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Abstract 

We enhance the standard formalism of quantum theory to enable events. The concepts of experiment and of measurement 
are defined. Dynamics is given by Liouville’s equation that couples a quantum system to a classical one. It implies a unique 

Markov process involving quantum jumps, classical events and describing sample histories of individual systems. 

1. Introduction 

We start with recalling Bell’s opinion on quantum 
measurements. He studied the subject in depth and he 

concluded, emphasizing it repeatedly [ 1,2 3 : our diffi- 
culties with quantum measurement theory are not ac- 
cidental - they have a reason. He has pointed out this 
reason: it is that the very concept of “measurement” 

cannot even be precisely dejned within the standard 
formalism. We agree, and we propose a way out that 
has not been tried before. Our scheme solves the essen- 

tial part of the quantum measurement puzzle - it gives 
a unique algorithm generating time series of pointer 

readings in a continuous experiment involving quan- 
tum systems. We do not pretend that our solution is 
the only one that solves the puzzle. But we believe 
that it is a kind of a minimal solution. Even if not yet 

complete, it may help us to find a way towards a more 
fundamental theory. 

1 E-mail: blanchard@physik.uni-bielefeld.de. 

2 E-mail: ajad@ift.uni.wroc.pl. 

The solution that we propose does not involve hid- 
den variables. First, we point out the reason why “mea- 

surement” cannot be defined within the standard ap- 

proach. That is because the standard quantum formal- 
ism has no place for “events” . The only candidate for 
an event that we could think of - in the standard for- 

malism - is a change of the quantum state vector. But 
one cannot see state vectors directly. Thus, in order 

to include events, we have to extend the standard for- 
malism. That is what we do, and we are doing it in a 
minimal way: just enough to accommodate classical 
events. We add explicitly a classical part to the quan- 

tum part, and we couple classical to quantum. Then 

we define “experiments” and “measurements” within 
the so extended formalism. We can show then that 
the standard postulates concerning measurements - in 
fact, in an enhanced and refined form - can be derived 
instead of being postulated. 

This “event enhanced quantum theory” or EEQT, 
as we call it, gives experimental predictions that are 
stronger than those obtained from the standard theory. 
The new theory gives answers to more experimental 
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questions than the old one. It provides algorithms for 
numerical simulations of experimental time series ob- 

tained in experiments with single quantum systems. In 
particular this new theory is falsifiable. We are work- 

ing out its new consequences for experiments, and we 
will report the results in due time. But even assum- 
ing that we are successful in this respect, even then 

our program will not be complete. Our theory, in its 
present form, is based on an explicit selection of an 
“event carrying” classical subsystem. But how do we 

select what is classical? Is it our job or is it Nature’s 

job? When we want to be on a safe side as much as 
possible, or as long as possible, then we tend to shift 

the “classical” into the observer’s mind. That was von 

Neumann’s way out. But if we decide to blame mind 

- shall we be safe then? For how long? It seems, not 
too long. This is the age of information. Soon we will 
need to extend our physical theory to include a theory 

of mind and a theory of knowledge. That necessity 
will face us anyhow, perhaps even sooner than we are 

prepared to admit. But, back to our quantum measure- 
ment problem, it is not clear at all that the cut must 
reside that far from the ordinary, “material” physics. 

For many practical applications the measuring appa- 
ratus itself, or its relevant part, can be considered clas- 

sical. We need to derive such a splitting into classical 

and quantum from some clear principles. Perhaps is 

is a dynamical process, perhaps the classical part is 
growing with time. Perhaps time is nothing but ac- 

cumulation of events. We need new laws to describe 
dynamics of time itself. At present we do not know 

what these laws are, we can only guess. 
At the present stage placement of the split is indeed 

phenomenological, and the coupling is phenomeno- 
logical too. Both are simple to handle and easy to de- 
scribe in our formalism. But where to put the Heisen- 

berg cut - that is arbitrary to some extent. Perhaps 
we need not worry too much? Perhaps relativity of 
the split is a new feature that will remain with us. We 
do not know. That is why we call our theory “phe- 
nomenological”. But we would like to stress that the 

standard, orthodox, pure quantum theory is not better 
in this respect. In fact, it is much worse. It is not even 
able to define what measurement is. It is not even a 
phenomenological theory. In fact, strictly speaking, it 
is not even a theory. It is partly an art, and that needs an 
artist. In this case it needs a physicist with his human 
experience and with his human intuition. Suppose we 

have a problem that needs quantum theory for its solu- 
tion. Then our physicist, guided by his intuition, will 
replace the problem at hand by another problem, that 

can be handled. After that, guided by his experience, 
he will compute Green’s function or whatsoever to get 

formulas out of this other problem. Finally, guided by 
his previous experience and by his intuition, he will 

interpret the formulas that he got, and he will predict 
some numbers for the experiment. 

That job cannot be left to a computing machine in 
an unmanned space-craft. We, human beings, may feel 
proud that we are that necessary, that we cannot be 
replaced by machines. But would it not be better if we 
could spare our creativity for inventing new theories 

rather than spending it unnecessarily for application 

of the old ones? 
In this Letter we put stress only on the essential 

ideas. Details will appear in Ref. [ 31, where an ex- 
tensive list of references, as well as many credits to 
earlier work by other authors, are given. 

1.1. Summary of the results 

In this subsection we summarize the essence of our 
approach. Using informal language EEQT can be de- 

scribed as follows: 
Given a “wavy” quantum system &J we allow it to 

generate distinct classical traces - events. Quantum 

wave functions are not directly observable. They may 

be considered as hidden variables of the theory. On 
the other hand, events are discrete, in principle observ- 
able directly, real. Typically one can think of detection 
events and pointer readings in quantum mechanics, but 

also of creation-annihilation events in quantum fieId 
theory. They can be observed but they do not need an 
observer for their generation (although some may be 

triggered by an observer’s participation). They are ei- 
ther recorded or they are causes for other events. It is 
convenient to represent events as changes of state of 

a suitable classical system. Thus formally we divide 
the world into &? x C - the quantum and the classical 
part. They are coupled together via a specific dynamics 
that can be encoded in an irreversible Liouville evo- 
lution equation for statistical states of the total & x C 
system. To avoid misunderstanding we wish to stress 
it rather strongly: the fact that & and C are coupled 
by a dissipative irreversible rather than by unitary re- 
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versible dynamics does not mean that noise, or heat, 
or chaos, or environment, or lack of knowledge, are 

involved. In fact, each of these factors, if present - and 
all of them are present in real circumstances - only 

blurs out transmission of information between & and 
C. The fact that & and C must be coupled by a dissipa- 
tive rather than by reversible dynamics follows from 
no-go theorems that are based on rather general as- 

sumptions [4-61. We go beyond these abstract no-go 
theorems that are telling us what is not possible. We 
look for what is possible, and we propose a class of 

couplings that, as we believe, is optimal for the pur- 
poses of control and measurement. With our class of 

couplings no more dissipation is introduced than it is 
necessary for transmission of information from & to 
C. Thus our Liouville equation that encodes the mea- 

surement process is to be considered as exact, not as 
an approximate one (adding noise to it will make it ap- 

proximate). Given such a coupling we can show that 
the Liouville equation encodes in a unique way the 

algorithm for generating admissible histories of indi- 
vidual systems. That part is new comparing with our 
previous paper [ 71. While writing Ref. [ 71 we did 

not know how to describe individual systems. We did 

not suspect that for a class of couplings we are now 
able to specify there is a unique event-generating al- 

gorithm. The algorithm describes the joint evolution 
of an individual & x C system as a piecewise deter- 
ministic process. Periods of continuous deterministic 
evolution are interrupted by die tossing and random 

jumps that are accompanied by changes of state of C- 
events. We call it the piecewise deterministic process 
algorithm, in short PDP (the term PDP has been intro- 
duced by Davis - cf. Ref. [ 81, and references therein). 
The algorithm is probabilistic which reflects the fact 
that the quantum world although governed by deter- 

ministic Schriidinger equation is, as we know it from 
experience, open towards the classical world of events, 
and the total system & x C is thus open towards the 
future. The PDP algorithm identifies the probabilis- 
tic laws according to which times of jumps and the 
events themselves are chosen. Our generalized frame- 
work enables us not only to gain information about 
the quantum system but also to utilize it by a feed- 
back control of the 8 x C coupling. We can make the 
coupling dependent on the actual state of the classical 
system (which may depend on the records of previous 
events). 

Briefly, our event enhanced formalism can be de- 
scribed as follows: to define an experiment we must 

start with a division & x C. Assuming, for simplicity, 

that C has only a finite number of states (which may 
be thought of as “pointer positions”, but they can also 
represent states of a finite automaton in a quantum 
driven game of life) (Y = 1, . . . , m, we define event as 
a change of stute of C. Thus there are m2 - m pos- 

sible events. An experiment is then described 3 by a 
specific completely positive coupling V of & and C. 

It is specified by: (i) a family H of quantum Hamil- 

tonians Z& parametrized by the states a of C, (ii) a 
family V of m2 - m of quantum operators g,p, with 

g,, z 0. In our previous papers (cf. references in Ref. 

[ 31) we have described simple general rules for con- 
structing the g,p, and we described non-trivial exam- 
ples, including the SQUID-tank model and generalized 
“cloud chamber” model that covers the GRW spon- 

taneous localization model as a particular, homoge- 
neous, case. The self-adjoint operators Ha determine 
the unitary part of quantum evolution between jumps, 
while gap determine jumps, their rates and their proba- 
bilities, as well as the non-unitary and non-linear con- 

tribution to the continuous evolution between jumps. 

As an example, in the SQUID-tank model the variable 

(Y is the flux through the coil of the classical radio- 

frequency oscillator circuit, and it affects, through a 
transformer, the SQUID Hamiltonian. g,p have also a 
very simple meaning there [ 91 - they are shifts of the 
classical circuit momentum caused by a (smoothed 

out, operator-valued) quantum flux. 
The time evolution of statistical states of the total 

& x C system is described by the Liouville equation, 

(1) 

(2) 

andthe{, } d f stan s or anti-commutator. The oper- 
ators Ha and g,,s can be allowed to depend explicitly 

3 It is not necessary to discuss the general concept of a completely 
positive coupling here (the interested reader can find a discussion 

and references in Ref. [ 61) 
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on time, so that the intensity of the coupling can be 
controlled. Moreover, to allow for phase transitions the 
quantum Hilbert space may change with a. One can 
show that the above Liouville equation determines a 

piecewise deterministic process (PDP) that generates 

histories of individual systems. Within our framework 
that process is unique. Our PDP is given by the fol- 

lowing simple algorithm: 

PDP algorithm 1. Let us assume a fixed, sufficiently 
small, time step dt. Suppose that at time I the system 

is described by a quantum state vector cc/, ]]$]I = 1 
and a classical state (Y. Compute the scalar product 
h( #, a) = (+, A, I++). Then toss dies and choose a 

uniform random number r E [ 0, 1 ] , and jump if r < 
A(#, a) dt, otherwise do not jump. When jumping, 

toss dies and change LY + p with probability pa__+ = 

llg&ll*/~(~~4~ and change rcI + g~&/llgsn@ll. 
If not jumping, change 

J4- 
exp( -iH, dt - iAa dt)$ 

]]exp(-iH,dt- i&dt)@[I r---f f+dt* 

Repeat the steps. 

Remark. Another method of generating jump times 

is to select a random number r E [ 0, 1 ] and proceed 

with the continuous time evolution by solving (I, = 
(-iH, - :A,)+ until i/$]]2 = I - see Ref. [lo] 

EEQT proposes that the PDP algorithm describes 

in an exact way all real events as they occur in Nature, 
provided we specify correctly Q, C, H and V. In the 

following section we will formulate more precisely 

the basic structure of EEQT. 

2. Mathematical scheme of EEQT 

Let us describe the mathematical framework that we 

use. In order to define events, we introduce a classi- 
cal system C. Then possible events are identified with 

changes of a (pure) state of C. Let us consider the sim- 

plest situation corresponding to a finite set of possi- 
ble events. If necessary, we can handle infinite dimen- 
sional generalizations of this framework. The space 

of states of the classical system, denoted by S,, has 
m states, labeled by LY = 1,. . . , m. These are the pure 

states of C. They correspond to possible results of sin- 
gle observations of C. Statistical states of C are prob- 
ability measures on S, - in our case just sequences 

pa 3 0, C, pa = 1. They describe ensembles of ob- 
servations. 

We will also need the algebra of (complex) observ- 
ables of C. This will be the algebra & of complex 
functions on SC - in our case just sequences fa, cz = 
1 ,...1 m, of complex numbers. 

It is convenient to use Hilbert space language even 
for the description of that simple classical system. 

Thus we introduce an m-dimensional Hilbert space ‘H, 
with a fixed basis, and we realize sl, as the algebra of 

diagonal matrices F = diag( fl , . . . , f,,,) . 
Statistical states of C are then diagonal density ma- 

trices diag(pl , . . . , pm), and pure states of C are vec- 
tors of the fixed basis of H,. 

Events are ordered pairs of pure states (Y ---) /3, 
(Y # /3. Each event can thus be represented by an 

mxm matrix with 1 at the (a, /3) entry, zero otherwise. 
There are m2 - m possible events. Statistical states 

are concerned with ensembles, while pure states and 
events concern individual systems. 

The simplest classical system is a yes-no counter. 
It has only two distinct pure states. Its algebra of ob- 

servables consists of 2 x 2 diagonal matrices. 
We now come to the quantum system. Here we use 

the standard description. Let e be the quantum sys- 
tem whose bounded observables are from the algebra 

ds of bounded operators on a Hilbert space ‘HH,. Its 

pure states are unit vectors in XFI,; proportional vectors 

describe the same quantum state. Statistical states of 
& are given by non-negative density matrices b, with 
Tr(fi) = 1. Then pure states can be identified with 
those density matrices that are idempotent, b2 = @, i.e. 

with one-dimensional orthogonal projections. 
Let us now consider the total system T = Q x C. 

Later on we will define “experiment” as a coupling of 
C to e. That coupling will take place within T. First, 
let us consider statistical description, only after that 
we shall discuss dynamics and coupling of the two 

systems. 
For the algebra At of observables of T we take 

the tensor product of algebras of observables of & 
and C: At = 4 ~3 A. It acts on the tensor product 
31, @7& = @E=, 7iH,, where 3-1, M X,. Thus dr can be 
thought of as algebra of diagonal m x m matrices A = 
(a,p), whose entries are quantum operators: aoa E 
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4, a,~ = 0 for LY # /3. The classical and quantum 
algebras are then subalgebras of dt; J1, is realized by 

putting uon = fJ, while 4 is realized by choosing 

a,p = a&p. Statistical states of G! x C are given by 
m x m diagonal matrices p = diag( pr , . . . , p,) whose 

entries are positive operators on Xq, with the normal- 
ization Tr( p) = C, Tr( pn) = 1. Tracing over C or 62 

produces the effective states of & and C respectively: 

li=C,~=,p~ =Tr(p,). 
Duality between observables and states is provided 

by the expectation value (A)p = c, Tr( A,p,). 
We consider now dynamics. Quantum dynamics, 

when no information is transferred from & to C, is 

described by Hamiltonians H,, that may depend on 

the actual state of C (as indicated by the index (Y). 
They may also depend explicitly on time. We will use 

matrix notation and write H = diag( H,). Now take 
the classical system. It is discrete here. Thus it cannot 
have continuous time dynamics of its own. 

Now we come to the crucial point - the coupling. A 

coupling of e to C is specified by a matrix V = (g,p), 
with g,, = 0. To transfer information from & to C we 
need a non-Hamiltonian term which provides a com- 

pletely positive (CP) coupling. We consider couplings 
for which the evolution equation for observables and 

for states is given by the Lindblad form, 

A=i[H,A] +E(V*AV) - +{“,A}, (3) 

P= -i[H,pl +&(VpV) - f{Lp}, (4) 

where E : (A,p) H diag(A,,) is the conditional 

expectation onto the diagonal subalgebra given by the 

diagonal projection, and 

A=&(V*V). (5) 

We can also write it down in a form not involving E, 

pi = i[ H, Al + c V;golAV~pnl - ;{A, A}, 
a+p 

with A given by 

(6) 

and where y,pl denotes the matrix that has only one 
non-zero entry, namely g,p at the CY row and /3 column. 
Expanding the matrix form we have 

A a =i[H,,A,l+Cg~~ApgSa-f{n,,A,) 
P 

where 

‘1 (8) 

(9) 

(10) 

Again, the operators g,p can be allowed to depend 
explicitly on time. 

Following Ref. [ 111 we now define experiment and 

measurement: 

Defbition. An experiment is a CP coupling between 
a quantum and a classical system. One observes then 

the classical system and attempts to learn from it about 
characteristics of state and of dynamics of the quantum 
system. 

De$nition. A measurement is an experiment that is 

used for a particular purpose: for determining values, 
or statistical distribution of values, of given physical 
quantities. 

Remark. The definition of experiment above is con- 

cerned with the conditions that define it. In the next 
section we will discuss the PDP algorithm that sim- 
ulates a typical run of a given experiment. In practi- 
cal situations it is rather easy to decide what consti- 

tutes &, what constitutes C and how to write down the 

coupling. Then, if necessary, & is enlarged, and C is 
shifted towards more macroscopic and/or more clas- 

sical. However, the new point of view that we propose 
allows us to consider our whole Universe as “exper- 

iment” and we are witnesses and participants of one 
particular run. Then the question arises: what is the 
true C? This question is yet to be answered. Some 
hints can be found in the closing section of Ref. [ 31. 

3. Statistical ensembles, individual systems, and 
the PDP algorithm 

Time evolution in the standard quantum theory of 
closed systems is unitary reversible. In the quantum 
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theory of open systems, dissipative, irreversible evolu- 
tion is being used. But there it is considered only as an 
approximate description, not the exact one. It is useful 

when external unknown factors disturb the true unitary 

dynamics, and we either do not need, or are not able 

because of computational complexity, to use the exact 
unitary dynamics. The main difference between uni- 
tary reversible and dissipative irreversible evolutions 

is in their mixing properties. Unitary evolution maps 

pure states into pure states, while dissipative evolu- 

tion maps pure states into mixtures. Pure states de- 

scribe individual systems. Mixtures describe statistical 
ensembles. Thus when evolution preserves purity of 

states, then we may assume that it concerns individual 
systems. Things change when we want to move from 

mere lasting to events that happen in time. From con- 
tinuous and deterministic evolution of possibilities to 
discrete realization of actualities, when God allows us 
either to rely on chance or to choose. Standard quan- 

tum theory is helpless when it comes to generation of 
events. But the material world around us, the living 

nature, the phenomena that we want to understand - 
all that - we perceive only through events, and noth- 

ing but events. Thus standard quantum theory must be 
enhanced. The only way to make a quantum system 

to be coupled to a classical event-carrying system is 
via dissipative dynamics as described in the previous 
section. But the Liouville equation with a nontrivial 
coupling term must lead from pure states to mixed 

states. Thus it does not describe individual systems - 
it describes statistical ensembles. What describes in- 

dividual systems is the PDP algorithm as given at the 
end of Section 1.1. A priori one could think that there 
may be many such algorithms with the property that, 

after averaging over individual sample paths, repro- 
duce a given statistical behaviour. Here that is not so. 

We have shown that the PDP algorithm is unique. The 

proof is given in an infinitesimal form in Ref. [3]. A 
rigorous global proof can be found in Ref. [ 121. This 
fact, i.e. uniqueness of the random process that repro- 
duces the master equation, distinguishes PDP from the 
quantum Monte Carlo methods used in quantum op- 
tics. We discuss this fact in some detail in Ref. [ 31. 

The PDP algorithm is the most important new re- 
sult of our approach. It is simple, it is universal, it is 
useful. We have already mentioned it in the introduc- 

tion that all the standard postulates of quantum theory 
about measurements and their probabilities can be de- 

duced from the PDP via suitable couplings. We have 
discussed this subject elsewhere in the aforementioned 
references. In particular we succeeded in reproducing 
real time formation of particle tracks and interference 
patterns [ 131 4 , We are investigating new applications 

of the algorithm. But for successful applications in 
new situations we need one more piece in the theory 
- a piece that is still missing. We know how to de- 

scribe measuremenrs, but we must also know how to 
describe state preparations. In principle state prepara- 

tion can be thought of as a measurement with sample 
selection, so it could essentially fit into the scheme that 
we have already described. However, we need more. 

We need to learn how to describe preparation of mul- 
tiparticle states that look like individual particle states 

at each given time. Only then we will be able to make 
a realistic simulation of experiments in neutron inter- 
ferometry or electron holography, when a source pro- 
duces weak but coherent particle beams. Work in this 
direction is in progress. 
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