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Abstract

The new solution to the problem of time of arrival ir
herein. It allows for computer simulation of particle c
interpretation. It also suggests new experiments that ca
quantum particle detect a detector without being detecte

1 Introduction

One of the most troublesome deficiencies of Textbook (
questions about timing of experimental events unanswer
deficiency is that an experimental event (or measuremel
standard theory [1,2]. Due to this deficit, Bell felt the
quantum theory [3].

Recently we have developed a semi-phenomenologica
and also has a predictive power that is stronger than the
is why it was entitled Event Enhanced Quantum Theory «

EEQT can be thought of as a formalism implementing
any experimental event is classical in nature - necessarily
our colleagues what we did and what result we obtained.
from the classical is also known as the Heisenberg cut. El
theory because it considers the exact placement of the cu
and references therein) believes that the only events that ar
events. Pushing the borderline between quantum and cle
interface would make EEQT into a fundamental theory
interface between matter and mind is identified. For most
borderline can be placed simply between the quantum ol
apparatus or its part (e.g. its display, or pointer). EEQT |
work to describe the interface and the reciprocal coupling
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al measuring device and with the unavoidable back action

at EEQT provides the algorithm that enables us to model
nces, including the timing of events. A discussion of other
e in quantum theory has been given by Haag [6]. Here we
ion in the context of time of arrival.

ition

- question of time of arrival can be discussed is that of a
> ask at what time the particle will arrive at some specific
1swer this question experimentally we would set a particle
me interval ¢ between the moment the particle is released
y the detector. Experiments suggest ¢ is a random variable.
nany times, and assuming the particle is always being pre-
3 >, we arrive at an experimental probability distribution
 probability that the particle is detected up to time ¢, thus

00% efficient detectors, so we have the probability P(co)
particle at all, is less than one. !. The standard quantum
any formula for p(t).

0 of Ref. [7]) has assumed, completely ad hoc, that the

p(t) = const|ip(a,t)|?, N
chrodinger equation.? One needs, to this end, to go beyond
€ 110t $0 many options - one can try Nelson’s Stochastic
s or EEQT. The formula for time of arrival can then serve
1dge which of the alternatives better fits the experimental

| follow [8] and describe the formula for time of arrival
ollowing Wigner, we will consider first a somewhat more
“time of arrival at a given state |u >. In EEQT noiseless
) a classical yes-no device is described by a positive oper-
- /k|u >< u|, where « is a phenomenological coupling
imension ¢~!. The Master Equation describing continuous
s of the quantum system coupled to the detector reads:

?
= —E[H()vl’o(t)] + FpF
ion let us mention at this place that numerical simulations using our
e detector suggests P(oo) < 0.73
s it leads, for a Gaussian wave packet, to P(co) = oo. Later on we
1.(4)) involves integral transform of y(a, ).
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?

p(t) = h[HhPl]“%{FQ

Suppose at ¢ = 0 the detector is off, that is in the state der
is |v >, with < | >= 1. Then, according to EEQT (¢
detection, that is of a change of state of the detector, durir
1- < ¢|K(#)*K(t)|¢ >, where
i F?
K(t)= exp(—-ﬁHt -3 t
It then follows that the probability p(¢)dt that the detector
interval (t,t+dt), provided it was not triggered yet, is given
d
p(t) = = P(t) = & | <ulK(t)]:
The difference between the above and Wigner’s formula |
stant « as well as the damping term F2/2 in the definition
damping term together with the coupling constant that assi
the formula as in [7].
To compute p(t) let us note that p(t) is equal to |¢(t)|?, wi
is given by < u|K (¢)|¢ >. Denoting by ¢(z) the Laplace
(ct[8]): .
_ V& <ulKold >
14 % < u|f(0{u >

-

where .
Kolt) = exp(—%Ht).

This is our final formula for the Laplace transform of the |
arrival.

Let us consider a free Schrodinger particle on a line,
improper position eigenstate at a, thatis < z|u >= é(z ~

. . I
< ulKolu >= Ko(a,a;2) = <5

Letus denote:

G(2) :
)= ————— = -
1+§<u|K0|u> z

1
where ¢ = £ (%T—) 2 It can be now checked that the inv

G(z) is given by
Gt = 8(1) + 110,



317

bability density p(t)

—
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time of arrival for a point counter placed at ¢ = 0, dimen-
mnx/k. The incoming Gaussian wave packet of width 7
locity v = 2h/mn

f(t) = e Erfc (t?) (10)

n:

(z/;o(t, a)+ /Otf(s);bo(t — s, a)ds) , (11)

volving wave function. The second term in the formula
on to the Wigner formula (1).

mit of infinite coupling constant. Numerical simulations
ve packet there is an optimal value of the coupling constant
iency of the detector. Increasing « over this optimal value
- of reflection of the particle by the detector. In the limit of
P(c0) drops to zero - cf. Fig 1. One may ask what is the
y P(o00) for a point counter? We do not know the answer
1t the maximum efficiency is reached for a Gaussian wave
/er the detector with zero velocity. Numerical simulations
e wave packet slowly spreads out being at the same time
Figure 2 shows the dependence of the detector efficiency
 coupling constant « = mn«/k. The maximum is attained
turns out to be &~ 1.73. It would be desirable to have an
r conjecture. The fact that the maximal detector efficiency
an artefact of the singular character of a pointlike detector.
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Optimal coupling constant

coupling constant alpha

0.0 1:0 210 30

wave packet velocity v
Figure 2: Optimal coupling constant as a function of velo
The dependence pretty soon saturates to a linear one. At

It may, however, also have some deeper meaning. If so, t
to us.

3 Conclusions

We have seen that the formula for time of arrival of a
phenomenological parameter « characterizing the stren
particle and the sink. If x is too small then most of the
undetected. If « is too big, then the sink will also act
incoming wave packet there is an optimal value of the cou
efficiency.

Our formula for the time of arrival can be used to
of time—energy uncertainty relation. However, it must b
will be much more difficult than that in the original Wi
formula (11) contains an extra term which is absent in d
of a general time of arrival at a state {u > Wigner’s forr
(5b) of Ref. [7] is also incorrect as his “or” between Eq.
a general ju >.

From the probabilistic point of view the process of
given state |u > is an inhomogeneous Poisson process w

< O|K (t)|u >< K
< P|K(t)K()]:

At) =&

A more general algorithm for a piecewise deterministic p:
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ment can be found in Ref. [4].

mping term in the propagator K (¢) (cf. Eq. (3)is to be
ifiable. That is, the very presence of a detector, even if
ected, changes the time evolution of the wave packet by
Hamiltonian. The phenomenon here is of the same kind
Slitzur et al. [10] and Kwiat et al. in [11]. We can say
ctor without being detected itself . Our formula for K (t)
ive way.

|d be interesting to obtain a relativistic version of the time
principle done by exploiting the ideas given in Ref. [12].
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