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In the framework of general-quantum-logic approach a notion of an object is intro-
duced as a primary to that of a state. An attempt is made to generalize the notion of state.
It is shown that with such a generalization, there is no troubles with “negative probabili-
ties” in indefinite-metric spaces. Instead of this, there are new physical effects possible.

1. Introduction

The failure of all attempts to give a coherent explanation of the most fundamental
facts of elementary particle physics brings some physicists to examine again and again the
most profound basis of the quantum theory. Persistently new works appear on this subject.
From time to time someone finds the new condition more “physical” or only different
from the hitherto existing ones, leading to the necessity of the standard Hilbert space or
C*-algebra approach. It would seem that the justification of the conventional formalism
is unquestionable to such an extent, that there is nothing more to do but to search for non-
trivial models satisfying all the accepted axioms. Unfortunately, the nature seems to be
mischievous rather than allied in all these attempts. On the other hand, none of the so far
proposed non-standard formalisms has been widely accepted and not because of its non-
standardness but because of the lack of proposals of a concrete and working mathematical
apparatus. It is, however, well known that such a generalization of the standard formalism
exists and — what is more essential — it works. We have in mind indefinite metric here. It is
commonly accepted that indefinite metric offers new possibilities, removes a number of
difficulties and gives concrete results (see e.g. [5]). But also, it causes the serious troubles
as far as the interpretation is concerned (negative “probabilities”, “non-physical” states,
etc). It is for these interpretative troubles, presumably, that indefinite metric has not been
taken into account in all attempts of axiomatic formulation of the quantum theory !
(the only exception known to the author is a separate section in Wightman and Garding
{1op.

The purpose of this paper is to put forward a formalism, which embodies indefinite
metric as a particular case. The generalization 'presented here is far from being perfect and

! There is a non-scientific reason besides, perhaps. It is that indefinite metric is not “crazy” enough.
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complete. It is rather an outline of some ideas, which require further improvements, further
investigations and a severe criticism, certainly. We put also some problems which, in our
opinion, might be worthwhile to solve,

In this introducton we would like to call the reader’s attention to some subtleties of the
language we use. The reason why our language differs from a customary one is of philo-
sophical nature and we wish to take the opportunity to make some general comments.

Since the appearance of the Special Theory of Relativity, physicist’s minds are exposed
to the influence of a philosophy called sometimes operationism. This attitude is still fashion-
able and there would be nothing wrong with that, were it for a weak form of operationism.
In its restrained form operationism advises us to avoid concepts which do not correspond
to any element of reality. It instructs us to remove notions we can do without. This form
is pothing more than a common sense philosophy, of course. However, in its utmost form
—and it is just this form which, in our opinion, causes more harm than profit—operationism
claims that the physical entity /s, in fact, the set of operations by which it is measured and
also, that every theory should contain nothing but observable entities. Undoubtedly, opera-
tional concepts are the only solid foundation from which we can begin. Undoubtedly, opera-
tionism is an extremaly valuable aspect of analysis. But it can hardly be made a practicable
method of science. The task of the physicists is to guess, on the basis of data they possess,
what is nature really like. It is to guess what concepts and what entities are the most
fundamental ones, no matter how far away from experience they are and no matter how
difficult their measurements might be. It is unquestionable that a good theory should explain
the known experimental data and foresee new ones. But that is the only point we have
the right to demand. Our duty is to guess what is the structure of the reality, irrespectively
whether and what we just measure, irrespectively whether and what we just observe.

Physics is a two-sided problem. One side is a structure of the reality, a theory. The second
one is the connection of concepts and entities of the theory with experience (i.e. with a
*“classical”, well-estabilished theory). These two sides of the problem must not be torn
apart. But these are two sides and not just a one. It is the confusion of these both sides which
is the main source of subjectivism in quantum theory.

Keeping these reasons in mind, we introduce from the very beginning a purely objective
terminology and so, when considering quantum logic, we intentionally avoid such terms
as “question” or *‘proposition”. We prefer the term “‘property”. But a property is always
a property of something. So. we introduce the concept of an “object”. It replaces the notion
of the pure state in our framework. We introduce the concept of a “face” of an object,
a “face” of the logic. It replaces the notion of a maximal set of commuting observables.
We avoid the term “observablé” and “‘observation” as long as possible. As a matter of
fact, we should have excluded the word “logic™ as well. We save it for two reasons. The
first reason is a historical one. The second one, which is of the major importance, is that the
term “logic” has lost by now its subjective shades and becomes a synonym of “an inner
structure” (of a computer, for instance). We hope that this somewhat unusual language will
not prevent the reader from assimilating the essence of this paper.
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2. Quantum logic. Axiomatic structure

Let S be a physical system. It is a primitive, undefined concept. It may be thought of as
an abstracted part of the physical world, if such a sentence explains anything. The second
undefined notion is that of “an object of S” (it should be, however, remarked that a precise
definition of an object will be given in Definition 6 below) 2. Let L(S)=L be the set of ail
properties which different objects of S may possess. We write a € O if the object O posseses
the property a. In the set L XL of all ordered pairs of members of L we distinguish a set
J by the following proposition:

(P) (a, b) e J iff for each object O, if ae O then b € O.

If (a, b) € J, we write a<<b and say that g implies b. We assume that the relation “<”
is reflexive, antisymmetric and transitive, i.e. ““<” is a partial order in L. We also assume
that there is the least element o and the greatest element 1 in L.

(A L; <0, 1) is a partially ordered set (poset) with o<a<1 for all ae L.

For an arbitrary pair a, be L we write av b and a A b for a least upper bound and
a greatest lower bound, respectively, provided they exist. We do not assume that L is a
lattice, i.e. that av band a A b exist for all a, b e L. What more, it seems that the non-
existence of meets and joints is essential for our approach 3.

The implication is followed by the notion of orthocomplementation. It is postulated
that to each a € L there corresponds the orthocomplement a* € L satisfying:

(A2) () a~*=a,

(i) ifa<b, then b1 <at,
(ili) an a~=0, ava-=1.

Thus {L; <; o0, 1;*) is an orthocomplemented poset. Disjointedness is defined in the
usual way: a and b are disjoinz (or orthogonal) if and only if a<<b~. We write then a L 5.
The next assumption is

(A3) Lisanorthoposet,i.e.

u () if ay, ..., a, is any finite sequence of mutually disjoint elements of L, then
\/ a; exists,
i=1
(i) if asb thenb=av (b A a=).
DEerFINITION 1. We say that two elements of L, @ and b, are compatible * (in symbols
ao—b), if there are three mutually orthogonal elements aq, b, and ¢ in L such that

a=ag+c, b=by+c.

2 It is worthwhile to draw the reader’s attention to the fact that we have in mind concrete objects
here. Thus, the electron with momentum p, is a different object from the electron with momentum p,.
Analogously, we allow the particle at an instant ¢, to be a different object from the particle at ¢5.

3 Compare Section 3.

41t has been repeatedly emphasized that the existence of non-compatible properties is a specific
feature of quantum theory. It should be stressed that the real importance is not in the mere existence of
incompatible pairs in L, but in the fact that each separate object possesses incompatible properties.
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Notice that the compatibility relation is symmetric and reflexive and also, by (A3),
that geb is equivalent to a«—b~* and implies aA b=c and av b=a,+b,+c (we write
“+7 for the least upper bound of orthogonal elements). Our last axiom excludes the most

pathological exa
and references ¢
(Ad) If a, b,
Now, each f4

mples and makes it possible to develop a calculus of observables (see [3]
ted there).

¢ are mutually compatible, then ae—(b v c).

mily of mutually compatible elements of L is contained in a Boolean subal-

gebra of L ([3], Theorem 2.1).
DEFINITION. D. A face in L is any maximal Boolean subalgebra of L. If C is any set of

mutually compa)
a face of C. We
of L which are

tible elements of L and C is contained in some face F, then F is said to be
write £(C) for the set of all faces of C and E(C) for the set of all members
n some Ge Z(C). Eventually, we denote by .# the set of all faces in L 3.

Clearly we have

We are now
algebra of all Bq
lems here. The 1

DEFINITION 3
following prope

(i) ifa, be

(i) if a, be

(i) 0 ¢ G.
We denote by 4

L(O=U{F: Fez(0)},
L=U{L(a): aeL}=\U{F: Fe2),
£=U{&La): acL}.
able to define a physical quantity ¢ as a homomorphism vof the Boolean

rel sets of the real line into some face in L. We will not touch these prob-
est of this section is devoted to the precise definition of an object.

. A preobject in L is any (non-empty) family G of elements of L with the
rties

G, then aeb;

G, then a A be G,

? the set of all preobjects in L.

The set-inclusion “<” is now a partial order in .

ProposITION
() HeZa
(i) if be>G
(iil) if bC
then be G,
Proof: Supp
bt e F. Define

1. Let Ge 2. Then the following three assertions are pairwise equivalent:
nd G < H implies G=H (i.e. G is maximal),

then either b or b~ is in G,

and b A ay A ... A a,#o0 for any finite sequence a,, ..., a, of elements of G,

bse that (i) holds and let bG. Let Fe £(G) be such that be F. Clearly

Gy={ceF: cvbza for some aeG},

* As far as the relation of the above notions to experience and classical theory is concerned, to each
element of 2 there should correspond some type of the apparatus-system interaction. To different faces
of the same property a there should correspond different experimental arrangements. According to this

point of view it is i
is to be examined.

nsufficient to say *‘device which measures a”. One has also to point out what face of a

¢ It is convenignt to use the term “‘observable” for such a quantity.

L -ANTUM LOGIC AND INDEFINITE METRIC SPACES 289

If ce G, then ce Fand c vazc, thus ce G, and so G<G,. We show that G, isa preobject.
Let ¢;, c;€ Gy. Since G, < F, it follows that cy,«»c,. Also ¢;v bza; for some a;e G,
i=1,2. Thus (¢, A ¢;) v b=(ay A a;)e G and therefore (¢, A ¢,)e G, Analogously for
the set G,L obtained from G, by the exchange of & with o~ in the definition. We claim that
0¢ Gy N G,L. Indeed, 0 being in G, and in G,. we have b>a, and b+ >a, for some a,,
a, € G, hence 024, A a, contrary to the definition of preobject. We may thus assume that
o is not in G,. Then G, is a preobject, and by (i), G, = G. However, by the definition, bt € G,.
Thus (ii) holds. Assume (ii) and let b satisfy the assumption of (iit). Then b or b+ is in G.
However, were b~ in G, then & A b= #0 what is an absurd. Hence be G. To prove (iii)=(i),
let G, be a preobject which contains G.If be G, then, by the definition, b satisfies the as-
sumption of (iii) and therefore be G. We conclude that G=G,, i.e. G is a maximal
preobject.

DErFINITION 4. A preobject which satisfies one of the equivalent conditions of Pro-
position 1 is called a filter. # is the set of all filters in L.

COROLLARY 1. Let F, be a filter in L. There is a unique Boolean algebra F < L such thar
Fy © F. Fisa face of F,. Conversely, for each face F in L one can find a filter Fy such that
Fe P(F,).

Proof: Let F be any Boolean subalgebra of L which contains F,,. Assume a«F. Then
a—F, and so, by Proposition 1, a or 2~ is in F, and thus in F. Now, since F is a Boolean
algebra, it follows that both @ and a- are in F. Hence F is maximal. Suppose that F,
and F, are two faces of Fy. Then F=F; n F, is a Boolean algebra which also contains F,
and, by the above, it is a face of F, too. Now, by the maximality of F; (i=1, 2) it follows
that F, =F=F, This proves the first part of the statement. To prove the second one,
let Fe &, and a be any element of F. The set {a} < F is a preobject provided a#o. Let
F, be a maximal preobject with {a} < F, = F. We show that F, is maximal in L. Let F,
be any filter with Fy, < F; and let G be the face F,. Then F < G and thus F=G. Therefore
F, = Fand so Fy=F,. The proof is complete.

DermniTION 5. Two filters 7, and F, are said to be equivalent (F; ~ F, in symbols) if and
only if the following condition is satisfied: for each a, € F, there exists a, e F, with a;<a,
and conversely, to each a. € F, there exists a, € F, with a, <a,.

It is clear that ““~” is an equivalence relation in &.

DeFINITION 6. Any equivalence class in # is called an object 7.

A justification of the last definition is given in the following statement:

PROPOSITION 2. Let F be an object. Then the following two statements are equivalent:
(i) there exists o#ae L and Fe F such that a<b for all be F,
(ii) there exists o#ae L such that for each Fe F and all be F, a<b holds.

* Qur definition of the object is based upon Jauch’s and Piron’s definition of the state [4].
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If one of these conditions is satisfied, then a is a unique element of L satisfying (i) or (ii),
ais an atom of L and a= N\ { A {b:be F}: Fe F}. Conversely, to every atom a of L there
corresponds a unique object F such that a= N\ { \b:be F}: FeF}.

Proof: (i)=>(ii). Assume that g satisfies (i) for a filter Fe F, and let ce E for some other
filter Ec F. Then, one can find » in F with 5<¢ and so a<b<c. The implication (ii)=(i)
is obvious. To prove the second part of the Proposition we assume that (ii) holds. Then
a or a* is in F for each Fe F. Suppose a* ¢ F for some F in F. Then, by (i), a<a*, i.c.
a=o, contrary to the hypothesis. Thus ae F for each Fe F and therefore ae A {b: be F}
for each Fin F. It thus follows, that q is a unique element of L satisfying (i) or (ii). Now,
¢<a implies that ¢ also satisfies (ii) provided c+#o0. Hence a is an atom of L. We prove the
last statement. Let a be any atom of L. Then, the one-point set {a} is a preobject and is
contained in some filter Fin L. Let F be the equivalence class of F. Since a is an atom,
it easily follows that a<b for all be F, and so, by the above, a= A\ { A {b: be G} : Ge F}.
Let F, be another object with this property. Put by, = A {b:be F,}, F e F,. Then by, <b
for all be F, and thus b, € F; or by, =0. Now, since a0, we have by #0 and therefore
bp,e F,. Let G, He F,. Then, there exists be H such that b<bg. Hence, by <bg and simi-
larly bg<by. Thus b;=by. We conclude that a= A {b 1 be Fl} forall F; € F,. But then F
is equivalent to F, for each pair Fe F, F e F,. Thus F=F,. The proof is complete.

DermITION 7. An object satisfying one of the equivalent conditions of Proposition 2
is said to be proper. Otherwise it is said to be improper.

Remark. Equipped in a natural orthogonality relation the set of all objects is an ortho-
gonality space and thus defines a quasilogic (see [2]). It would be interesting to known what
connection is there between the quasilogic defined like that and the logic L itself. We only
indicate the existence of such a problem here.

3. Objects and states

We now pass on to a relationship between the object and state. It is fundamental for the
quantum theory. Consider an object F. If F is any filter of F, denote by F’' a unique face
of F. Denote by Z(F) the set of all such faces and by F” the union of such ones. Now,
for any ae F” we have: either the object F possesses the property a or non-a is a property
of F. The behaviour of elements of F” with respect to the object F is thus, to a certain degree,
like a classical one. But then, what can be said about properties which are not in F”'? In the
standard quantum theory, it is assumed, that the object F determines a probability p(a)
of the fact that F possesses a property a and that for each a®. It is tacitly assumed that the

8 We recall here that during the period of forty vears, since a consistent interpretation of quantum
theory has been given, up to the recent time, the question has been raised again and again: why only
probabilities? And the answer, if given at all, was that it is because something is unknown. Because one
does not know the value of some parameters or, because one does not know the details of interaction
between object and apparatus, between object and vacuum and so on. The inference was either con-

structive —one does not know but should try to know—or agnostic —one does not know and never
will know.

—
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above probability depends on an object F and property a only. Or, in more practical terms,
that each apparatus selecting objects with a property a shall give the same fraction, irre-
spectively of the principle of its action. This unspoken postulate is a direct consequence
of the usual Hilbert-space formalism on the one hand and is justifiable, if one assumes that
the quantum object is nothing more but a statistical mixture of classical ones, on the other.
The last point of view consequently leads to a hidden-variables theory. Such an approach
is comprehensible and may account for an inertia of the human mind (still) accustomed
to classical pictures. A question of an open-minded man would rather sound as follows:
why each property a is to be characterized by a definite probability? And even if there are
some reasons for that, then why such a probability is to be experimentally verifiable®?
And even if it is so, then why the probability does not depend on details of the experi-
ment 10?2

It is plain that the last possibility being allowed, it should be in agreement with all the
known experimental facts in the first place and, in the second, the possible dependence of
averages on the measuring apparatus should be describable by the theory and sufficiently
regular. In the standard theory a state is a probabilistic measure on L. It should be, how-
ever, observed that it is hardly possible to compare frequencies of non-compatible prop-
erties. With this in mind, it is to be expected that a state is to be rather a family of measures
then one measure on the whole L.

DEerFINITION 1. Let m be a function defined on an orthomodular orthoposet with values
in [o, c0]. If for each finite sequence of mutually orthogonal elements a,, ..., a,, m(z ai)
=Z m(a;), then m is said to be a finitely additive measure (f.a.-measure). A f.a.-measure
is finite, if m(a) is finite for each (a), and is probabilistic if m(1)=1,

PREDEFINITION 2. A state on L is a mapping m: F—m, where F runs over the set of
all faces in L and my is a f.a.-measure on F for each Fe Z.

CONJECTURE. Let F,, be an object. Then there is a (unique?) state m on L such that mg(a)
=mg(l) for eachae F ~ (| J {G: Ge Fo}) and me(a)=o, if a is orthogonal to Fy.

To convert the predefinition above into a definition one has to answer the question how
do different measures my intertwine. In the simplest case all my agree on intersections of
different faces and define a unique, probabilistic measure on L. If there is sufficiently many
such states, then one deals with a standard case. If it is not so, then two possibilities may
happen:

(a) there exists exactly one probabilistic measure on L,

(b) L does not adnut probabilistic measures at all (see [2], p. 24).

° Tt is not quite clear what is the experimental meaning of the statement: given (unstable) particle
at time ¢, the probability that it does not exist at f, <t is p.

10 Everywhere in this work the word “probability” is to be understood in the sense of the propensity
interpretation due to K. R. Popper (see [6]).
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a) we expect that a unique probabilistic measure on L is a trace-like measure
ts finite-dimentional. The most interesting case is case (b). Let us observe, in the
hat even if there are no positive measures on L, then there may be sufficiently
d measures (see sec. 4). In such a case a signed measure may play the role of
1g function for a state. We feel that a solution of intertwinning problem, given

r from being a definite one. In any case it would be desirable to have a more
formulation.

ON 3. A function m defined on an orthomodular orthoposet is said to be
dditive) signed measure, if m(y a;)=Y m(a,) for any finite sequence of mutually
elements a;. (We assume that m(a) is finite for each a.)

it 1. Let m be a signed measure on a Boolean algebra F. Then there exists the
ment in the (non-empty) set of all positive measures p such that im(a)| <p(a)
F. (We denote it by ¢(m, F) and call the rotal variation of m'1).

Of of this theorem is given, for instance, in [1}, Chapter I1I, sec. 1.

a signed measure on L. Then s restricted to any face F of L is a signed measure
tp=1{m, F). The mapping F—my is now a state on L in the sense of the pre-
f'a state. We say in this case that m intertwines different measures mpg or that m
vinning function for the state F-mj.

ON 2. A mapping m: F—my is said to be a state if (not: only if!) there is an
¢ function for m. A convex combination of states is a state.

This, somewhat awkward, definition of a state should be certainly replaced by a
nient one. It would be desirable to know whether a state in the sense of Defini-
les the following property: my and mg are equivalent on £ n G for every pair

*.algebras
ection we recall some facts concerning a theory of *-algebras. It is useful to

m together and to discuss them from a point of view we are interested in.
a complex algebra with unit. We say that 4 is a *-a/gebra provided 4 is equipped

ration of involution a—a* which satisfies:
* — a s

- BbY* =Fa* +Bb*  for any complex a, B,
*=b*a*,

hat ae A4 is hermitian if a=a* and a is positive if a=5b*b for some be A. Any
nent of 4 is hermitian and each member of A4 is a linear combination of some
ements. A linear form fon A is said to be real if £ (a) is a real number for each
e A. If f(a) 20 for each positive a€ A, then fis positive. Every linear form on 4

.11 Notice that if Fis a o-aigebra and m is g-additive, then v is bounded and thus, can be normalized.

QUANTUM LOGIC AND INDEFINITE METRIC SPACES 293

is a linear combination of some real forms. It is not, in general, true that each real form is
a difference of two positive forms. There are *-algebras admitting no positive forms.

Let 4 be a *-algebra and L the set of all selfadjoint idempotents of 4, ie. ae L if and
only if a* =a*=ae 4. Observe that o and 1 are in L. We now introduce an implication
inL: a<biff ab=a. If is easy to check that “<” is a partial order in L, 0 and 1 are the least
and the greatest elements in L, respectively. For each ae L, let a* =1—a. The operation
a—a* is an orthocomplementation on L. Moreover, L is an orthomodular orthoposet.
It is easy to see that a—b if and only if ab=ba. Property (A4) of Section 2 is clearly satis-
fied. Taking into account the fact that *-operation seems to have some physical meaning
(particle-antiparticle symmetry) one may expect that logics of *-algebras are the most
general logics of quantum systems. It is a remarkable fact that every *-algebra can be
realized as an algebra of operators on some linear space.

DerINITION 1. Let X be a complex linear space and let {x, > be a non-degenerate bi-
linear hermitian form on X, i.e.

(M) {x,ay+pzy=alx, y)+p{x, 2,

(@) e,y =<y, x),

(iii) {x, y>=0 for all xe X implies y=0.

Then X is called a self-dual space. The form {x. y) is called a metric on X. If there is at
least one pair of vectors x, ye X with {x, x> (¥, ¥> <0, then X is said to be an indefinite
metric space.

Given a self-dual space X, the metric {x, ) determines on X a weak topology T"
given by a family of seminorms

pa()=sup{[<x.33] ye V),

where N is any finite sequence of vectors of X. In this topology, each linear form f:
y—{x, ¥y is continuous and. in fact, 7" is the weakest topology in X with such a property.
The convergence in T is simply given by: x,—x if and only if {x,—x, y>—0 for all ye X.

THEOREM 1. Let f be a continuous linear form on X. There exists a unique vector xeX
such that f=f,.

For the proof see e.g. [7]. Let a be a continuous, linear operator on .X. By Theorem 1 there
exists a unique operator «* which satisfies <(x, ayd>=<{a*x, y>. The set A(X) of all
continuous linear operators on X is now a *-algebra with unit. The following theorem is a
direct consequence of the closed-graph theorem (see [7]).

THEOREM 2. Assume that two linear operators a, b on X satisfy:
lax,y>={x,by> foradl x,y in X.

Then a, be A and a="5b*.
Let A be a a*-algebra and let X be a self-dual space. An algebraic homomorphism x:
A—A(X) is said to be a *-representation of 4 if and only if n(a*)==n(a)* forallae 4. If =
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is one-to-one, then A is said to be realized as a *-subalgebra of 4(X). With these definitions
we have the following important result:

THEOREM 3. Any *-algebra can be realized as a *-subalgebra of some A(X).

The proof, based on the fact that there is always sufficiently many real forms on a *-al-
gebra, is essentially given in [8]. It follows from the last theorem that one may restrict
himself to the study of 4(X). The situation is just similar to the case of C*-algebras. It is
well known that every C*-algebra can be realized as a *-subalgebra of A(H), where His a
Hilbert space. There is, however, an important difference also. All Hilbert spaces with the
same dimension are isomorphic. It is not the case for self-dual spaces.

5. Logics of indefinite metric spaces

In this section we shall study in some detail a geometry of indefinite metric spaces.
Throughout the section, X is a fixed indefinite metric space, the letters a, b, c, ... stand for
linear subspaces of X, letters x, y, =. ... stand for vectors. Let L, be the set of all linear
subspaces of X. If ae L, then a~={xe X: (x, y>=0for all ye a} is called the orthogonal
complement of a. Clearly, a— is always in L, . We list below the most important properties
of the operation y—a—. The reader is referred to [9] for the proofs.

THEOREM 1. Let a,beL,. Then

(1) if a<b, then b-<a*,

() a<atd,

(3) if a<b, then a++<b~+,

@) a-=agtii=.,

(5) (a+b)*=a-nb-,

6) (@anb)toa~+bt,

(7) a*tt=a,

(8) a is closed if and only if a=a++<,
(9) aisdenseifandonly ifa—=o,

(10) a+at is dense if and only if a=+nat =o.

The set L, is now a poset with the least element o= {0} and the greatest element 1=X.
In fact, L, is a lattice with anb=anb and av b=a+b. However, (L, <, 0, 1, ~%isnot an
orthocomplemented lattice. To obtain an orthocomplemented structure we have to restrict
ourselves to the subset L, of all regular (i.e. aanat=0) and closed (i.c. a=a+<) members
of L,. L, is an orthocomplemented poset by the definition. It is not a lattice if dim (X)>4.

Let ae L,. Then, by Theorem 1, a+a* is dense in X. For each vector x € d(a)=a+a-,
there is a unique decomposition X =x,+ x,. with x, € @ and x,.. € a+. We define two linear
operators on d(a) by ax=x, and a-x=x,..Clearly,a+a~ =1 and aa*~ =a+a=0 on d(a).
Both, a and a-, are selfadjoint idempotents on d(a). If X is finite-dimensional, then d(a)=X
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for each a€L,, and by Theorem 2 of Section 4, @ is continuous, i.e. a€ A(X). Things are
more complicated if X is not finite-dimensional. We do not know whether L, is orthomodular
in that case. To make an algebraic analysis possible, we have to restrict ourselves to the
subset L of L, consisting of those a € L, for which a+a+ =1, i.e. for which a correspondent
projection is defined on the whole X and thus, continuous. Conversely, to each hermitian
idempotent on X there corresponds a unique regular closed subspace of X with a+at=X.
We identify L with the logic of *-algebra A=A4(X). It is easy to see that for each xe X
with (x, x> #0, the mapping a,: y—(<x, y>/<{x, x>)-x is an element of L. In fact, a, is an
atom of L and L is atomic.

CONJECTURE. If the dimension of X is finite and sufficiently large, then there exists
precisely one probabilistic measure on L: a—dim (a). If X is ¢f infinite dimension, then L
admits no positive measures 2.

Letnow x e X and (x, x) #0. The atom a, determines a unique object F(x). On the other
hand, the mapping m*: a—{x, ax)/{x, x) is a signed measure on L. Thus, according to
Section 3, m”* is an intertwining function for some state m*: F—mj.

ProPOSITION. If a is orthogonal to F(X), then mi(a)=0 for every F such that acF.
If a is a property of the object F(x), then mg(a)=mi(1) for each face F with ac F.

Proof: Let F be any face in L. Then mjF is defined by (see [8], p. 97)

n
m(a)=sup { 2‘1 |m(al},

where the supremum is taken over all finite sequences g; € F of mutually orthogonal elements
of Fwith a;<a. Now, if a is orthogonal to F(x), then a is orthogonal to @, and the same holds
for each b<a. Hence, my(a)=0.If a is a property of F, then a'’ is orthogonal to F(x).
Thus mi(a~)=0 and therefore mj(a)=mz(1).

In this way, to each non-isotropic vector xe€ X there corresponds a state satisfying
Conjecture of Section 3 up to the uniqueness. We have to show that our definition of a state
is in agreement with the usual one. First of all, let us recall that in usual treatments of
indefinite metric one always distinguishes a “physical” subspace with positive metric.
But now, if xe X and there exists a positive-metric subspace X+ such that xe X* and
acX™, then mg(a) is nothing more but simply {x, ax);{x, x> in agreement with con-
ventional calculations. In other words, the dependence of averages on a measuring ap-
paratus may appear only for *“observables” which connect positive and negative parts
of X. There are also troubles with g-additivity for such observables. These technical problems
require further investigations.

2 The author proved that there is exactly one probabilistic measure in case of .Y being the Minko-
vski space. However, he was not patient enough to check the proof (very laborious indeed) with proper
care. If the conjecture is right, then a proof based on methods developed in [2] should exist.




6. Summary and conclusions

In this paper we tried to show that the application of indefinite metric in quantum|
theory may prove to be an essential step forward. In order to see the true essence of in-
definite-metric formalism, we used the most general language of quantum logic here. The
necessary notions were introduced in Section 2 where the concept of an object has been
defined. Our definition of an ebject differs from an analogous definition given by Jauch
and Piron in [4]. We have demonstrated, however, that it agrees with the corresponding
intuitive notiou. In Section 3 the connection between objects and states was discussed.
From our point of view, an object is a primary notion and a state—a secondary one.
According to the definition of Section 3, a state is a family of intertwined positive measures
on maximal Boolean subalgebras of the logic. Phvsically speaking, we permit a dependence
of the observable’s averages on a class of measuring devices. In Section 4, the axioms of]
Section 2 were realized on a logic of *-algebra. We also showed that each *-algebra can
be realized as an algebra of operators on some self-dual space. The logic of *-algebra of all
continuous linear operators acting on indefinite-metric space was considered in Section 3.
‘We demonstrated that every proper object of this logic determines a state with reasonable
properties. We thus gave the meaning of indefinite metric. ““Negative probabilities” have
been replaced with experimentally veritiable effects (in each concrete model). Simultane-
ously, we have demonstrated that our approach is in accordance with the so far used one.
Some general problems (spectral decomposition, automorphisms of the logic, etc.) have
not been touched at all. The results of the present paper suggest a possibility of further
generalization. One may expect that the quantum logic of indefinite-metric spaces is a
particular case of more general structures. We have in mind general “locally Hilbertian™
logics. Our ““predefinition™ of a state in Section 3 seems to be sufficiently general to apply
to such structures as well.
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