps*
9 of A,

0,, with Notice that we haveL(I) = 0, andso a’(I) I for
a’ (I) = I. We remind thereaderthat an elementb all t ~ 0. It isimportantto observethattheoperators
of a C*~algebraB is positiveiff it is of the form b = l’ neednotbelong(andin our model do notbelong)
a*a for some a E B. A linear map a : B —~ B of to thealgebraA,0,,theonly requirementbeingthat in
B into itself is saidto be positive if it mapspositive eq. (10).
elementsof B into positiveones;it is calledrn-positive Let usdenoteW (t) = a,(W).Theaboveevolution
if a ® I,,, is apositive mapof B ® Mm, Mm beingthe of observablesof the systemleadsto the following
m x m complexmatrix algebra.Finally a is saidto be Liouville evolutionequationfor states:
completelypositive (in short: CP) if it is rn-positive
forall m#10 Givenasemigroupa’, t ~ 0,of CPmaps ~i~’(t) = —i [H, w (t)] + v~W (t) J’
a’ of the algebraof observables,the time evolution
of statesis given by theoneparametersemigroupof — ~{ w(t), R}. (11)
dual mapsa,: S,0, —~ S,0, with

TheconditionL(I) = 0 translateshereto Tr(W(t))
*9 We adherehereto theview thatthepositiveandconvex 0 or, equivalently,to Tr( W (t)) 1, and is auto-

structureis moreprimarythanthealgebraicone (cf. e.g. matically guaranteedby the aboveform of the Liou-
ref. [18]).

*10 A briefdiscussionofthe relevantconceptscanbefound ~‘ Notice thatthe representationof L in termsof yr is not
in ref. [19], cf. alsoref. [20]. a uniqueone.
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ville equation#12 In our modelwe will neglectcorn- / 0 e1 0 ... 0 0 \
pletely the Hamiltonianpart of the interactionand 1 el 0 0 0 0
concentrateon the dissipativepart. The reasonfor V1 = ~ ~ ~ ~ I
this beingthat it is only thedissipativepartthatmat-
ters for interactionsbetweenclassicaland quantum 0 0 0 ... 0 0)
subsystems.Indeed,the observablesAct of the clas-

/0 0 e2 ... 0 0\
sical subsystemform the centreof the total algebra ( 0 0 0 0 0 1

invariantunderany automorphicunitary evolution.A,0, = Ag ® Ar,, andthe centreof any algebrais in- e~0 0 0 0 Ivariantunderall automorphisms;in particular it is v2 = ~ ~ ~

In otherwordsthe Harniltonianpartof the Liouville
operatorL is alwayspassivein theprocessof transfer 0 0 0 ... 0 0
of information from a quantumsubsystemto aclas-
sical one#

13.And it is only thedissipativepart that / 0 0 0 ... 0 en \
Weproposea particularLiouville operatorthatwill Vn = I

cancausesucha transferin a finite time. (~0 0 0 0 0 I
describeaninteractionofq andci: it is oftheform (8) 0 0 0 0 0
with N = n, r = 1,2,..., n andV~= er®ar, wherea~ en 0 0 ... 0 0)
is theflip transformationofX~

1thattransposesSowith

s~
14.The ideabehindthis particularform is that it The Liouville evolutionequation(11) takesnow the

following explicit form:
correspondsto a processin which the logical values
yes or no of the observablese,. are being recorded. n

Thiswould give amaximalpossibleinformationgain ti’
0 = ~ (erwrer — ~{e~,wo}), (12)

aboutthequantumsubsystemif theprojectionse,.are r= 1

minimal andaddto I (i.e. f = 0). Onecouldthink, ~j., = e~woe~— ~ (13)
for instance,that each“elementaryer yes—noevent”
inducesa “flip” So 44 Sr in the classicalsubsystem. Theseequationscanbesolvedexplicitly by summing

Wecanwrite V~explicitly asablock matrix in H,0,: U~oftheTaylorseries.A straightforwardcomputation
gives

*I
2It is to be noticedthat thequotedtheoremof Lindblad

(cf. alsotheresultby GoriniandKossakowski,ref. [23]) W (t) = ~ [V (W) + E (W)] + EWE — {E, W}
on generatorsofcompletelypositivesemigroupsassumes

+ w + e”2 ({E, W} - 2EWE)
norm-continuity.This assumptionpresentsno problems
in theparticularmodel that we are discussing.It needs

+ e’[EWE-E(W)]
not be satisfied,however, in a modelwith Hg infinite
dimensionalandXci infinite. +~e2’ [E(W) — V(W)], (14)

*13 Noticehoweverthat additionaleffectsmay result if the
conservativeand dissipativepartsof the evolutiondo wherewe haveputW for W (0) andusedthenotation
not commute.

#14One canarrive at this form by applyingthe theoremof n n
Arvesonon extremalcompletelypositive maps (cf. ref E~= J’2, E = ~ E~, V ( W) = V~W Vr,

[24]) to theChristensenform (seee.g. ref. [20], p. 240, ~= r= i
and referencestherein) of a generatorof a completely
positive semigroup.One arrives in this way at simple E ( W) = Er WET. (15)

generators.They form a basis in the convex spaceof
all generatorsof CP semigroups.Ourgeneratoris nota T I
simple one,but a symmetriccombinationof two such It is especiallyilluminating to applytheseformulae
(an antisymmetricone actsexactly thesameway). We
could put any operatorsin place of the er’s, but not to a particularclass of initial statesof A,

01, namely
theunitariesasthey would not give rise to a nontrivial to uncorrelatedproductstates.Sucha stateW (0) =

interactionof our two subsystems. vi ® P whichis a productof a statew of thequantum
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subsystemandof a stateP(0) = {pa} of theclassical ~(t) =

one. Then for W(t) = diag( w
0(t), . . . , vi,, (t)) we � (1 — nq,)

get~
5 + ~(l —e)(n + l)(l — e2t)’ (21)

wherewe introducedthe notation
w

0(t) = po[~e(w) + fwf] + ~ >prerwer
qj = Tr(e1w), (22)

+ e’
72p

0(ewf+ fwe) + e’po[ewe — e(w)]
/ for the initial quantumprobabilitiesto bemeasured.

+ ~ e~’(~Poe(w) ~PrerWer) , (16) Weseeby inspectionthat fore = Owehave
~(t) (23)

w,(t) = ~p0e1we1+ p(w + ~e,we1— {e1,w})

for alit > 0. That meansthatin this casethemeasure-+ e p({e1 w} — 2e1we,) .ment givesa resultthat coincideswith the measured
+~ e

2’(p,e
1we1 —poe1we,), I = l,...,n, (17) distribution {q,} immediately after switching on of

the interaction.In the otherextreme,for � = 1, we
wherewe haveusedthe notatione(vi) = >r erwer, get instead
e = e~,f = I — e. Owing to an interactionbe-
tweenqandci,thestateW(t)fort > Oisnotaprod- ~(t) .~- (24)
uct state; the partial stateof the classicalsubsystem
becomescorrelatedto thatof thequantumone.In the for alit ~ 0. Themaximumentropystateisa Station-
following we shallspecializeto thecaseoff = 0, i.e. ary stateof the classicalsubsystemand, in this case,
e = e, + + e~= I. It is instructiveto consider we get no informationat all aboutthe quantumsys-
a special class of initial states P

1(0) of the classical tem by observingthetime evolutionof the classical
systemparametrizedby �, 0 ~ � s~1: one.In theintermediateregime,for 0 < � < 1, wede-

ducefrom formula (21) that ñ~(t) — qj~decreasesat
po(O) = 1— (18) leastas2�(l+ e2’)with�—~Oandwitht--+cc.

For� = 0, that is when themeasurementis exact,

p,(0) = � (19) we get for the limiting partial state of the quantum sub-
n + 1’ system (by using formula (4) applied to (16), (17):

Thus for � = 0 the classical systemstarts from a w
9(t) = e(w) + e’[w — e(w)], (25)

pure state P(O) = (1,0,.. .,O), while on the other

extreme,for � = 1, it startsfrom the maximal en- so that
tropy state P(O) = (l/(n + 1) l/(n + 1)). By
taking tracein eq. (17) we can compute now p~(t) = wq (cc) = e(w) = erwer. (26)
Tr(w1(t)), and thusthe normalizeddistribution

Thus, in this case,not only the quantumprobabili-
~ (t) = ~ (1) (20) ties q1 are exactlymirroredby thestateof the classi-

Pr (t) cal system, but also the partial stateof thequantum
subsystemtendsto a limit which agreeswith that re-as readoff from theoutputss~ s,, of the classical
quiredby the standardquantummeasurementpro-system.The result reads . . .Jectionpostulate.Noticethat the relativedistancebe-
tweenwq(t) and its t = cc limit is given by the for-

*15 Replacingthe reversibleflip ~o~—‘

5r by the irreversible mula

jump ~o Sr,5r Sr (i.e. putting the upper-righttn-
angularmatrixofV~ aboveequalzero) wouldgiveeven d(wq(t),w(cc)) — 1—e’ ~27)
simpler formulae. Wehave chosen to present here the d (wg(0), W (cc)) — ‘

slightly morecomplicated,but less irreversiblecoupling
betweenthe two systems. wherethedistanced(w,,w

2) isgivenby Tr( w, — w2J)
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An importantcomment is due at this place. The n independentflipping devices,describedat theend
particularmodeldescribedaboveis minimal with re- of theprevioussection,seemsto bebestsuitedin this
spectto the numberof classicaldegreesof freedom respect.
involved. It is mathematicallythe simplest onebut As we havealreadynoticed,with a properlycho-
physicallynotrealistic.Therearetwo immediateame- sen initial state,our model gives an immediateex-
liorationsof the model which arebasedon thesame actmirroringof thequantumprobabilitydistribution
principleandhaveexactlythesameform of timeevo- in the statisticsof flips of the classicalsystem. Al-
lution (14).Thefirst improvementconsistsof replac- thoughmathematicallycorrect,this statementshould
ing one “reservoir” s0 with n reservoirs Srn,. . . ,s~, be properlyunderstood.First of all eachreal imple-
and taking POr = 1/n, Pr = 0 for the initial classi- mentationofthemodelwill havea characteristictime-
calstate.Thisversionis bettersuitedto meetthe lo- scalex, and time t will appearin theexponentialsas
cality demands,but it is statistically inefficient (for 1/i. As seenfromeq. (28)onehasthentowait ~rln 2
eacheventthereis only 1/n chanceof registeringa for oneof the devicessi,. . . ,s~to flip with probabil-
“flip”). The secondimprovementconsistsof putting ity 0.25. During this time the quantumstatetravels
an independentclassicalflipping device for eachof 1 — 1 /v’~ 0.3 of its distance(cf. eq. 27)) towards
the n quantumyes—noalternatives.Now the classi- e (w). Toreducethis distanceisto increasethe num-
cal systemhas2~statesparametrizedby sequences berof necessarydataby aboutthesamefactor.A non-

{SI,.. . , s,,}, Sr = 0, 1 and the initial classical(pure) demolition measurement,i.e. suchthat thequantum
stateis the sequence{0,. . . , 0}. The operatorsl’~are statedoesnotchangemuchduringthe interactionin-
productsof er with theflips on rth place.Theconclu- terval, would then needproportionallymoredata to
sionsare exactlyas beforeas they are basedon the get a reasonablestatistics.
sameyes—no-flip algebrathat leadsto the semigroup Thecentralideaofthesemodelsisbasedona mod-
(14). The probability that the rth device s~will flip ification of quantummechanicsby introducingdissi-
from the initial value0 to 1 during time t is pativeelementsin thebasicdynamicalequationand

2 on allowingfora nontrivialdynamicsofcentralquan-
Pr,O—.I (t) = ~ (1 — 2 e ‘)q~. (28) tities. In conclusionit is temptingto interpretphysi-

cally the relaxationtime r. In fact moderntechnolog-
ical developmentsallow a completemeasurementin

3. Concludingremarks avery shorttimeof theorderof nanoseconds.Onthe

otherhand,in applicationsto quantumcosmologyr
Weformulateda model that providesan answerto canbe of the orderof theageof the universe.A few

oneof the importantconceptualproblemsof quan- wordsmaybe also usefulto suggestpossibleapplica-
turn theory, theproblemof howandwhena quantum tion of modelsof this typein biology. Living organ-
phenomenonbecomesreal as a result of a suitabledis- ismsare coherentopensystemswith a programde-
sipativetimeevolution. In our model we did not at- pendenton molecularrecordingprocesses.Variations
temptto indicateany particularphysicalmechanism takeplace thereon the quantumlevel andaretrans-
that leadstothe kind of interactionthatwehavedis- lated and amplified to generatemacroscopicvaria-
cussed.Weleavethis questionopenfor futureinves- tions.
tigations.As we haveremarkedin the introduction Last but not leasttherecomesthe questionabout
theremay be more than oneanswerto this question a continuouslimit of the model (asfor instancein
(as for instancehiddenvariablesand/or stochastic a measurementof the position).Thereare four evi-
realizations).At thepresentstagewe would preferto dent optionshere: naivecoarse-graining,usingnon-
refrain from statingadditionalhypotheses.However, standardanalysis (cf. ref. [251), using non-normal
we want to stressone point: when thereare several expectations(thus statesare no longerdescribedby
competingindividual descriptionsthatleadtoourLi- densitymatrices— cf. ref. [261)or usingGaussianfil-
ouville equationfor statisticalstates,then the prior- tersandmeansovergroups (cf. ref. [27]). Thelast
ity shouldbegiven to thosethat tacklethe problemof optionseemsto betheeasiestto implementalthough
locality better.Thelast mutationof our model,with the idempotentpropertyis lost and the simplesemi-

163



Volume 175, number3,4 PHYSICS LETTERS A 12 April 1993
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