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A model interaction between a two-state quantum system and a classical switching device is analysed and shown to lead to the
quantum Zeno effect for large values of the coupling constant k. A minimal piecewise deterministic random process compatible
with the Liouville equation is described, and it is shown that ¥ —! can be interpreted as the jump frequency of the classical device.

1. Introduction

Generations of freshmen in philosophy have dis-
cussed the memorable puzzles of Zeno. The most
important are about motion, “Achilles” and the
“flying arrow’’ being the leading ones:

(i) Achilles cannot overtake a turtle, since when-
ever he reaches the position from which the turtle
started the turtle has by then a new lead.

(ii) If time is composed of moments, a would-be
flying arrow must at each moment be at rest, and thus
can never fly.

For quantum systems repeated frequent measure-
ments of survivals can prevent the decay of the
quantum state. This effect was formulated by Turn-
ing in 1940 and called quantum Zeno effect by Misra
and Sudarshan [1]. In other words: repeated mea-
surements keep the state from evolving. In recent
years there has been considerable discussion of the
quantum Zeno processes, effect and paradox. See for
example refs. [2-5]. Moreover it has been claimed
that experiments can demonstrate the effect [6-8].
In a recent paper [9] we propose a mathematically
consistent model of interaction between classical and
quantum systems, which provides an answer to the
question of how and when a quantum phenomenon

becomes real as a result of a suitable dissipative time
evolution. With a properly chosen initial state the
quantum probabilities are exactly mirrored by the
state of the classical system and moreover the state
of the quantum subsystem converges for - +co to
a limit which agrees with that required by the von
Neumann-Liiders standard quantum measurement
projection postulate. In our model the quantum sys-
tem is continuously coupled to a classical apparatus
which will respond to its time evolution and gives
therefore a minimal mathematical semantics to de-
scribe the measurement process in quantum me-
chanics. In order to arrive at Zeno’s paradox one tac-
itly involves Schrédinger’s equation. But on the other
hand we know it holds only for an undisturbed sys-
tem, whereas in fact we disturb the system very often
- say, continuously — by observations. In section 2
we will briefly describe the model and discuss Zeno’s
effect in this framework. In the strong coupling limit
we will estimate the distance travelled by the quan-
tum state d(5(0), p(¢)), d being the Bures distance
in the state space. Moreover we give a stochastic de-
scription for Zeno’s model using piecewise deter-
ministic processes. Section 3 deals with some con-
cluding remarks.
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2. The Zeno effect revisited

Let us first very briefly describe the mathematical
framework we will use. For details we refer to ref.
[9]. We consider a quantum system X, in interac-
tion with a classical system X.. To the quantum sys-
tem there corresponds a Hilbert space #,. In # we
consider a family of orthonormal projectors e, =
er=e? (i=1,..,n), 2, =1, associated to an ob-
servable A=3"_, A;e;. The classical system is sup-
posed to have m distinct pure states, and it is con-
venient to take m>n. The algebra < of classical
observables is in this case &/ =C". The set of clas-
sical states coincides with the space of probability
measures. Using the notation X, ={sq, ., $;u_1),
classical state is an m-tuple p=(po, «.es Pm—1)s Pa =
0, >7-d po=1. The state s, plays in some cases a
distinguished role and can be viewed as the neutral
initial state of a counter. The algebra of observables
of the total system .2, is given by

iy = A, ®L(H,) =C"Q@L(H)
m—1
=D LA, (1)

and it is convenient to realize =/, as an algebra of
operators on an auxiliary Hilbert space #,, =
H,@C"=@J=0 H,. S is then isomorphic to the
algebra of block diagonal mXm matrices A=
diag(ao, a1, ..., Am_1) With a,e L( ). States on «,,
are represented by block diagonal matrices

p=diag(po,p1,---,,0m_1) ’ (2)

where the p, are positive trace class operators in
L(5) with 3, Tr(p,)=1. By taking partial traces
each state p projects on a ““quantum state” 7,(p) and
a “classical state” m.(p) given respectively by

nq(p)=§pa> (3)

nc(p)=(Trp0sTrpl’---9 Trpm—l) . (4)

The time evolution of the total system is given by a
semigroup a’=e' of completely positive maps of
A, — preserving hermiticity, identity and positivity
— with L of the form

L(4)=1[H, 4]+ i (VrAV,=3{VIV, 4} . (5)
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The V; can be arbitrary linear operators in L(#,,)
suchthat > V¥ Ve s, and X V¥4V, e o, whenever
Ae o, H is an arbitrary block diagonal self adjoint
operator H=diag(H,) in #, and { , } denotes an-
ticommutator, i.e.

{4, By=AB+BA . (6)

In order to couple the given quantum observable
A=23"7_, 2,e; to the classical system, the V; are cho-
sen as tensor products V; =\/7€ e;®¢;, where the ¢;
act as transformations on classical (pure) states. De-
noting p(¢)=ca,(p(0)), the time evolution of the
states is given by the Liouville equation

p()==ilH, p(1)]
+ i [Vie()VE—3{VIVi,p(D}], 7

where in general H and the V; can explicitly depend
on time.

A nice and simple example gives a model of a con-
tinuous measurement where a quantum spin 1 sys-
tem is coupled to a two-state classical system. In this
situation we consider only one orthogonal projector
e on the two-dimensional Hilbert space #,=C2 The
number of classical states is also two. To define the
dynamics we choose the coupling operator V in the
following way,

V=ﬁ<2 g) (8)

The Liouville equation (7) for the density matrix
p=diag(po, p;) of the total system reads now

po=—ilH, po]l+x(epie—}{e, po}),
pr=—i[H, p,]+x(epoe—4{e, p,}) . )

For this particularly simple coupling the effective
quantum state p=n,(p) =po +p, evolves indepen-
dently of the state of the classical system. One can
say that here we have only transport of information
from the quantum system to the classical one. We
have

p=—ilH,p]+K(epe—1i{e.p}) . (10)

For the discussion of the quantum Zeno effect we
specialize

H=jw0;, e=}(gy+0)), (11)
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o, being the Pauli matrices.

We start with the quantum system being initially
in the eigenstate of g;, and repeatedly (with “fre-
quency” x) check if the system is still in this state,
each “yes” causing a flip in the coupled classical de-
vice — which we can continuously observe.

The evolution equation for §, with the initial con-
dition p(z=0) = ¢, can be easily solved with the result

p(t)=3lag+x(t)a +y(t)o,], (12)
where x(t), y(t) are given by
x(1) =exp(— ixt)

X [cosh (4K, )+ (x/K,,) sinh(ik,?)],
y()=(4w/k,) exp(—ikt) sinh(ix,t) , (13)

where k,=./k*—16w?. Figure 1 shows this evolu-
tion during the time interval (0, 4n/w) for several
different values of the dimensionless characteristic
coefficient

a=kx/4w . (14)

For o> 1 oscillations are damped completely, and
then the distance travelled by the quantum state dur-
ing the interaction becomes inversely proportional
to the square root of «. The natural distance in the
state space is the geodesic Bures-Uhlmann distance
d .., which is the geodesic distance for the Riemann-
ian metric - given in our case by ds?=g; dx‘dx/,
with g,(v) =6;+v,v;/ (1 —v?), cf. refs. [10,11]. For
density matrices v=1(gy +v-6) and w=14 (go+w-0)
we have (cf. ref. [12])

d(v~w)=4 arccos(v-w+ 102 1-w2). (15)
In particular, if one of the states, say v, is pure, then
r?’=1 and we obtain

d(v~w) =1 arccos(v-w) . (16)
For v=p(t), w=e=14(0gp+0a;), as in the Zeno model,
we obtain

d(p(t) ~e) =14 arccos[x(t)] . (17)

Notice that e, being a pure state, is on the boundary
of the state space, and the d . -distance from e depends
only on one of the two relevant coordinates x, y —
contrary to the Frobenius distance Tr[(v—w)?],
which would involve both coordinates. Assuming
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now a>> 1 and xt>> 1, we get for x(z), y(¢) in (13)
the asymptotic formulae

x()=1=2w%/k+.., v(t)=w/2k+.... (18)

Thus the distance reached by the state is in the
asymptotic region given by

d=w./t/k. (19)

The Liouville equation (7) describes the time evo-
lution of statistical states of the total system. The in-
formation it contains need not be a maximal avail-
able one. It can be shown that with eq. (7) there is
naturally associated a piecewise deterministic Mar-
kov process (cf. refs. [14,15]) on the set of pure
states of the total system. Knowing this process one
can answer all kinds of questions about time corre-
lations of the events, and also simulate the random
behavior of the classical system coupled to a quan-
tum one. We refer to ref. [13] for the full story, here
we will describe the particular case of interest.

Let T, be a one-parameter semigroup of (non-lin-
ear) transformations of rays in C? given by

_ ()
T0e= 1501 (20)
where
o(t)=exp(—iHt—iKet)o . (21)

Suppose we start with the quantum system in a pure
state ¢, and the classical system in a state s,. Then
@ starts to evolve according to the deterministic (but
non-Schrédinger) evolution 7°(¢)#@, until a jump oc-
curs at time #,. The time ¢, of the jump is governed
by an inhomogeneous Poisson process with the rate
function A(t)=xl|eT(t)pol2. The classical system
switches from s, to s,, while 7(¢ )¢, jumps to
¢, =eT(t,) ¢, and the process starts again. With the
initial state being an eigenstate of e, epo=¢,, as in
our Zeno model, and for large values of the coupling
constant, the rate function A is approximately con-
stant and equal to k. Thus 1/x can be interpreted as
the expected time interval between the successive
jumps. Strong coupling between the two systems,
necessary for a manifestation of the Zeno effect,
manifests itself with a high frequency of jumps.
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Fig. 1. Path travelled by the quantum state during the time interval {0, 4n/w}, for a=10"1, 10° 10!, 10, respectively. For large values
of a the quantum Zeno effect reveals itself: the distance travelled by the state is =<./n/a.

3. Concluding remarks

We have shown that the mechanism leading to the
quantum Zeno effect can be analysed within a model
interaction between a classical and a quantum sys-
tem. Zeno’s effect appears when a classical device,
that is capable of high frequency switching between
two alternate states, is strongly coupled to a quan-

tum system prepared in an appropriate initial state.
The Hamiltonian evolution of the quantum system
is then slowed down, and it stops completely in the
limit of infinite coupling constant. The dynamical
origin of the phenomenon is easily understood within
our framework: the quantum system is prepared in
an initial state that is on the attractor consisting of
stationary states of the dissipative part of the Liou-
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villian. The phenomenon is thus characteristic not
only of the particular model we have considered, but
of the whole class of similar models.

The minimal piecewise deterministic random pro-
cess that we have given can be used for computing
time characteristics of the interaction, and also for
numerical simulations of the phenomenon. It also
shows that measuring of the jump frequency of the
classical apparatus can be used for an effective es-
timation of the value of the coupling constant.
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