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Strongly coupled quantum and classical systems and Zeno's effect 
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A model interaction between a two-state quantum system and a classical switching device is analysed and shown to lead to the 
quantum Zeno effect for large values of the coupling constant x. A minimal piecewise deterministic random process compatible 
with the Liouville equation is described, and it is shown that x -  1 can be interpreted as the jump frequency of the classical device. 

1. Introduction 

Genera t ions  of  freshmen in phi losophy have dis- 
cussed the memorable  puzzles of  Zeno. The most  
impor tan t  are about  motion,  "Achi l les"  and the 
"flying arrow" being the leading ones: 

( i )  Achilles cannot  overtake a turtle, since when- 
ever he reaches the posi t ion from which the turtle 
s tarted the turtle has by then a new lead. 

( i i )  I f  t ime is composed of  moments ,  a would-be 
flying arrow must at each moment  be at rest, and thus 
can never  fly. 

For  quan tum systems repeated frequent measure- 
ments  of  survivals can prevent  the decay of  the 
quan tum state. This effect was formula ted  by Turn- 
ing in 1940 and called quan tum Zeno effect by Misra  
and Sudarshan [ 1 ]. In other  words: repeated mea- 
surements keep the state from evolving. In recent 
years there has been considerable discussion of  the 
quan tum Zeno processes, effect and paradox.  See for 
example refs. [ 2 - 5 ] .  Moreover  it has been cla imed 
that  exper iments  can demonst ra te  the effect [ 6 -8 ] .  
In a recent paper  [9] we propose a mathemat ica l ly  
consistent model  of  interaction between classical and 
quan tum systems, which provides  an answer to the 
quest ion of  how and when a quan tum phenomenon  

becomes real as a result o f  a suitable dissipat ive t ime 
evolution.  With  a proper ly  chosen ini t ial  state the 
quan tum probabi l i t ies  are exactly mir rored  by the 
state of  the classical system and moreover  the state 
of  the quan tum subsystem converges for t--, + ~ to 
a l imit  which agrees with that  required by the von 
Neumann-L i ide r s  s tandard  quan tum measurement  
project ion postulate.  In our model  the quan tum sys- 
tem is cont inuously coupled to a classical appara tus  
which will respond to its t ime evolut ion and gives 
therefore a min imal  mathemat ica l  semantics to de- 
scribe the measurement  process in quantum me- 
chanics. In  order  to arrive at Zeno 's  paradox  one tac- 
itly involves Schr/Sdinger's equation. But on the other 
hand  we know it holds only for an undis turbed  sys- 
tem, whereas in fact we disturb the system very often 
- say, cont inuously - by observations.  In section 2 
we will briefly describe the model  and discuss Zeno 's  
effect in this framework. In the strong coupling l imit  
we will est imate the distance travelled by the quan- 
tum state d(/~ (0),/~ ( t )  ), d being the Bures distance 
in the state space. Moreover  we give a stochastic de- 
script ion for Zeno 's  model  using piecewise deter- 
minis t ic  processes. Section 3 deals with some con- 
cluding remarks.  
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2. The  Zeno  effect revisited 

Let us first very briefly describe the mathematical 
framework we will use. For details we refer to ref. 
[9].  We consider a quantum system Zq in interac- 
tion with a classical system Z¢. To the quantum sys- 
tem there corresponds a Hilbert space ~q. In ~q we 
consider a family of  orthonormal projectors e~ = 
e* = e  2 ( i =  1 .... , n), Y in=l e~ = I, associated to an ob- 
servable A =  ~%~ 2ie~. The classical system is sup- 
posed to have m distinct pure states, and it is con- 
venient to take rn >t n. The algebra ~ of  classical 
observables is in this case ~ =  C m. The set of  clas- 
sical states coincides with the space of  probability 
measures. Using the notation Arc = {So ..... sin_ 1 ), a 
classical state is an m-tuple p = (Po, ..., Pro- t ), P~ t> 
0, Z,~=om-~ p,~= 1. The state So plays in some cases a 
distinguished role and can be viewed as the neutral 
initial state o f  a counter. The algebra of  observables 
of  the total system ~ot  is given by 

~ot  = ~¢~ ® L  ()ffq) =Cm®L(O~q) 
r n - - I  

= ( ~  Z ( ~ q ) ,  (1) 

and it is convenient to realize ~ot  as an algebra of  
operators on an auxiliary Hilbert space ~ o t =  

m m - - I  ~q®C = @ , = o  ~q. ~ot  is then isomorphic to the 
algebra of  block diagonal m X m  matrices A =  
diag(ao, a~ ..... am-1) with a~,eL(~q). States on ~o~ 
are represented by block diagonal matrices 

p=diag(po ,  Pl, ..., Pro-1) , (2)  

where the p,, are positive trace class operators in 
L ( ~ q )  with E ~ T r ( p , ) =  1. By taking partial traces 
each state p projects on a "quan tum state" nq (p) and 
a "classical state" n~(p) given respectively by 

Zeq (p) = ~ p , ,  (3) 
¢g 

n~(p) = (Trpo,  Trp t  .... , Tr pm_ 1) • (4) 

The time evolution o f  the total system is given by a 
semigroup o t t m e  tl- of  completely positive maps o f  
~ot  - preserving hermiticity, identity and positivity 
- with L of  the form 

L ( A ) = i [ H , A ] +  ~ (VTAV~-½{VTV~,A}) .  (5) 
i = 1  

The Vi can be arbitrary linear operators in L ( ~ o t )  
such that Y. V* Vi s ~o~ and Y V*A V~ ~ ~¢~o~ whenever 
Ae~ot ,  H is an arbitrary block diagonal self adjoint 
operator H = d i a g ( H ~ )  in #~qot and { , } denotes an- 
t icommutator,  i.e. 

{A, B} =-AB+BA . (6) 

In order to couple the given quantum observable 
- -  t7 A - Z  i=1 2~e~ to the classical system, the V~ are cho- 

sen as tensor products V~=x/-xei®Oi, where the 0~ 
act as transformations on classical (pure) states. De- 
noting p( t )=a t (p (O) ) ,  the time evolution o f  the 
states is given by the Liouville equation 

~ ( t ) = - i [ H , p ( t ) ]  

+ ~ [V~p(t )V*-½{V*V~,p( t )}] ,  (7) 
i = l  

where in general H and the V, can explicitly depend 
on time. 

A nice and simple example gives a model o f  a con- 
tinuous measurement where a quantum spin ½ sys- 
tem is coupled to a two-state classical system. In this 
situation we consider only one orthogonal projector 
e on the two-dimensional Hilbert space Jfq=C 2. The 
number  of  classical states is also two. To define the 
dynamics we choose the coupling operator V in the 
following way, 

e ; )  
The Liouvitle equation (7) for the density matrix 
p=diag(p0,  pl)  of  the total system reads now 

/~0= - i [ H ,  po] + x ( e p l e -  ½{e, po} ) , 

bl = --i[H, pl]+x(epoe-- l{e,  pl})  . (9) 

For this particularly simple coupling the effective 
quantum state/~= Z~q(p) =Po +Pl evolves indepen- 
dently of  the state of  the classical system. One can 
say that here we have only transport of  information 
from the quantum system to the classical one. We 
have 

~ = - i [ H , ~ ]  +x (e~e - l {e ,~}  ) . (10) 

For the discussion of  the quantum Zeno effect we 
specialize 

H=½o~a3, e=  ½ (ao+O'l) , (11) 
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tr u being the Pauli matrices. 
We start with the quantum system being initially 

in the eigenstate of  a~, and repeatedly (with "fre- 
quency" x) check if the system is still in this state, 
each "yes" causing a flip in the coupled classical de- 
vice - which we can continuously observe. 

The evolution equation for/~, with the initial con- 
dition/~ (t = 0) = e, can be easily solved with the result 

/~(t) = ½ [tr0 +x(t)a~ +y(t)a2] , (12) 

where x( t ) ,  y ( t )  are given by 

x ( t ) = e x p ( - ~ x t )  

X [cosh(-~xM) + (x/xo~) sinh( 14xo~t ) ] , 

y(t)=(4og/xo,)  e x p ( - ¼ x t )  sinh(¼x,ot) , (13) 

where xo~ = x / x  z -  16o92. Figure 1 shows this evolu- 
tion during the time interval (0, 4n/o9) for several 
different values of  the dimensionless characteristic 
coefficient 

a = x / 4 0 9 .  (14) 

For or> 1 oscillations are damped completely, and 
then the distance travelled by the quantum state dur- 
ing the interaction becomes inversely proportional 
to the square root of  or. The natural distance in the 
state space is the geodesic Bures-Uhlmann distance 
d_, which is the geodesic distance for the Riemann- 
ian metric - given in our case by ds2=godxidx  s, 
with go(v) = 5 o + vi v j~ ( 1 - v 2), cf. refs. [ 10,11 ]. For 
density matrices v= ½ (ao +v.~r) and w=  ½ (ao+ w'~r) 
we have (cf. ref. [ 12 ] ) 

d(v~w)=½ arccos(v.w+41x/i-~-vE~/1-w2). (15) 

In particular, if one of  the states, say v, is pure, then 
v2= 1 and we obtain 

d ( v ~ w )  = ½ arccos(v.w) . (16) 

For v=/~(t), w=e= ½ (ao+ a~ ), as in the Zeno model, 
we obtain 

d(#( t )  ~ e )  = ½ arccos[x( t )  ] . (17) 

Notice that e, being a pure state, is on the boundary 
of  the state space, and the d_-distance from e depends 
only on one of  the two relevant coordinates x, y - 
contrary to the Frobenius distance T r [ ( v - w ) 2 ] ,  
which would involve both coordinates. Assuming 

now a >> 1 and xt>> 1, we get for x ( t ) ,  y( t )  in (13) 
the asymptotic formulae 

x ( t ) x l - 2 o 9 2 t / x + . . . ,  y ( t ) x o g / 2 x +  .... (18) 

Thus the distance reached by the state is in the 
asymptotic region given by 

d x o g x / ~ .  (19) 

The Liouville equation (7) describes the time evo- 
lution of  statistical states of  the total system. The in- 
formation it contains need not be a maximal avail- 
able one. It can be shown that with eq. (7) there is 
naturally associated a piecewise deterministic Mar- 
kov process (cf. refs. [14,15])  on the set of  pure 
states of  the total system. Knowing this process one 
can answer all kinds of  questions about time corre- 
lations of  the events, and also simulate the random 
behavior of  the classical system coupled to a quan- 
tum one. We refer to ref. [ 13 ] for the full story, here 
we will describe the particular case of  interest. 

Let Tt be a one-parameter semigroup of  (non-lin- 
ear) transformations of  rays in C 2 given by 

0 ( 0  
T ( t ) 0 =  110(t)l~ ' (20) 

where 

0 ( 0  =exp(  - i H t -  ½xet)O. (21) 

Suppose we start with the quantum system in a pure 
state 00, and the classical system in a state So. Then 
00 starts to evolve according to the deterministic (but 
non-Schr6dinger) evolution T(t)Oo until a jump oc- 
curs at time tl. The time t~ of  the jump is governed 
by an inhomogeneous Poisson process with the rate 
function 2( t )  = xlleT(t)Oo I12. The classical system 
switches from So to s~, while T(tl)Oo jumps to 
0~ = eT(t~ ) 00, and the process starts again. With the 
initial state being an eigenstate of  e, e0o = 00, as in 
our Zeno model, and for large values o f  the coupling 
constant, the rate function 2 is approximately con- 
stant and equal to x. Thus 1/to can be interpreted as 
the expected time interval between the successive 
jumps. Strong coupling between the two systems, 
necessary for a manifestation of  the Zeno effect, 
manifests itself with a high frequency of  jumps. 
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Fig. 1. Path travelled by the quantum state during the time interval {0, 4x/09}, for c~ = 1 0-1, 1 0 °, 1 0', 1 0 2, respectively. For large values 
of a the quantum Zeno effect reveals itself: the distance travelled by the state is x ~ .  

3. Concluding remarks 

We have shown that  the mechanism leading to the 
quan tum Zeno effect can be analysed within a model  
interact ion between a classical and a quan tum sys- 
tem. Zeno 's  effect appears  when a classical device, 
that  is capable of  high frequency switching between 
two al ternate states, is strongly coupled to a quan- 

tum system prepared  in an appropr ia te  init ial  state. 
The Hami l ton ian  evolut ion of  the quan tum system 
is then slowed down, and it stops completely in the 
l imit  of  infini te coupling constant.  The dynamical  
origin of  the phenomenon is easily understood within 
our framework: the quan tum system is prepared  in 
an ini t ial  state that  is on the a t t ractor  consist ing o f  
s ta t ionary states of  the diss ipat ive par t  o f  the Liou- 
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vi l l ian.  T h e  p h e n o m e n o n  is thus  charac ter i s t ic  no t  
only  o f  the  par t icu la r  m o d e l  we have  cons idered ,  but  

o f  the whole  class o f  s imi la r  models .  

The  m i n i m a l  p iecewise  de t e rmin i s t i c  r a n d o m  pro-  

cess that  we have  g iven  can  be  used for c o m p u t i n g  

t ime  character is t ics  o f  the  in te rac t ion ,  and  also for 

numer i ca l  s imula t ions  o f  the p h e n o m e n o n .  It  also 

shows that  measu r ing  o f  the  j u m p  f requency  o f  the 

classical appara tus  can  be  used  for  an ef fec t ive  es- 

t i m a t i o n  o f  the va lue  o f  the  coupl ing  constant .  
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