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Abstract. We review Event Enhanced Quantum Theory (EEQT), discuss 
applications of EEQT to tunnelling time, and compare its quantitative predic- 
tions with other approaches, in particular with phase time and the Biittiker- 
Larmor approach. We discuss quantum chaos and quantum fractals resulting 
from simultaneous continuous monitoring of several non-commuting observa- 
bles. In  particular we show self-similar, nonlinear, iterated function system- 
type, patterns arising from quantum jumps and from the associated Markov 
operator. 

1. Introduction 
Event-Enhanced Quantum Theory (EEQT) was developed in response to John 

Bell's concerns about the status of the measurement problem in quantum theory 
[ l ,  21. T h e  main thrust of quantum measurement theory is to explain the 
mechanism b y  which potential properties of quantum systems become actual. At 
the present time, this is no longer an abstract or philosophical problem since it is 
now possible to carry out prolonged observations of individual quantum systems. 
These experiments provide us with time series data, and a complete theory must 
be able to explain the mechanism by which these time series are being generated; 
moreover it must be in position to 'simulate' the process of events generation. 

John Bell sought a solution to the measurement problem in hidden variable 
theories of Bohm and Vigier, his own idea of beables, and also in the spontaneous 
localization idea of Ghirardi, Rimini and Weber [3]. More recently we have 
proposed a formalism heading in a similar direction, but avoiding the introduction 
of hidden variables beyond the wave function itself [4-61. 

E E Q T  offers a mathematically consistent way of coupling between a quantum 
and a classical system. T h e  classical system C is described by an Abelian algebra 
A,. In this respect, EEQT is indeed an enhancement because it modifies the 
quantum dynamics by adding a new term to the Liouville equation. This  allows 
unification of the continuous evolution of quantum states with quantum jumps 
that accompany real world events. When the coupling Q-C is weak, events are 
sparse and E E Q T  reduces to the standard quantum theory. 
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2248 Ph.  Blanchard et al. 

In this EEQT framework, a measurement process is a coupling Q-C, where 
transfer of information about the quantum state to the classical recording device is 
mathematically modelled by a semigroup of completely positive and trace-preser- 
ving maps of the total system Q x C. Let us emphasize that such a transfer of 
information cannot, indeed, be implemented by a Hamiltonian or more generally 
by any unitary evolution [7, 81. 

The formal development of EEQT was inspired by the works of Jauch [9], 
Hepp [lo], Piron [ll-131, Gisin [14, 151, Araki [16] and Primas [17, 181. In 
[19, 201 Davis described a special class of piecewise deterministic Markov pro- 
cesses that reproduced the master equation postulated in [4]. This opened a new 
chapter of EEQT and allowed for description of individual quantum systems. In 
[21] it was proven that the class of couplings considered in EEQT leads to a unique 
piecewise deterministic Markov process taking values on the pure state space of the 
total system Q x C. This process consists of random jumps accompanied by 
changes of the classical state, interspersed by random periods of Schrodinger- 
like deterministic evolution. The process is nonlinear in the quantum pure state $I 
and after averaging we recover the original linear master equation for statistical 
states of the total system Q x C. 

The crucial concept of EEQT is that of a classical, discrete and irreversible 
event. This is taken into account by including, from the beginning, classical 
degrees of freedom. Once the existence of the classical part is accepted then 
‘events’ can be defined as changes of pure state of this classical part C. In EEQT 
events do happen and they do it in finite time. Rudolf Haag [22] takes a similar 
position and calls it an ‘evolutionary picture’. According to this view the future 
does not yet exist and is being continuously created, this creation being marked by 
events. 

In EEQT we have a flow of information from Q to C and moreover a way to 
calculate numbers in real experiments and to model the feedback from C to Q. The 
coupling Q x C does not mean we are taking a step backward into classical 
mechanics. We are only claiming that not all is quantum and that there are 
elements of Nature that are not, and cannot be, described by a quantum wave 
function. This assumption is confirmed everyday by experiments which clearly 
show that we are living in a world of facts and not in a world of potentialities. For 
this aspect which is not reducible to quantum degrees of freedom we use the term 
‘classical variables’. This does not imply that we impose any restriction on their 
nature. 

At this point we would like to emphasize a fundamental difference between the 
classical variables of EEQT and the additional parameters introduced in hidden 
variable theories. Hidden variable theories consider microscopic variables that are 
hidden from our observation. EEQT deals with classical variables that can be 
directly observed. They are a direct counterpart of physics on the other side of the 
Heisenberg-von Neumann cut. Another important point is that in hidden variable 
theories there is no back action of these variables on the wave function. In EEQT 
we have a feedback of C on Q. EEQT can be also considered as a final result of a 
decoherence mechanism as described in [23, 241. In section 2 the mathematical 
formalism of EEQT is presented. In sections 3, 4 and 5 some applications are 
described. Concluding remarks are given in section 6. 
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How events come into being 2249 

2. EEQT-The mathematical formalism 
We will describe only the case of a discrete classical system C. It has been 

shown in [25], while applying EEQT to SQUID, and in [26, 271 how to extend the 
formalism in cases where the classical system C is continuous. There are two levels 
in EEQT-the ensemble level and the individual level. This is in a total contra- 
distinction to the standard quantum theory which deals only with ensembles and 
even claims, rather often, that individual description is impossible! Let us begin 
with the ensemble level. 

First of all, in EEQT, at that level, we use all the standard mathematical 
formalism of quantum theory, but we extend it adding an extra, possibly multi- 
dimensional, parameter a. Thus all quantum operators A get an extra index A,, 
quantum Hilbert space 7-l is replaced by a family ?la, quantum state vectors 1c, are 
replaced by families $,, quantum Hamiltonian H is replaced by a family Ha etc. 

The parameter a is used to distinguish between macroscopically different and 
non-superposable states of the universe. In the simplest possible model we are 
interested only in describing a ‘yes-no’ experiment and we disregard any other 
parameter-in such a case a will have only two values 0 and 1. Thus, in this case, 
we will need two Hilbert spaces. This will be the case when we will deal with sharp 
particle detectors. In a more realistic situation a will take values in a multi- 
dimensional, perhaps even infinite-dimensional manifold. But even that may prove 
to be insufficient. 

When, for instance, EEQT is used as an engine powering Everett-Wheeler 
many-world branching-tree, in such a case, a will also have to have the corre- 
sponding dynamical branching-tree structure, where the space in which the 
parameter a takes values, grows and becomes more and more complex together 
with the growing complexity of the branching structure. 

An ‘event’ is, in our mathematical model, represented by a change of a, CY 
representing a pure state of the classical subsystem C. This change is discontin- 
uous; a branching. Depending on the situation this branching is accompanied by a 
more or less radical change of physical parameters. Sometimes, such as in the case 
of a phase transition in Bose-Einstein condensate, we will need to change the 
nature of the underlying Hilbert space representation. In other cases, such as the 
case of a particle detector, the Hilbert spaces 7-lo and ‘Hi will be indistinguishable 
copies of one standard quantum Hilbert space 7-l. 

Another important point is this: time evolution of an individual quantum 
system is described by piecewise continuous function t + + a ( t ) ,  + ( t )  E ?l , ( t ) ,  a 
trajectory of a piecewise deterministic Markov process (in short: PDP), where 
periods of continuous evolution are interspersed by discontinuous catastrophic 
jumps. 

As already pointed out above, in EEQT any non-trivial coupling of classical to 
quantum degrees of freedom involves back-action of classical on quantum. This 
back-action shows up in a dual way: in changes to the continuous evolution (as in 
‘interaction free measurements’) and also in discontinuous jumps and branchings. 
It is impossible to understand the essence of this back-action without having even 
a rough idea about PDPs. 

Originally EEQT was described in terms of a master equation for a coupled, 
quantum + classical, system; thus it was only applicable to ensembles; the question 
of how to describe individual systems was open. Then, after searching through the 
mathematical literature, we found that, in his monographs [19, 201 dealing with 
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2250 Ph. Blanchard et al. 

stochastic control and optimization, Davis described a special class of piecewise 
deterministic processes that fitted perfectly the needs of quantum measurement 
theory, and that reproduced the master equation postulated originally in [4]. The 
special class of couplings between a classical and quantum system leads to a unique 
piecewise deterministic process with values on E-the pure state space of the total 
system. This process consists of random jumps, accompanied by changes of a 
classical state, interspersed by random periods of Schrodinger-type (but non- 
unitary) deterministic evolution. The  process, although mildly nonlinear in 
quantum wave function $, after averaging, recovers the original linear master 
equation for statistical states. 

We would like to stress that, in EEQT, the dynamics of the coupled total 
system which is being modelled is described not only by a Hamiltonian ‘X, or 
better: not only by an a-parametrized family of Hamiltonians H,, but also by a 
doubly parametrized family of operators { g b } ,  where ga, is a linear operator from 
3-1, to 3-10. While Hamiltonians must be essentially self-adjoint, g b  need not be 
such-although in many cases, when information transfer and control is our 
concern (as in quantum computers), one wants them to be even positive operators 
(otherwise unnecessary entropy is created). 

It should be noted that the time evolution of statistical ensembles is, due to the 
presence of {gb }s ,  non-unitary or, using algebraic language, non-autornorphic. The 
system, as a whole, is open. This is necessary, as we like to emphasize: information 
(in this case: information gained by the classical part) must be paid for with 
dissipation! There is no free lunch! 

A general form of the linear master equation describing statistical evolution of 
the coupled system is given by  

where 

The operators gaa can be allowed to depend explicitly on time. While the term with 
the Hamiltonian describes ‘dyna-mics’, that is exchange of forces, of the system, 
the term with gap describes its ‘bina-mics’-that is exchange of ‘bits of informa- 
tion’ between the quantum and the classical subsystem. 

As has been proven in [21] the above Liouville equation, provided the diagonal 
terms g,, vanish, can be considered as an average of a unique Markov process 
governing the behaviour of an individual system. The  real-time behaviour of such 
an individual system is given by a PDP process realized by the following non- 
unitary, nonlinear and non-local, EEQT algorithm: 

PDP Algorithm. Suppose that at time to the system is described by a normalized 
quantum state vector $0 and a classical state a. Then choose a uniform random 
number p E [0,1], and proceed with the continuous time evolution by solving the 
modified Schrodinger equation 
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How events come into being 2251 

$1 = (-iHa - $a)$t 

with the initial wave function $0 until t = t l ,  where tl  is determined by 

1;; ($h Aa$J dt  = P .  

Then jump. When jumping, change (L: -+ /3 with probability 

Pa-@ = IlgDaGt, l12/($f, 1 Aa$t,), 

$1, + $1 = gpa$t, /Ilgoa$t, I t .  
and change 

Repeat the steps replacing to,  $0, (L: with tt , $1, p. 
The algorithm is nonlinear, because it involves repeated normalizations. I t  is 

non-unitary because of the extra term - ; A a  in the exponent of the continuous 
evolution. It is non-local because it needs repeated computing of the norms-they 
involve instantaneous space-integrations. It is to be noted that P D P  processes are 
more general than the popular diffusion processes. In  fact, every diffusion process 
can be obtained as a limit of a family of PDP processes. 

3. Cloud chamber model, GRW spontaneous localization theory and 
Born’s interpretation 
In this example, we wish to account for the tracks that quantum particles leave 

in cloud chambers. Physically a cloud chamber is a highly complex system. T o  
describe the response of the chamber to a quantum particle it is sufficient to 
assume that we have to deal with a collection of two state systems able to change 
their state when a particle passes near a sensitive center. Let us sketch the model 
proposed in [28, 291. 

Let us consider the space E = R3 as filled with a continuous medium (photo- 
graphic emulsion, super-saturated vapour, etc.) which can be at each point a g E 
in one of two states: ‘on’ represented by (i) and ‘off represented by ( y ) .  The set of 
all possible states of the system is then 2 E .  But we are interested only in a 
continuum of states-namely the ‘vacuum’ (i.e. when all points of the medium 
are in the ‘off state)-and states which differ from the vacuum only in a finite 
number of points. We define ‘event’ to be a change of state of a finite number of 
points. Thus the space of classical events can be identified with the space of finite 
subsets of E from which it follows that the total system C,,, = C, @ C, is described 
by families { p r }  C E ,  I? finite subset of E .  For each a E E let g, be a Hermitian 
bounded operator which represents heuristically the sensitivity of the two-state 
detector located at a. We can think of g, as a Gaussian function g,(x) centered at 
x = a (other phenomenological shapes are also possible). We denote 

F 

The quantum mechanical Hilbert space is then ‘Hq = L2(R3, dx). Each state p of 
the total system can be, formally, written as p = CrEspr @ Ey, where, for r E S, 
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2252 Ph. Blanchard et al. 

and where Xr stands for the characteristic function of r. The Lindblad coupling is 
now chosen in the following way 

(6) 

where V, = g, @ r,, r, denoting the flip at the point a E R3. Let us introduce the 
following notation: a ( r )  represents the state I? with the counter at position a 
flipped, i.e. a ( r )  = (r\{a}) U ({u}\I'). The Liouville equation is given by 
= -i[H,p] + Lint(p). But using the following identity in equation (6) 

we can write 

$ = -i[H, $1 - J dag,$g, - ;{A, $}. (9) 
R3 

Let us emphasize that the time derivative of $ depends only on $. Moreover the 
effective Liouville equation is exactly of the type discussed in connection with the 
spontaneous localization model of Ghirardi, Rimini and Weber [3], the difference 
being that GRW considered only the constant rate case, and were simply not 
interested in the classical traces of particles. Indeed if, following GRW, we take for 
g, the Gaussian functions: 

then h ( x )  = (X/2) and equation (9) becomes 

J j3 = -i[H, $1 + dug,&, - X $, 

exactly as in GRW [3]. Thus we have 

Theorem GRW. The Ghirardi-Rimini-Weber spontaneous localization model is 
an effective quantum evolution part of a particular case of EEQT-type coupling of 
a quantum particle to a homogeneous two-state classical detector medium. 

We can also construct the associated PD Markov process. We get for time 
evolution observables the same equation as in (8) except for the sign in front of the 
Hamiltonian. By taking expectation values we obtain a Davis generator corre- 
sponding to rate function A($) = ($,A$), and probability kernel Q with non-zero 
elements of Q given by 
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How events come into being 2253 

Time evolution between jumps is given by: 

exp ( - iHt  - +) $0 

44 = 

The PD process can be described as follows: $ E L2(R3, dx) develops according 
to the above formula until at time tl jump occurs. The  jump consists of a pair: 
(classical event, quantum jump). The classical medium jumps at a with probability 
density 

d.; $ t , )  = Ilgo$r, 1I2/A($t, ), (14) 

(flip of the detector) while the quantum part of the jump is jump of the Hilbert 
space vector $tl to go$t, /Ilga$t, 1 1  and the process starts again. The  random jump 
time t l  is governed by the inhomogeneous Poisson process with rate function 
A ( $ t ) .  If the medium is homogeneous, then A(+) = const = A, and we obtain for 
quantum jumps the GRW spontaneous localization model. More complete dis- 
cussion can be found in [24, 251. 

Derivation of Born’s interpretation. Let us consider now the idealized case of a 
homogeneous medium of particle detectors that are coupled to the particle only for 
a short time interval ( t ,  t + A t ) ,  A t  4 0 with intensity A, so that AAt 4 00. Let us 
also assume that the detectors are strictly point-like that is, that g;(x) -+ A6(x - a). 
In this case the formula (1 2), giving the probability density of firing the detector at 
a, becomes p ( a ;  $) = Ilg$ll /A = I$(a)l and we recover the Born interpretation of 
the wave function. The argument above applies also for the case of a particle with 
spin. 

2 2 

4. Tunnelling times 
One application of the EEQT is the computation of tunnelling times. Using the 

PDP-algorithm we can simulate an experiment which measures the time an 
electron needs to tunnel through a barrier. 

Let us consider the situation in one dimension (figure l),  the potential is 

ooa - 2508 

V O l I  

X i  oa 

M 

100Ob 

Figure 1. Simulation situation 
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dpoT being the width of the barrier. We use two idealized detectors, the first 
detector D1 is put in front of the barrier and can detect the particle without 
destroying it. The second detector D2 is put behind the barrier. The  experiment 
should proceed as follows: at the beginning only the detector D1 is active. When it 
detects the particle at a time to ,  it turns on the detector D2 while keeping itself 
turned on. So the particle must be detected first by D1 (the possibility, that 02 
detects the particle before D1, is therefore avoided). Thus the particle can be 
detected a second time by the detector D1 or the detector D2. If the detector D1 
detects the particle for the second time, at time tl , then the time difference tl - to is 
defined as the reflection time  REF. If the particle is detected by the detector 02 at a 
time t2, then the time difference t 2  - to is by definition the traversal time ~ T R A .  

Another possibility is, that the particle is never detected or is detected only once 
(efficiency of every detector is always strictly less than 100%). Therefore the 
experiment or simulation should be stopped after a finite time tcuT.The traversal 
and reflection times defined above are of course positive and real. If we are 
interested in a mean reflection time TR,s[M, and a mean traversal time TT,SIM, we get 
them simply by performing a large sequence of runs and averaging. This is an 
operational definition similar to the approach taken by Palao et al. [30], but here we 
will examine both traversal and reflection times. 

The  above experiments have been simulated numerically using the PDP- 
algorithm of the EEQT. Details can be found in [31] and [32]. 

This direct operational definition is only one of several known approaches to 
define mean reflection and traversal times. In the following we outline the main 
ideas of some of those. Details can be found in published reviews about tunnelling 
times (for example [33-35]), or in the papers cited below. One way of defining the 
tunnelling time is via the phase time, introduced by Hartman [36]. Its results are 
approximately equal to those obtained following the peak of the wave packet, or to 
compute ‘semi-classical’ time, which is derived from the classical expressions. 
Another approach is to install an infinitesimally small magnetic field in the space 
interval [x1,x2], and to observe the rotation angle of the electron spin. This is the 
idea of the Biittiker-Larmor traversal time formula derived by Biittiker [37]. 
Finally, in the Bohm trajectory approach, one can talk about trajectories of 
particles and therefore there exists a clear definition of traversal and reflection 
times (for example see [38, 391). 

We will now present some results given by the above simulation and compare 
our numbers with those obtained via the aforementioned approaches. 

First, let us examine the mean reflection time. Figure 2 shows its dependence 
on the particle energy EO obtained in our numerical simulation. The mean 
reflection time TR,SIM is mostly smaller than that from the other approaches. 
The reason is that the first detector D1 cannot distinguish whether the particle is 
still travelling toward the barrier (within the detector), or is returning from the 
barrier, when it is detected a second time. So reflection times of particles, which do 
not reach the barrier, are also measured. 
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How events come into being 2255 

~~ V 

4 6 8 10 12 14 16 
incident wavepacket E, [ev] 

Figure 2. Mean reflection time versus particle energy Eo. si*mulation parameters: initial 
wave packet: xo = -250A, 11 = 25 A, barrier: d p o T  = 5 A, VO 10 eV, detector D1: 
XI = -25 A, Ax, = 25 A, Wol = 0.16eV, detector D2: x2 = 10A, Ax2 = 5A,  W02 = 
2.56eV; mean reflection time TSIM,R (solid line with circles and errorbars); phase 
time approach: wave packet (dotted line); ‘semi-classical’ reflection time: wave 
packet (dashed-dotted line); Bohm trajectory approach (boxes with dashed line). 

One surprising property of the phase time is, that the traversal time for plane 
waves is independent of the barrier length, this fact is called the ‘Hartman-effect’. 
This effect was also seen in experiments with photons, for example the experi- 
ments done by Enders and Nimtz [43-45], by Steinberg, Kwiat and Chiao [46] and 
by Spielmann et al. [47]. In our simulation described above, electrons are used and 
an additional detector is put before the barrier in contrast to the photon experi- 
ments. The question then is, whether there is still a ‘Hartman-effect’ or if there is 
no such effect due to the fact of the additional detector. 

So we examine the dependence of the mean traversal time on the barrier length 
dpoT and compare the times with those obtained by the other approaches. The  
result can be seen in figure 3(a). The simulated times TT,SIM grow with increasing 
barrier width dpor 2 3 A. The  simulation shows no ‘Hartman-effect’. Our 
simulation results and the Larmor clock results for plane waves show qualitatively 
the same characteristic: nearly the same linear growth with increasing barrier 
width. 

Last but not least, the dependence on the barrier height VO is examined (figure 
3(b)). The simulated times ~ , S I M  show a maximum if the barrier height equals the 
energy of the incident wave packet, i.e. Vo M Eo. For higher barriers the traversal 
time becomes smaller; smaller than the traversal time without barrier. This fact 
can be interpreted as follows: the mean ‘velocity’ of the electron is greater in the 
case of a very high and wide barrier than in the case of a free particle. But we must 
emphasize that up to now the formalism is non-relativistic and a relativistic 
formalism would perhaps give different results. T h e  Buttiker Larmor approach 
and the ‘semi-classical’ approach show in the ranges Vo < 3 eV and VO > 1 1  eV 
qualitatively the same behaviour: the traversal times decrease for increasing barrier 
height and are also smaller for very high barriers than the time without barrier. 
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2256 Ph. Blanchard et al. 

0.5 
0.45 
0.4 - 0.35 
0.3 2 

' 0.25 z 
0.2 

0.15 t 
0.1 
0.05 
0 

rn 

Y 

0 5 10 15 20 25 30 35 40 
barrier length dpoT [A] 

(4 

O ~ " . " . ~ " . . " ' ~ . " . ~ . " . ~ . . . . ~  
0 5 10 15 20 25 30 35 

barrier height V, [ev] 

(6) 

Figure 3. Mean traversal time. Simulation situation: -initial wave Racket: EO = 5 eV, 
xo = -250A, v =  12.5A, d$tector D1: = -12.5A, Ax, = 12.5A, Wol = 0.16eV, 
detector D2: x2 = dpoT + 5 A, Ax2 = 5 A, WOZ = 2.56 eV, mean traversal time T ~ ~ M , T  
(solid line with circles and errorbars); phase time approach: plane wave (crosses), 
wave packet (dotted line); 'semi-classical' traversal time: wave packet (dashed-dotted 
line); Buttiker Larmor Time: plane wave (triangles), wave packet (small-dashed 
line); Bohm Trajectory approach (boxes with dashed line)o (a) versus barrier width 
dpOT,  VO = lOeV (b) versus barrier height VO, dpoT = 40A 

Finally let us remark that in ou r  simulations there is a dependence of the  
traversal and reflection times on the detector parameter. Fo r  continuous meas- 
urements, such a dependence is not surprising. 

5. Quantum chaos and quantum fractals 
When we speak about 'chaos,' we  usually mean instability in the  motion of 

most classical systems; that is, system behaviour that depends so sensitively on  the  
system's precise initial conditions that it is, i n  effect, unpredictable and  cannot be 
distinguished from a random process. T h i s  kind of behaviour is not to be expected 
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How events come into being 2257 

in quantum systems, essentially, for two different, yet related, reasons. The  first of 
these is that quantum evolution equations are linear; and the second is that 
Heisenberg’s indeterminacy smoothes out subtle intricacies of classical chaotic 
orbits. The result is that there are several different approaches to ‘quantum chaos’. 
One approach is to study the dynamics of quantum systems which are classically 
chaotic; that is to study non-stationary states. Another approach is to look at 
stationary states and concentrate on the form of the wave function (or its Wigner 
distribution function). Yet another approach is to concentrate on energies of 
stationary states, and how the distribution of quantum energy eigenvalues reflects 
the chaos of the classical trajectories (cf. [48]). Finally one can discuss the problem 
of algorithmic inaccessability of certain quantum mechanical states [49]. 

The quantum chaos that we want to study has nothing to do with any of 
the above. It is a new category, and it arose naturally out of our approach to the 
quantum measurement problem. According to our definition: quantum chaos is 
the chaotic behaviour of quantum jumps and accompanied readings of classical 
instruments in a particular class of experiments, namely when experiments are 
set so as to perform a simultaneous, continuous, fuzzy measurement of several 
incompatible (i.e. incommeasurable, or noncommuting) observables. This kind of 
behaviour is easily modelled in EEQT, as EEQT is the only theory (even if only 
semi-phenomenological) that provides ways of simple mathematical modelling of 
‘experiments’ and ‘measurements’ on single quantum systems. 

The example we present here, modelling the measurement of spin simul- 
taneously in four different directions, was first introduced in an unpublished 
report [SO] by one of us (AJ), and then given as a subject of a PhD thesis to 
G. Jastrzebski [Sl] .? 

Before we describe the model, and the resulting chaotic behaviour and strange 
attractor on quantum state space, let us first make a comment about the very 
question of simultaneous measurability of noncommuting observables. This sub- 
ject has become quite controversial since the early formulation of Heisenberg’s 
uncertainty relations. Mathematically these relations are precise and leave no 
doubt about their validity. But, the question of how to interpret them physically 
and philosophically, has become a subject of hot discussions. T o  quote from 
Popper’s ‘Unended Quest’ [52]: 

The Heisenberg formula do not refer to measurements; which implies that the whole 
current ‘quantum theory of measurement’ is packed with misinterpretations. Meas- 
urements which according to the usual interpretation of the Heisenberg formulae are 
‘forbidden’ are according to my results not only allowed, but actually required for 
testing these very formulae. 

Hilary Putnam came to a similar conclusion [53]: 

Recently I have observed that it follows from just the quantum mechanical criterion for  
measurement itself that the ‘minority view’ is right to at least the following extent: 
simultaneous measurements of incompatible observables can be made. That such 
measurement cannot have ‘predictive value’ is true . . . 

These words, written almost twenty years ago, suggest to us that there is some 
chaotic behaviour involved, and that this chaos and its characteristics ought to be 

?Another, extreme, example, which leads to a random walk on a 2-sphere is discussed 
in [8]. 
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2258 Ph. Blanchard et al. 

studied, both theoretically and experimentally. Yet, for some reason, either no one 
noticed, or they were not interested in looking into the problem quantitatively. We 
need to ask why? Perhaps for the very same reason that no one has been paying 
attention to the fact that events do occur. T o  quote from Tom Phipps’ ‘Heretical 
Verities’, where he describes the publication of his paper ‘Do Quantum Events 
Occur’ in IEEE Journal: 

Recognizing that physics and physicists were dead, I thought to determine if 
electrical engineers were more alive. The answer was no. I am currently considering 
appealing the matter to an unbiased audience of farmers . . . 

Our present point of view on quantum events is rather similar to that advocated 
by Phipps over twelve years ago. But, one needs more than a point of view, and, 
fortunately, we also have a precise mathematical model to deal with the subject in a 
quantitative way. 

5 .1 .  Tetrahedral spin model 
The model was constructed to be as simple as possible, and yet interesting. The  

simplest quantum system is spin 1, which can be oriented toward any point on a 
sphere. Mathematically we are dealing with Hilbert space C2 of two complex 
dimensions. Quantum states are rays in this space, thus elements of the projective 
plane PC2,  which is isomorphic to two-dimensional sphere S 2 .  Equivalently, each 
quantum spin state can be thought of as being an eigenstate of spin operator 3. n’ 
along some direction Z. T o  get a simple and yet interesting behaviour, we will 
couple our quantum spin to four yes-no classical devices that are designed to make 
fuzzy measurements of spin direction in four different space directions simul- 
taneously (and, it is no wonder that the resulting behaviour of our system will be, 
as we will soon see, somewhat schizophrenic!). 

Why did we take four spin directions rather than two or three? 
Well, for simplicity we want our directions to be symmetrically distributed. 

Two directions would point to south and north poles of the sphere, and spin 
components along these directions commute-thus no chaos. 

Three symmetrically distributed directions would have to be distributed along 
the equator, thus producing essentially a one-dimensional attractor. 

The  simplest symmetric figure that uses all of three-dimensional freedom, and 
thus produces an interesting two-dimensional attractor, is a tetrahedron! And so 
we choose four unit vectors Zj, i = 1, ..., 4, arranged at the vertices of a regular 
tetrahedron 

Details of the dynamics of our model has been described elsewhere [54]. Here we 
describe only the resulting non-linear iterated function system, with point- 
dependent probabilities. The  four nonlinear transformations acting on a point ?‘ 
on the sphere are 

D
ow

nl
oa

de
d 

by
 [

U
O

V
 U

ni
ve

rs
ity

 o
f 

O
vi

ed
o]

 a
t 0

7:
52

 3
0 

O
ct

ob
er

 2
01

4 



How events come into being 2259 

(1 - a2)r'+ 2 4 1  +a?. qiiz 
1 + a2 + 2ar'. i;i 

. T i :  7-6 = , a = 1, . . . ,  4, 

where 0 < Q < 1 is a fuzziness parameter (in the limit a! = 1 the measurements are 
sharp). At each step transformations Ti are chosen with point-dependent prob- 
abilities: 

1 + a2 + 2Q?. n'i 
p j ( 3  = 4(1 + a 2 )  

Using the above formulas it is easy to check that each T, indeed maps unit 
sphere onto itself, that is that if 8 = 1 then also I Tj(3 1 2 =  1, and also that 
p~ + . . . + p4 = 1. Moreover, each T; is one-one. 

Computer simulations show that the resulting iterated function system has a 
strange attractor whose fractal dimension decreases from 1.44 to 0.49 when (Y 

increases from 0.75 to 0.95 [Sl]. 
It should be noted that our iterated function system is not quite of the usual 

type. Our maps Ti are not contractions-Ti contracts around the direction i i j ,  but 
acts as an expansion at the opposite pole. Therefore the form of point-dependent 
probabilities pi is important for convergence of the iteration process. 

There are two ways to visualize the attractor. The  most evident one, widely 
used for iterated function systems with contractive affine maps, is to use the 
iteration process applied to some initial vector 7. Figure 4 gives an illustration of 

Figure 4. Tetrahedral quantum fractal: quantum state trajectory for a = 0.7, 
1 000 000 000 jumps. 
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2260 Ph. Blanchard et al. 

Figure 5.  Tetrahedral Quantum Fractal: (Y = 0.7, Approximation to the strange 
attractor. Eighth power of the Markov operator applied to the uniform measure. 
Plane view of the upper hemisphere. log (1 + ,u~g(x)) on the vertical scale. 

this method applied to our case. But, because of the fact that the maps Ti are, in 
our case, one-to-one and onto, we can apply here another method that is not 
applicable for affine iterated function systems. This other method consists of 
iterations of the associated Markov operator P applied to some initial measure. 
Invertibility of transformations Ti assures then that if the initial measure po is 
Lebesgue continuous, then all p,, = Pn(po) are also Lebesgue continuous, and thus 
can be easily visualized as functions po(x)  and pn(x)  respectively. 

Figure 5 shows the eighth iteration of the Markov operator applied to the 
invariant measure on the sphere (plane view of the upper hemisphere), while 
figure 6 shows a 5x zoom of the seventh iteration. 

6. Concluding remarks 
In the foregoing examples we have seen that EEQT is, indeed, an enhancement 

of the standard quantum formalism, for the most important reason that it allows us 
to discuss, in a quantitative way, topics that are not easily treated within the 
orthodox approach: time series of events generated by individual quantum 
systems, generation of cloud chamber tracks, tunnelling times, simultaneous 
measurement of non-commuting observables, back-action of classical variables 
on a quantum system, etc. EEQT can also provide an engine powering Everett- 
Wheeler many-world branching-tree. 

In  spite of all of these advantages and useful manoeuvres, and these practical 
applications, EEQT is still not a fully developed fundamental theory; though we 
are working in this direction. One of the arbitrary factors we have to deal with is 
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How events come into being 2261 

Figure 6. Tetrahedral quantum fractal: (Y = 0.7, S X  zoom shows self-similarity. 
log (1 + p- / (x ) )  on the vertical scale. 

that the coupling operators gag have to be cooked up in each case. In  simple cases, 
like those discussed in the present paper their choice is rather unproblematic, yet 
even then we are not quite happy with justification of this rather than another 
choice. One possible way out would be to adhere to the often expressed point of 
view that all measurements can be, in a final instant, reduced to position meas- 
urements. Then, we can try to reduce every position measurement to sharp Dirac 
delta-function detectors. Yet, even then, we are left with an arbitrary value of a 
coupling constant for each of the point detectors. This arbitrariness, although not 
so much of a problem in practical applications of EEQT (for instance, as shown in 
[55] , for a wide range of values of the coupling constant, change of its value affects 
only the overall normalization constant), yet it makes us wonder about the iceberg 
floating beneath the tip of EEQT that we DO see? 

Frankly speaking we do not know. But, from all we do know, we can speculate 
about possible future evolution of EEQT. This speculation goes back more than 
ten years, to a paper by one of us [56], a paper which set up the programme of 
which EEQT is a partial realization. Quoting from this paper: 

T h e  theory, the main idea of which we have just sketched, must include into its 
scope two extremely different realities: the classical world and the quantum world. 
Or, making the division in a different direction: the world of matter, and the world 
of information. However, the differences between these two aspects of reality are so 
great, that their unification seems to be impossible without a ‘catalyst’, and we guess 
that this catalyst is light. (. . .) Coherent infra-red photon states lead to continuous 
superselection rules or, in other words, algebra of observables of the photon field has 
a non-trivial center, whose elements parameterize infra-red representations. (. . .) 
Classical information is coded into the shape of infra-red photon cloud. 
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Thus one of ou r  future projects is to derive EEQT from quantum electrody- 
namics, where the classical parameter enters naturally as the index of inequivalent 
non-Fock infrared representations. We believe that by  using infinite tensor prod- 
uct representations of quantum systems with an  infinite number  of degrees of 
freedom, we will arrive naturally at our gap operators relating to Hilbert spaces of 
inequivalent representations of CCRCAR. 
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