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Event generating algorithm corresponding to a linear master equation of Lind- 
blad’s type is described and illustrated on two examples: that of a particle detector 
and of a fuzzy clock. Relation to other approaches to the foundations of quantum 
theory and to the description of quantum measurements is briefly discussed. 

1. Introduction 

In a recent series of papers (cf. [l] and references therein) we enhanced the standard 
framework of quantum mechanics endowing it with event dynamics. In this extension, 

which will be denoted EEQT (for Event, Enhanced Quantum Theory), we go beyond 
the SchrGdinger continuous-time evolution of wave packets - we also propose a class of 

algorithms generating discrete events. From master equation that describes continuous 

evolution of ensembles of coupled quantum + classical systems we derive a unique piece- 
wise deterministic random process that provides a stochastic algorithm for generating 
sample histories of individual systems. In the present contribution we will describe the 
essence of our approach. But first we make a few comments on similarities and differences 

between EEQT and several other approaches. 

(1) The standard approach 

In the standard approach classical concepts are static. They are introduced via mea- 
surement postulates developed by the founders of Quantum Theory. But “measurement” 
itself is never precisely defined in the standard approach and therefore measurement pos- 
tulates cannot be derived from the formalism. One is supposed to believe Born’s statisti- 

tThe invited lecture to the XXVII Symposium on Mathematical Physics, Toruri, 6-9 December, 1994. 
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cal interpretation simply “because it works”. The standard interpretation alone does not 
tell us what happens when a quantum system is under a continuous observation (which, 
in fact, is always the case). 

(2) Master equation dynamics and continuous observation theory 

continuous observation theory is usually based on successive applicatior~s of the pro- 
jection postulate. Each application of the projection postulate maps pure states into 
mixed states. Thus repeated application of the postulate leads to a master equation for 
a density matrix. Replacing Schrodinger’s dynamics by a master equation is also popu- 
lar in quantum optics (cf. [2]) an d in several attempts to reconcile quantum theory with 
gravity (for a recent account see [3]). In all these approaches the authors usually believe 
that no classical system is introduced. All is purely quantum. That is, however, not true. 
What is true is just the converse: the largest possible classical system is introduced, but 
because it is so large and so close to the eye! it easily escapes our sight. It is assumed, 
without any justification, that jumps of quantum state vectors are directly observable 
(whatever it means). These jumps are supposed to constitute the only classical events. 
The weak point of this approach is in the fact that going from the master equation, that 
describes statistical ensembles, to a stochastic algorithm generating sample histories of 
an individual system is non-unique. There are infinitely many random processes that 
lead to the same master equation after averaging. One can use diffusion stochastic differ- 
ential equations or jump processes, one can shift pieces of dynamics between Hamiltonian 
evolution and collapse events. 

The reason for this non-uniqueness is simple: there are in~nitely many mixtures that 
lead to the same density matrix. Diosi [4,5] invented a clever mathematical procedure for 
constructing a special “ortho-process”. It provides a definite algorithm in special cases 
of finite degeneracy. It does not however remove non-uniqueness and also there is no 
reason why Nature should have chosen this special prescription causing quantum state 
vector always to make the least probable transition: to one of the orthogonal states. 

(3) Bohmian mechanics, local beables, stochastic mechanics 

In these approaches (cf. refs. [6-81) there is an explicit classical system. Quantum 
state vector knows nothing about this classical system. It evolves according to the un- 
modified Schrodinger’s dynamics. It acts on the classical system affecting the classical 
dynamics (which is either causal or stochastic) without itself being acted upon. There 
is a mysterious quunt~m ~ote~t~al~ action without reaction. All such schemes are incon- 
sistent with quantum mechanics. They can be shown to contradict indistinguishability 
of quantum mixtures that are described by the same density matrix [9]. That it must 
be so follows from quite general no-go theorems - cf. [lo-121. The fact that the above 
schemes allow us to distinguish between mixtures that standard quantum mechanics con- 
siders indistiilg~lishable need not be a weakness. In fact, it may be an advantage because 
it may lead beyond quantum theory, it can provide us with means of faster-than-light 
communication - provided experiment confirms this feature. 

How does our approach compare to those above ? First of all, as for today, our ap- 
proach is explicitly phenomenological. That is not to say that, for instance, the standard 
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approach is not phenomenological. In the standard approach we must decide where do we 

finish our quantum description and what do we “measure”. That does not follow from 
the theory - it must be imputed from the outside. However, we have been so much 
indoctrinated by Bohr’s philosophy and its apparent victory over Einstein’s “realistic!’ 

dreams, and we are today so used to this procedure, that we do not feel uneasiness here 
any more. Somehow we tend to believe that the future ‘Lquantum theory of everything” 
will explain all events that happen. But chances are that this theory of everything will 

explain nothing. It will be a dead theory. It will not even have a Hamiltonian, because 
there will be no time. It will be a theory of the world in which nothing happens by itself. 

It will answer ow questions about certain probabilities - when these questions are asked. 

But it will not explain why anything happens at all. 

Our theory of event dynamics starts with an explicit phenomenological split between 

a quantum system, which is not directly observable, and a classical system? where events 
happen that can be observed and that are to be described and explained. In other words 

our starting point is an explicit mathematical formulation of Heisenberg’s cut. The 

quantum system may be as big as one wishes it to be, the classical system may retreat 
more and more, moved as far as we wish ----- towards our sense organs, towards our brains, 

towards our mental processes. But the further we retreat the less facts we explain. At 
the extreme limit we will be able to explain nothing but changes of our mental states, 
i.e. only mental events. That state of affairs may be considered satisfactory for those who 

adhere to idealistic or eastern philosophies, but it need not be the one that enriches our 
understanding of the true workings of Nature. Probably, for most of practical purposes, 

it is sufficient to retreat with the quanto-classical cut as far as photon detection processes 

which can be treated as the primitive events. However, our event mechanics works quite 
well when the cut between the quantum and the classical is expressed in engineering 

language: like in the example of quantum SQUID coupled to a classical radi~frequenc~ 
circuit, or quantum particle coupled to its yes-no position detectors, for instance to a 
cloud chamber. 

Once the split between the quantum and the classical is fixed, then the coupling 
between both systems is described in terms of a special master equation. Because of 
its special form there is a unique random process in the space of pure states of the to- 
tal system that reproduces this master equation. The process gives an algorithm for 
generating sample histories. It is of piecewise deterministic character. It consists of 
periods of continuous evolution interrupted by jumps and events that happen at ran- 
dom times. The continuous evolution of the quantum system is described by a -- 
modified by the coupling - nonunitary Schriidinger’s equation. The jump times have 
a Poissonian character: with their jump rates dependent on the actual state of both 

the quantum and the classical system. The back action of the classical system on the 
quantum one shows up in two ways: first of all by modifying the Schrodinger evolu- 
tion between jumps by a non-unitary damping, second by causing quantum state to 
jump at event times. Notice that the master equation describing statistical proper- 
ties is linear, while the evolution of individual system is nonlinear. This agrees with 
Turing’s aphorism stating that “prediction must be linear, descript~ion must, be non- 
linear” [13]. 
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Our theory, even if it works well and has a practical value, should be considered not 
as a final scheme of things, but merely as a step that may heIp us to find a description 
of Nature that is more satisfactory than the one proposed by the orthodox quantum 
philosophy. Pure quantum theory proposes a universe that is dead - nothing happens, 
nothing is real .-- apart from the questions asked by mysterious “observers’!. But these 
observers are metaphysics, are not in the equations. In a sharp contrast to the standard 
approach, our theory of event mechanics described here makes the universe “running” 
again, even before there were any observers. It has gotten however the arrow of time 
that is driven by a fuzzy quantum clock. It also needs a roulette. This is hard to 
accept for many of us. We would like to believe that Nature is ruled by a perfect 
order. And to be perfect - this order must be deterministic. Even if we do not share 
Einstein’s dissatisfaction with qu~tum theory, we tend to understand his disgust at 
the very thought of God playing dice. But Nature’s concept of a perfect order may 
be not that simple one as we wish. Perhaps using probability theory may be the only 
way of describing in finite terms the universe that has an infinite complexity. It may 
be that we will never know the ultimate secret, nevertheless the mechanism proposed 
by EEQT brings a hope of restoring some order that we are seeking. Namely, the 
quanto-classical clock that we describe below works “by itself’. It is true that it needs 
a roulette but the roulette is a CZUSS~C~~ roulette. We need only c~~s~~cu~ ~r~bub~l~~~, and 
classical random processes. That is good because we understand classical probability 
by hearts but ‘quantum probability’ we understand only by abstract terms. That is 
some progress also because nowadays we know more about complexity theory, theory of 
random sequences, and theory of chaotic phenomena. Each year we find new ways of 
generating apparently random phenomena out of deterministic algorithms of sufficient 
complexity. In fact, our event generating algorithm is successfully simulated with a 
completely deterministic classical computer. The crucial problem here is the necessary 
computing power. Moreover, the algorithm is nonlocal. We do not know how Nature 
manages to make its world clock running with no or little effort. We must yet learn it. 

2. The event engine 

We will describe in this section the event generating algorithm that results from our 
theory. The algorithm is simple, the master equation that it leads to is also easy to write 
down. What is more difIicult is proving that the correspondence between sbatistical 
description provided by the master equation implies the event algorithm uniquely, cf. [I]. 
To make the idea as clear as possible we will assume that our classical system admits 
only finite number of states. We will call these states a = 1,. . . , m. There are m2 - 1 
possible events labeled by pairs Q: # @. For each Q let 3-1, be the Hilbert space of the 
quantum system. Usually ail these Hilbert spaces are isomorphic or even identical. But 
it costs us nothing to allow for a more general setting, so that the transition a -+ /3 may 
correspond to phase transition, where Hilbert space must also change. We then need rn2 
operators (or m2 - m operators in a symmetric case, see below): m Hermitian operators 
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H, ....-. the Hamiltonians H, : 31 --+ ‘l-L,, and m2 - m operators gap : ?-lp -+ Y-i,. Thus 

our operator-valued matrix gcyp has zeros on the diagonal. The theory becomes most 
symmetric if the so called “detailed balance condition” is satisfied, that is if g& = goa. 
But there are no reasons to impose this condition and our two examples in the next 
section are not symmetric. The operators Ha, gag may depend explicitly on time. We 
will not make this dependence explicit but all our formulae below are written in such a 
way that they remain valid in this more general case. 

Before describing our event generating process let us introduce a convenient notation: 
for any $J~ E 3-1, denote 

A, = E g;,g!% T (1) 

2.1. Event generation 

The algorithm powering our event engine is described by the following steps: 

Event Generating Algorithm: 

Given on input, to, CEO and $0 E E,, : with \/+0/i = l1 it produces on output ti,ar and 
$1 f H,, , with /$i jj = 1. 

(I) Choose uniform random number r E [0, 11. 
(2) Propagate $0 in ‘FI,, forward in time by solving: 

(3) Choose ~~~~o~ random number r’ E [O: 11. 

(4) Rzln through the ctassical states /I = 1,2,. . . , m until you. reach /3 = a~ for which, 

2pLMt)) 2 r’ . (6) 

,L3=1 

(5) Set $9 -gala0 ~~~l~lll9~,aoIll~~~~ll~ 

Time evolution of an individual system is described by repeated application of the 
above algorithm, using its output as the input for each next Step. If we want to study 
time evolution in a given interval [titl, tsnfr then we apply the algorithm by starting with 
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to = tin, repeating it until we reach t = ts, somewhere in t,he middle of propagation in 
Step 2. Then we normalize the resulting state. 

Remark 1: According to the theory developed in [l] the jump process is an inho- 
mogeneous Poisson process with intensity function X,(t), o being the actual state of the 
classical system. One way to simulate such a process is to move forward in time by small 

time intervals ill& and make independent decisions for jumping with probability ,!,(t)At. 

This leads to t,he probability p of the first jump to occur in the time interval (te,t) 

given by: 

~=I-exP(-~+s)ils) , 

By using the identity log-f(f) - log f(to) = J1”, ~(sj/~(~~ ds it is easy to see that p = 

1 - ]]$Q(t)]]2 - which simplifies simulation ~-- as we did in Steps 2, 3 above. This 
observation throws also some new light on those approaches to quantum mechanical 
description of particle decays that were based on non-unitary evolution. 

Remark 2: The algorithxl~ above involves playing a roulette. If Nature is using 
this algorithm running Her event engine. then the timing of each next event is decided 

beforehand in Step 2. But even if T is already chosen, still there is a possibility to delay or 

to hasten the next event provided one has the ability to manipulate the time-dependence 
of goa that enter n,(t) in Eq. (5). In other words, it is by using gDa(t) tools we can, 

to some extent, manipulate Moira. 

2.2. Master equation 

By repeat,ing the above event generating algorithm many times, or by observing 
time series of events for a prolonged time, we will notice certain regularities and certain 
statistical tendencies. There are many ways of collecting data that we consider of interest. 

For instance, we may ask what is the average time necessary for arriving at a particular 
classical state or a succession of states. But we can also ask more standard question: 
suppose we repeat our simulation many times always starting with the same state at 
the same initial time to, and ending it at the same final time t. Then we will arrive at 
different final stat,es with different probabilities. Let (Y, @a, to be the initial state? and let 

/L(CY, T,G~, to; p, $0, t) be the probability density of arriving at the state (p, $0) at time t. 
We may associate with this probability distribution a family of density matrices: 

Pfi = J ~(~~~a,to;P,~p,t)l~~)(~~l~~~, (8) 
so that Co Trpp = 1. This association is many to one. We lose information this way. 
Nevertheless, as shown in [I, 141, the following theorem holds: 

THEOREM 1. The family pp (t) satisfies linear d~~ere~t~a~ equation 
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where { , } stands for anticommutator. Conversely, the process with values in pure states 
(n, @a) described in the previous subsection is the unique one leading to (9). 

Equation (9) describes time evolution of statistical states of the total, classical + quan- 
tum system. Sometimes, in special cases, it is possible to sum up over ,8 to obtain evo- 
lution equation for the effective statistical state of the quantum system alone. For this 
being possible first of all the Hilbert spaces %p must be identical. Then we can set 
p = Co pp. Also, we must have the same Hamiltonian, and the same n in each “channel”: 
HP E H, AD E A, moreover we must have special property that Es C, gprprgi;, = 
xi V,pVi* for some family of operators Vi which result from summing up subfamilies of 
operators go?. Only in that case we obtain Liouville’s evolution equation for p: 

(10) 

with A = ci l$*V;. But even if this is the case, the information lost is unrecoverable: 
there are always infinitely many processes in the space of pure states of the quantum 
system that lead to the same quantum master equation (10). Even if equations (9) 
and (10) look similar in form, there is an abyss of information loss that separates their 
contents. 

3. Examples 

3.1. Particle detector 

We consider the simplest case: that of a two-state classical system. We call its two 
states “on” and “off’. Its action is simple: if it is off, then it will stay off forever. If it 
is on, then it can detect a nearby particle and go off. Later on we will specialize to the 
detection of particle presence at a given location in space. For a while let us be general 
and assume that we have two Hilbert spaces ‘&r, ‘Ft,, and two Hamiltonians Hoff, H,,. 
We also have time-dependent family of operators gt : ‘l-i,, --+ ‘Fl,ff and let us denote 

4 = &St* : Km ---) %n. According to the theory presented in the previous section, with 
goff,on = gt, gon,off = 0, the master equation for the total system, i.e. for particle and 
detector, reads 

Poff (t) = --iI%% f Poff (f)l + StPon(t)g; 

bon(t) = -i[&,, pon(t)l - i {At, Pon(t))a (11) 

Suppose at t = 0 the detector is “on” and the particle state is $(O) E H,,, with ~~~(0)~~ = 
1. Then, according to the event generating algorithm described in the previous section, 
the probability of detection during time interval (0, t) is equal to 1 - /) exp(-iR,,,t - 

gt, ww. 
Let us now specialize and consider a detector of particle presence at a location a 

in space (of n dimensions). Our detector has a certain range of detection and certain 
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efficiency. We encode these detector characteristics in a gaussian function 

g(x) = fc1/2 (&)n’2exp (g) 1 (12) 

where d; K are constants, u is a width parameter, and n stands for the number of space 

dimensions. If the detector is moving in space along some trajectory a(t), and if the 

detector characteristics are constant in time and space, then we put: gt(x) = g(z - a(t)). 
Let us suppose that the detector is off at t = to and that the particle wave function is 

@e(z). Then, according to the algorithm described in the previous section, the probability 
of detection in the infinitesimal time interval (to, to + At) equals s gzO (x)I&,(x)12dx. At. 
In the limit a + 0, when g:(x) + (K/dn)b(x -a(t)) we get (~/d”)l$o(a(to))12. At. Thus 
we recover the usual Born interpretation, with the evident and necessary correction that 

the probability of detection is proportional to the length of exposure time of the detector. 

That simple formula holds only for short exposure times. For a prolonged detection 

the formula becomes more involved, mainly because of nonunitary evolution due to the 

presence of the detector. In that case numerical simulation is necessary. To get an idea of 
what happens let us consider a simplified case which can be solved exactly. We consider 
the ultra-relativistic Hamiltonian H = -icd/dx in space of one dimension, c being a 

constant. In that case the non-unitary evolution equation is easily solved: 

$(x, t) = exp { -$ l’&(x + c(s - t))} $(5 - 4 0). 

In the limit (T + 0 when detector shrinks to a point (but becomes more and more 
sensitive), and assuming that this point is fixed in space u(t) = a, we obtain for the 

probability p(t) of detecting the particle in the time interval (0, t): 

p(t) = const x 
s 

.1,, Iti(x, O)12dx. 

Intuitively this result is very clear. Our Hamiltonian describes 
right with velocity c, the shape of the wave packet is preserved. 
standard quantum mechanical probability that the particle at 

(14) 

a particle moving to the 
Then p(t) is equal to the 
t = 0 was in a region of 

space that guaranteed passing the detector, multiplied by the detector efficiency factor. 

3.2. Fuzzy clock 

This example illustrates diversity of possible couplings between a classical and a 
quantum system. In the model below no information is transferred from the quantum 
system, except that the passing of fuzzy units of time is marked. The example also 
shows that the standard continuous unitary evolution of quantum mechanics can be 
approximated with an arbitrary accuracy by a pure jump process. 

Again, as in the subsection above we will start with a setting which is more general 
than usual ~ we will work with a family of Hilbert spaces rather than with one fixed 
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Hilbert space. Those readers who like to have only one Hilbert space may think that all 

our ?-f, below are identical to some standard Hilbert space l-t. 

Rem&: The situation here is similar to that of a relativistic Dirac’s equation. There 

is a separate Hilbert space far each space-like h~persurface, namely the Hilbert space of 
Cauchy data. There are different possibilities to identify these Hilbert spaces: differ- 
ent coordinate systems used by different observers will lead to different identifications. 

Similar situation occurs in Galilean general relativistic quantum mechanics, see [15]. 
For the classical system we take the set of clock readings, i.e. the set ;Z of integers 

i. For each i we have a Hilbert space Hi. As we have already said before, there is 

no Hamiltonian part in the evolution. Concerning the classical events: the only events 

that we admit are clock’s ticks. To each event i - 1 -3 i we associate the operator 

gi,i_i = Fiji, where Vi is an isometry from Xi-1 to Xi. Thus VT& = I and our master 

equation (9) reads 

pi = Uipi-r&’ I lipi . (1~) 

The associated process is of the simplest possible kind: at random times, distrib~lted 

according to the Poisson law with a constant rate 6, the quantum state vector changes 

and the classical clock pointer advances by one i -+ i + 1. The clock is fuzzy and it.s clicks 

are random. If we want to count time more uniformly we must collect large number of 

such clocks. But that is not the point here. The main point of t,his example is to illustrator 
our thesis: RO ~~ss~~~~~~~ -...I no ~~~~~~~~~~. Indeed, there is no dissipation in the 
quantum system in this example. Quantum pure states evolve into quantum pure states. 

At the same time we learn nothing useful by observing the classical system. We just 

learn that time has passed. And this passage of time brings no informat,ion whatsoever 
about the quantum state. The clock rate is constant: it is completely independent of the 
quantum state. 
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