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Abstract. We discuss recent developments in the foundations of quantum theory with a particular 
emphasis on description of measurement-like couplings between classical and quantum systems. 
The SQUID-tank coupling is described in some details, both in tenus of the Liouville equation 
describing statistical ensambles and piecewise deterministic random process describing random 
behaviour of individual systems. 

1. Introduction 

Quantum theory is without doubt one of the most successful constructions in the 
history of theoretical physics and moreover the most powerful theory of physics: Its 
predictions have been perfectly verified until now again and again. The new concep­
tion of Nature proposed by Bohr, Heisenberg and Born was radically different from 
that of classical physics and several paradoxes have plagued Quantum Physics since 
its inception. Although the formalism of non relativistic quantum mechanics was 
constructed in the late 1920's the interpretation of Quantum Theory is still today 
the most controversial problem in the foundations of physics. The mathematical 
formalism and the orthodox interpretation of QM are stunningly simple but leave 
the gate open for alternative interpretations aimed at solving the dilemma lying in 
the Copenhagen interpretation. "The fact that an adequate presentation of QM has 
been so long delayed is no doubt caused by the fact that Niels Bohr brainwashed 
a whole generation of theorists into thinking that the job was done fifty years ago" 
wrote Murray Gell Mann 1979. It was also John Bell's point of view that "something 
is rotten" in the state of Denmark and that no formulation of orthodox quantum 
mechanics was free offatal flows. This conviction motivated his last publication [1]. 
As he says" Surely after 62 years we should have an exact formulation of some seri­
ous part of quantum mechanics. By" exact" I do not mean of course" exactly true" . 
I only mean that the theory should be fully formulated in mathematical terms, with 
nothing left to the discretion of the theoretical physicist ... ". Orthodox Quantum 
Mechanics considers two types of incompatible time evolution U and R, U denoting 
the unitary evolution implied by Schrodinger's equation and R the reduction of the 
quantum state. U is linear, deterministic, local, continuous and time reversal invari­
ant while R is probabilistic, non-linear, discontinuous and acausal. Two options are 
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possible for completing Quantum Mechanics. According to John Bell [10] "Either 
the wave functions is not everything or it is not right ... ". 

In recent papers [2, 3, 4] we propose mathematically consistent models describ­
ing the information transfer between classical and quantum systems. The class of 
models we consider aims at providing an answer to the question of how and why 
quantum phenomena become real as a result of interaction between quantum and 
classical domains. Our results show that a simple dissipative time evolution can 
allow a dynamical exchange of information between classical and quantum levels 
of Nature. Indeterminism is an implicit part of classical physics and an explicit 
ingredient of quantum physics. Irreversible laws are fundamental and reversibility 
is an approximation. R. Haag formulated a similar thesis as " ... once one accepts 
indetermination there is no reason against including irreversibility as part of the 
fundamental laws of Nature" [5]. According to the standard terminology the joint 
systems in our models are open. Thus one is tempted to try to understand their 
behaviour as an effective evolution of subsystems of unitarily evolving larger quan­
tum systems. Although mathematically possible such an enlargement is non-unique. 
Therefore we prefer to extend the prevailing paradigm and learn as much as possible 
how to deal directly with open systems and incomplete information. 

With a properly chosen initial state the quantum probabilities are exactly mir­
rored by the state of the classical system and moreover the state of the quantum 
subsystem converges as t -- +00 to a limit in agreement with von Neumann-Liiders 
standard quantum mechanical measurement projection postulate R. In our model 
the quantum system Eq is coupled to a classical recording device Ee which will 
respond to its actual state. Eq should affect Ee' which should therefore be treated 
dynamically. We thus give a minimal mathematical semantics to describe the mea­
surement process in Quantum Mechanics. For this reason the simplest models that 
we proposed can be seen as the elementary building blocks used by Nature in the 
constant communications that take place between the quantum and classical lev­
els. In our framework a quantum mechanical measurement is nothing else as a 
coupling between a quantum mechanical system Eq and a classical system Ee via 
a completely positive semigroup at = etL in such a way that information can be 
transferred from Eq to Ee' A measurement represents an exchange of information 
between physical systems and therefore involves entropy production. See [6] where 
a definition of entropy for non-commutative systems is given, which is based on 
the concepts of conditional entropy and stationary couplings between Eq and Ee' 
Moreover Sauvageot and Thouvenot show the equivalence of this definition with the 
one proposed by Connes, Narnhofer and Thirring [12]. 

There have been many attempts to explain quantum measurements. For recent 
reviews see [7, 8, 9]. Our claim is, that whatever the mechanism used to derive 
models of measurements starting from fundamental interactions is, this mechanism 
will lead finally to one model of the class we introduced. In fact any realistic sit­
uation will reduce to a model of our class since the overwhelming majority of the 
properties of the counter and the environment are irrelevant from the point of view 
of statistically predicting the result of a measurement. We propose indeed to con­
sider the total system Etot = Eq @ Ee' and the behaviour associated to the total 
algebra of observables A tot = Aq @ Ae = C(Xc) @ £(1iq), where Xc is the classical 
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phase space and llq the Hilbert space associated to Eq , is now taken as the funda­
mental reality with pure quantum behaviour as an approximation valid in the cases 
when recording effects can be neglected. In A tot we can describe irreversible changes 
occuring in the physical world, like the blackening photographic emulsion, as well 
as idealized reversible pure quantum and pure classical processes. We extend the 
model of Quantum Theory in such a way that the successful features of the exisiting 
theory are retained but the transitions between equilibria in the sense of recording 
effects are permitted. In Section 2 we will briefly describe the mathematical and 
physical ingredients of the simplest model and discuss the measurement process in 
this framework. 

The range of applications of the model is rather wide as will be shown in Section 
3 with a discussion of Zeno effect, giving an account of [11]. To the Liouville equa­
tion describing the time evolution of statistical states of Etot we will be in position 
to associate a piecewise deterministic process taking values in the set of pure states 
of Etot. Knowing this process one can answer all kinds of questions about time 
correlations of the events as well as simulate numerically the possible histories of 
individual quantum-classical systems. Let us emphasize that nothing more can be 
expected from a theory without introducing some explicit dynamics of hidden vari­
ables. What we achieved is the maximum of what can be achieved, which is more 
than orthodox interpretation gives. There are also no paradoxes; we cannot predict 
individual events (as they are random), but we can simulate the observations of 
individual systems. Moreover, we will briefly comment on the meaning of the wave 
function. The purpose of Section 4 is to discuss the coupling between a SQUID and 
a damped classical oscillating circuit. Section 5 deals there with some concluding 
remarks. 

The support of the Polish KBN and German Alexander von Humboldt­
Foundation is acknowledged with thanks. 

2. Communicating classical and quantum systems 

Measurements provide the link between theory and experiment and their analysis is 
therefore one of the most important and sensitive parts of any interpretation. 

For a long time the theory of measurements in quantum mechanics, elaborated 
by Bohr, Heisenberg und von Neumann in the 1930s has been considered as an eso­
teric subject of little relevance for real physics. But in the 1980s the technology has 
made possible to transform "Gedankenexperimente" of the 1930s into real experi­
ments. This progress implies that the measurement process in quantum theory is 
now a central tool for physicists testing experimentally by high-sensitivity measuring 
devices the more esoteric aspects of Quantum Theory. 

Quantum mechanical measurement brings together a macroscopic and a quantum 
system. 

Let us briefly describe the mathematical framework we will use. A good deal more 
can be said and we refer the reader to [2, 3, 4]. Our aim is to describe a non-trivial 
transfer of information between a quantum system Eq in interaction with a classical 
system Ec' To the quantum system there corresponds a Hilbert space llq . In 1tq we 
consider a family of orthonormal projectors ei = e; = e~, (i = 1, ... , n), E?=l ei = 1, 
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associated to an observable A = E~=l Aiei of the quantum mechanical system. The 
classical system is supposed to have m distinct pure states, and it is convenient to 
take m ~ n. The algebra Ac of classical observables is in this case nothing else 
as Ac = em. The set of classical states coincides with the space of probability 
measures. Using the notation Xc = {so, ... , Sm-l), a classical state is therefore an 
m-tuple p = (Po, ... ,Pm-1),P", ~ 0, E:';01 p", = 1. The state So plays in some cases 
a distinguished role and can be viewed as the neutral initial state of a counter. The 
algebra of observables of the total system A tot is given by 

m-l 
A tot = Ac 0 L('Hq) = em 0 L('Hq) = ED L('Hq), (1) 

",=0 

and it is convenient to realize A,ot as an algebra of operators on an auxiliary Hilbert 
space 'H'ot = 'Hq 0 em = EB:'':-ol 'Hq. A tot is then isomorphic to the algebra of 
block diagonal m x m matrices A = diag(ao, at. ... , am-I) with a", E L(1tq). States 
on A tol are represented by block diagonal matrices 

(2) 

where the p", are positive trace class operators in L('Hq) satisfying moreover 
E", Tr(Pa) = 1. By taking partial traces each state P projects on a 'quantum 
state' 1rq(p) and a 'classical state' 1rc(p) given respectively by 

(3) 
a 

1rc(p) = (Trpo, Trpl, ... , Trpm-I). (4) 

The time evolution of the total system is given by a semi group at = e'L of positive 
mapsl of A ,ot- preserving hermiticity, identity and positivity - with L of the form 

L(A) = i[H,A] + t(V/AV; - ~{11;*V;,A}). 
;=1 

(5) 

The V; can be arbitrary linear operators in L('Htot ) such that E 11;* V; E A tot and 
E 11;* AV; E A tot whenever A E A tot , H is an arbitrary block-diagonal self adjoint 
operator H = diag(H",) in 'Htol and {,} denotes anticommutator i.e. 

{A,B} == AB + BA. (6) 

In order to couple the given quantum observable A = E~=l Aie; to the classical 
system, the V; are chosen as tensor products V; = yK,e; 0 f/J;, where f/Jj act as trans­
formations on classical (pure) states. Denoting pet) = at(p(O», the time evolution 
of the states is given by the dual Liouville equation 

pet) = -i[H,p(t)] + t(V;p(t)11;* - ~{11;*V;,p(t)}), 
;=1 

(7) 

1 In fact, the maps we use happen to be also completely positive. 
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where in general H and the V; can explicitly depend on time. 

Remarks: 
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1) It is possible to generalize this framework for the case where the quantum me­
chanical observable A we consider has a continuous spectrum (as for instance in a 
measurement of the position) with A = IR )"dE()"). See [13, 14] for more details. 
It is also straightforward to include simultaneous measurements of noncommuting 
observables via semi-spectral measures (see [15]). 
2) Since the center of the total algebra Atot is invariant under any automorphic uni­
tary time evolution, the Hamiltonian part H of the Liouville operator is not directly 
involved in the process of transfer of information from the quantum subsystem to 
the classical one. Only the dissipative part can achieve such a transfer in a finite 
time. 

In [2] we propose a simple, purely dissipative Liouville operator (i.e. we put 
H = 0) that describes an interaction of 2:q and 2:c' for which m = n + 1 and 
V; = ej ® 4>i, where 4>i is the flip transformation of Xc transposing the neutral state 
So with Sj. We show that the Liouville equation can be solved explicitly for any 
initial state p(O) of the total system. Assume now that we are able to prepare at 
time t = 0 the initial state of the total system ~tot as an uncorrelated product 
state p( 0) = W ® p' (0), p' (0) = (Pb, pl, ... , p~) as initial state of the classical system 
parametrized by (;, 0 ~ (; ~ 1: 

• n(; 
Po = 1- n + l' . (; 

PI = --. 
n+1 

(8) 

(9) 

In other words for (; = 0 the classical system starts from the pure state P(O) = 
(1,0, ... ,0) while for (; = 1 it starts from the state 
PI(O) = (n~l ' n~l' ... , n~l) of maximal entropy. Computing Pi(t) = Tr(pi(t» and 
then the normalized distribution 

-C) pj(t) 
Pi t = "n (t) 

L...,r=l Pr 

with pet) = (Po(t), PI (t), ... , Pn(t» the state of the total system we get: 

_ (1 - nqj) 
Pi(t) = qi + m + (l-f)~n+I)(l_ e- 2"t) , 

where we introduced the notation 

qi = Tr(ejw), 

(10) 

(11) 

(12) 

for the initial quantum probabilities to be measured. For ( = 0 we have ih(t) = qi for 
all t > 0, which means that the quantum probabilities are exactly, and immediately 
after switching on of the interaction, mirrored by the state of the classical system. 
For ( = 1 we get pi(t) = lin. The projected classical state is still the state of 
maximal entropy and in this case we get no information at all about the quantum 
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state by recording the time evolution ofthe classical one. In the intermediate regime, 
for 0 < ( < 1, it is easy to show that l13j(t) - qjl decreases at least as 2(1 + e-21<t) 
with ( -+ 0 and t -+ +00. For ( = 0, that is when the measurement is exact, we get 
for the partial quantum state 

'll'q(p(t)) = L ejwej + e-I<t(w - L ejwej), 
j j 

so that 
(13) 

which means that the partial state of the quantum subsystem 'll'q(p(t)) tends for 
Kt -+ 00 to a limit which coincides with the standard von Neumann-Liiders quan­
tum measurement projection postulate. 

Remark: 

The normalized distribution Pi(t) is nothing else as the read off from the outputs 
S1 •• 'Sn of the classical system Ec' 

To discuss now the interplay between efficiency and accuracy by measurement, 
let us consider the case where 

Vi = -IKej ® Ii, (14) 

Ii being the transformation of Xc mapping So into Sj. In the Liouville equation we 
consider also an Hamiltonian part. We find for the Liouville equation: 

Po = -i[H,po] - "'Po, 
Pi = -i[H,p;] + ",e;poe;, (15) 

where we allow for time dependence i.e. H = H(t), ej = e;(t). Setting ro(t) = 
Tr(po(t)), Ti(t) = Tr(p;(t», and assuming that the initial state is of the form p = 
(Po, 0, ... ,0) we conclude that TO = -Kro and thus ro(t) = e-I<t which obviously 
implies that 

n 

E rj(t) = 1 - e-I<', (16) 
;=1 

from which it follows that a 50 % efficiency requires log 2/ '" time ofrecording. It is 
easy to compute r;(t) and 

for small t. We get 

_ ( ) r;(t) 
Pi t = ~~ .(t) 

L.."J=l r, 

(17) 
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where 

(18) 

Efficiency requires Kt > > 1 while accuracy is achieved if (Kt)2 < < ~. To monitor 
,e·/ po 

effectively and accurately fast processes we must therefore take K « 102 (ei}po' 
Suppose now that Hand ei does not depend on time. Then it is easy to show that 
if either poCO) or ei commutes with H, we get Pi(t) = qi exactly and instantly. 

In [3, 4] we describe and analyze a Stern Gerlach experiment and a model of a 
counter for a one-dimensional ultra-relativistic quantum mechanical particle. 

3. Quantum Zeno Effect 

Zeno of Elea is famous for the paradoxes whereby, in order to recommand the doc­
trine of the existence of "the one" (i.e. indivisible reality) he sought to controvert 
the common-sense belief in the existence of "the many" (i.e. distingnishable quan­
tities and things capable of motion). The quantum Zeno effect was described many 
years ago when it was claimed that is possible to inhibit or even to stop the decay 
of an unstable quantum mechanical system by performing a sequence of frequent 
measurements. The exponential decay law P(t) = e-1't is experimentally confirmed 
for most unstable particles and nuclei in a wide range of time. The initial decay rate 
is in this case -,!::(O+) = 'Y. On the other hand, from quantum theory, we get for 
the decay law p",(O) = 21m < t/J,Ht/J >= 0 with P",(t) = 1 < t/J,e-itHt/J > 12. When 
the particle is observed at tin, 2tln, ... then P",(t) = P",(tln)n j now if p",(O+) = 0 if 
follows that limn .... +oo P",(tln)n = 1, which implies that frequent observations freeze 
the system in its initial state. 

Using our model of a continuous measurement we can easily discuss this effect for 
a quantum spin 1/2 system coupled to a 2-state classical system [11]. We consider 
only one orthogonal projector e on the Hilbert space 1£q = C 2 • To specify the 
coupling dynamics we choose the coupling operator V in the following symmetric 
way: 

(19) 

The Liouville equation for the total state P = diag(po, Pl) reads now 

(20) 

PI = -i[H, pd + K(epoe - He, pd)· 
(21) 

The partial quantum state 1I'q(p) = P = poet) + PI (t) evolves in this particular model 
independently of the state of the classical system, which expresses the fact that we 
have here only transport of information from Lq to Le' The time evolution of p(t) 
is given by 

~=-i[H,p]+K(epe-~{e,p}). (22) 
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Let us now choose the Hamiltonian part H = ~0'3' and e = HO'o + O'I), and 
start with the quantum system Eq being for t = 0 in the eigenstate of 0'1. We 
repeatedly check with "frequency" /\, if the system is still in this initial state, each 
"yes" inducing a flip in the coupled classical device, which we continuously observe. 
The solution of (23) such that p(O) = e can be easily found. Moreover it is possible 
for strongly coupled system i.e. for /\,t » 1 and /\,/w » 1 to obtain asymptotic 
formulae for the distance travelled by the quantum state d(p(t), e) in the Bures or 
in the Frobenius norm II p 112= Tr(p2). In this asymptotic regime we can show that 
the Bures distance achieved during the coupling is given by 

d(p(t), e) ~ w~ (23) 

The effect of slowing down the evolution of the quantum system can be confirmed 
by an independent, strong but non-demolishing, coupling of a third classical device. 
In [4, 13] we show moreover that a piecewise deterministic Markov process taking 
values on pure states of the total system is naturally associated to the Liouville 
equation and that the coupling constant /\, is the average frequency of jumps of the 
classical system between its two states. 

Remarks on "meaning of the wave function" It is tempting to use the Zeno 

effect for slowing down the time evolution in such a way, that the state of a quantum 
system ~q can be determined by carrying out measurements of sufficiently many 
observables. This idea, however, would not work, similarly like would not work the 
proposal of "protective measurements" ofY. Aharonov et al (see [16] [17]). To apply 
Zena-type measurements just as to apply a "protective measurement" one would 
have to know the state beforhand. Our results suggest that obtaining a reliable 
knowledge of the quantum state may necessarily lead to a significant, irreversible 
disturbance of the state. This negative statement does not mean that we have shown 
that the quantum state cannot be objectively determined. We believe however that 
dynamical, statistical and information-theoretical aspects of the important problem 
of obtaining a "maximal reliable knowledge ;, of the unknown quantum state with 
a least possible disturbance" are not yet sufficiently understood. 

4. SQUID - Tank circuit interaction 

Superconductivity was discovered 1911 by Kamerlingh Onnes. Two important prop­
erties of superconductors set them apart from normal metallic conductors; they ex­
hibit zero electrical resistance to current flow and they expel magnetic fields (the 
Meissner effect). In addition superconductors display a special characteristic when 
two are coupled through a thin insulating layer (the Josephson effect). Josephson 
devices consist of two superconducting films through which electrons can tunnel from 
one superconductor to the other. The tunneling can be by superconducting pairs via 
the Josephson effect. In a Josephson junction the current I is given by I = Ie sin <p, 
where Ie is the dissipationless current that the junction will sustain. The Josephson 
energy E, which is the kinetic energy of the current I flowing through the junction is 
given by E = - ;e Ie cos <p and <p is the quantum mechanical phase difference across 
the function. 
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A SQUID is a ring-shaped superconducting circuit containing one or more so 
called weak links whose behaviour is governed by the Josephson equations of super­
conductivity. A magnetic field applied to a SQUID alters its electrical characteris­
tics. The ring's response can be interrogated with conventional electronics. SQUIDS 
posses a wide variety of macroscopic quantum mechanical properties. In recent years 
these has been considerable discussion of the dynamics of a system consisting of a 
SQUID coupled to a dissipative classical linear oscillator [18, 19,20,21]. Our aim is 
to show that a continuous version of our framework is very well adapted to discuss 
the behaviour of the coupled system consisting of a macroscopic classical system 
(tank circuit) and a single macroscopic quantum object (SQUID). 

4.1. SQUID COUPLED TO A DAMPED CLASSICAL OPERATOR 

A SQUID (Superconducting Quantum Interference Device) consists of a piece of 
superconductor with two holes that nearly connect at the "weak link". Suppose 
now that the device is in a state where a current is flowing round one of the holes 
and induces therefore a magnetic field whose field lines pass through this hole. The 
magnetic flux in such a ring is quantized, where the "flux quantum" is given by 
;e' Under the assumption that the circulating current is very small there is only 
one flux quantum say in the left hole. A macroscopically distinct state would be 
the symmetric case where one flux quantum is localized in the right hole. Quantum 
theory says that a SQUID can exits also in a state where the flux is delocalized 
between the two holes; flux quanta can pass from one hole to another by quantum 
tunnelling processes. SQUIDS are laboratory versions of Schrodinger's cat. The 
flux 4> trapped through the ring is a macroscopic variable which obeys a standard 
Schrodinger equation with the mass M replaced by the capacitance of the Josephson 
junction and the potential V(4)) such that liII1j4.>I_oo V(Ill) = +00. Our aim is to 
describe the interaction between a SQUID and a classical damped oscillator. Both 
are macroscopic electromagnetic circuits. The classical system can be seen as a model 
for a local environment for the SQUID. The Hamiltonian of the quantum system 
contains a source term through wich it can be coupled to the classical device. 

The radiofrequency (rf) SQUID is a superconducting loop which is interrupted 
by a thin insulating layer (Josephson tunnel junction). The conduction electrons in 
the superconductor are paired, and thus encounter negligible dissipation within the 
body of the superconductor. The Cooper pairs tunnel through the insulating barrier. 
In general there is some dissipation associated with this process, as well as a capac­
itance determined by the geometry of the junction. A superconducting screeming 
current Is flows around the SQUID loop inductance L in response to an externally 
applied magnetic flux <Pext generated by a magnetic field orthogonal to the SQUID 
for suitably chosen device parameter, the net flux obeys an equation of motion sim­
ilar to that of a particle moving in a double well potential, with the capacitance C 
and conductance 1/ R corresponding to the particle mass and dissipation 

(24) 

The potential V is given as a function of the net flux and the external flux 4>ext 

1 2 10 III 0 III 
V(4)) = 2A (4) - <Pext) - ~ cos 211" 4>0' (25) 
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At a flux of ~o/2 the screening is equal in magnitude in both wells, but opposite 
in direction. This is the optimal point for the observation of coherent tunneling 
effects. The net flux ~ may be considered to be a macroscopic variable since the 
condensate of superconducting pairs is described by the product of a large number 
of pair wave functions. The large overlap of the wave functions of the Cooper pairs, 
which are single quantum states extending over a macroscopic distance, produces 
a macroscopic phase coherence. SQUIDS are devices exhibiting quantized flux but 
being describable by classical quantities such as voltage and current. The total 
magnetic flux ~ is conjugate to the total electric flux i.e. the charge Q across the 
weak link. Then satisfy the commutation relation 

[~, Q] = in!. 

The Hamilton operator for the SQUID-tank model is given by 

where 

H( ) _ Q2 (~- ¢>ext)2 _ t; (27T~) 
I{) - 2C + 2A uW cos ~o 

¢>ext = I{)ext + Ill{) 
Q = -in~ 

d~ 
h 

~o = 2e' 

For the tank equation following Spiller et al. [19] one obtains 

.. cp <P 1 ( ( ) ~ - ¢>ext ) 
I{) + RtCt + LtCt = Ct lIN t + Il < A >. 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

States of the classical system are probabilistic measures p on its phase space 
n = (R2, dl{)d7T); we take for the canonical variables: the magnetic flux I{) and its 
rate of change 71' (thought of as cp). Because of dumping in the tank circuit, the 
equation of motion for I{) cannot be written in a standard Hamiltonian form (but it 
can be written using a complex Hamiltonian - see e.g. [22]). For our purpose we 
need only the Liouville equation - which is just continuity equation for the classical 
flow: 

8p 8 (.) 8 ( .) 0 (32) 
8t + 81{) <PP + 871' p7T = . 

Denoting Is :=< p-t·",· >, with '" -+ 71', ir -+ <p we obtain 

8p + ~(7TP) + ~ (_p (_71'_ + ~ + -.!.- (IN + Il < Is »)) 
at 81{) 871' RtC, L, Ct Ct 

(33) 

or p = LelP where 

(34) 
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v 

c 

Fig.!. 

States of the total system consisting of SQUID and tank are described by mea­
sures p(i.p,?r) on n with values in positive trace class operators in 11q = L2(R, d~), 
normalized by 

J Tr(p( i.p, ?r))dcp d?r = 1 . (35) 

It is convenient in the spirit of Section 2 to introduce the Hilbert space 11tot for 
the total system: 

(36) 

The vector state of 11 tot are then given by functions '11 : (cp,?r) t---> w(cp,?r) E 11q • 

The coupling between SQUID and tank is postulated to be given by the following 
operator (generalizing obviously the Lindblad form to a continuous family) 

(37) 

with Va given by 

(Va '11)( cp,?r) = /(~ - cPext - a)W( cp,?r - ka) . (38) 

The function / can be thought of as defining a sensitivity window - it should be odd 
or even: 

/(x) = ±/(-x) . (39) 
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We denote 

(40) 

The constant k (having dimension [time]-l) is the second constant characterizing 
the coupling. We first notice that 

(41) 

so that 

(LintP)(<P,1I") = J daf(~ - ¢>e:r:t - a)p(<p, 11" - ka)f(~ - ¢>e:r:t - a) 

-ap(<p,1I") . (42) 

The Liouville operator for the total system is then given by a sum of three terms 

(.cp)(<p,1I") = -i[H(<p),p(<p,1I")] + 
+(Lc/p)(<p,1I') + 

+(L;ntP)(<P,1I") . 

In the following we will denote by < F > the average for a quantity F: 

< F >= J Tr(F(<p,1I")p(<p,1I'»d<pd1l". 

Therefore the time derivative of averages is given explicitly by 

Let us compute 

< F> = J Tr(F(<p, 1I")p(<p, 1I'»d<pd1l' = 

= J Tr(F(<p, 1I")(.cp)(<p, 1I"»d<pd1l' . 

< tP >= J <pTr«.cp)(<p, 1I"»d<pd1l' . 

Only the classical part contributes and we get 

< tP >=< 11" > 

We need also to compute < Ij; >=< ir > 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

The quantum Hamiltonian does not contribute while the classical part gives nothing 
else as the RHS of the classical equations of motion: 

(49) 
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We compute next the term coming from Lint: 

J 7rTr(f2(~ - ,pext - a)p(cp, 7r - ka)dadcpd7r 

-0: J 7rTr(p(cp, 7r»dcpd7r 

Let us consider the first term. Changing variables 7r - ka = 7r' we get 
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(50) 

(51) 

The 7r' term cancels with the last term in (50). We change also the a variables 
introducing a' by 

a - ell - ,poxt = a' (52) 

and obtain just 

(53) 

The term J a' f2(a') gives zero because P is assumed to be even. What remains is 

o:k J Tr«~ - ,pext)P(CP, 7r»dcpd7r = 

= o:k < ~ - ,pext > . (54) 

It follows that our evolution law for averages is compatible with that of Spiller [18] 
if we put 

1.1 
o:k = etA' 

which fixes one of the parameters 0:, k in terms of the other. 
For an arbitrary function F(~), we find that 

~ F(eII) = i[H(cp), F(~)] 

(55) 

(56) 

so that the dissipative coupling does not influence time evolution of the SQUID flux 
variables. It will, however, in general, influence functions of its conjugate variable 
Q. In fact, we have 

where 

< Q >=< i[H(cp), Q] > + < 6Q > 

< 6Q > = J Tr(Qf(~ - ,poxt - a)p(cp, 7r)f(eII- ,poxt - a)dcpd7rda 

-0: < Q >= 0 

because Qf - fQ == f' and f' f is odd, but < Q2 > can be already :f:. O. 

(57) 

(58) 
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4.2. THE PARTIALLY DETERMINISTIC STOCHASTIC PROCESS ASSOCIATED TO 

SQUID-MODEL 

The total Liouville operator of the squid tank model splits as seen in Section 4.1 
into 3 parts 

(59) 

The parts Cq and Cel give us deterministic motion of pure states of the quantum 
and of the classical system. The time evolution is subject to the following coupled 
system: 

i dW = H(tp)W 
dt 
dw 
dt = 7r 

d7r 

dt 

(60) 

They give us a vector field X acting on the product of pure states of the quantum 
and of the classical system. We write now Cint as acting on observables 

J Tr(p(cp, 7r)(Cint A)(cp, 7r» = J Tr«CintP)(CP, 7r)A(cp, 7r» . (61) 

After a change of variables and using the cyclicity of the trace this term is then given 
by 

J Tr(p(cp, 7r) [J f(~ - ¢Ju:t - a)A(cp, 7r + ka)f(~ - ¢Jez:t - a) - aA(tp, 7r)] . (62) 

Thus 

J daf(~ - ¢Jez:t - a)A(cp, 7r + ka)f(~ - ¢Jert - a) 

-aA(tp,7r) (63) 

In order to construct a PD-process we compute now time evolution of functions 

(64) 

we get 

FA(W,'1', 7r) = (W, (C,ntA)(cp, 7r)W) = (65) 

= J da(fW, A(cp, 7r + ka)fW) - aFA(W; '1', 7r) = 

= J dallfWII 2FA (1I~:II,cp'7r+ka) -aFA(W,cp,7r) 

= J dallfWII26(W/-II~:1I)6(cpl-cp)8(7r/-7r-ka)FA(W/;cpl'7r/)-aFA(W,cp,7r). 
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We write the integral kernel as 

Q(~, ip, 'll"1~', ip', '11"') = J dallf~1I26 (~' - II~:II) 
x 6(ip' - ip)6('II"' - 'II" - ka) . 

We can now perform the a integration and obtain 

where i = f(~ - <Pext - ,,"I;,,"). 
We compute next the rate function 

~cp,,,"(~) J d~' J dip' J d'll"'Q(~,ip,'II"I~',ip','II"') = 

= ~ J d'll"' lIi~1I2 = a . 

Then introducing Q by 

we obtain for FA 

FA(~'ip,'II") = a J Q(~,<p,'II"I~',<p','II"')FA(~"<P"'II"') 
-a FA(~' ip, '11") • 
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(66) 

(68) 

(69) 

(70) 

This time evolution equation is obviously of the type discussed by Davis [23]. 
As a last remark we note that the partially deterministic time evolution can be 
described in the following way: 
The system starts in the pure state (~o,ipO,'II"o) and evolves deterministically - the 
classical system according to 

.. <p ip 0 
ip + RtGf + LtGt = (71) 

and the quantum system according to 

i~ = H(ip)~ (72) 

until random time tl governed by a Poisson process with constant rate a. At time 
tl quantum state jumps to 

f(~ - <Pext(ip) - y)~ 
IIf(~ - <Pext(ip) - ,,"Ik"")~11 

and the classical system changes its state in the following way 

ip ---+ ip' = ip 
'II" ---+ '11"' 

(73) 

(74) 

(75) 
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with probability density 

1 7r' 7r 
kllf(~ - ¢lext - -i-)w112 . (76) 

Notice that <p' = <p from which it follows that the trajectories of the classical system 
are continuous. Only velocity 7r = tp jumps at random jump times. 

5. Concluding remarks 

The mathematical developments constituting Quantum Mechanics have been out­
standingly successful in describing and computing (although we would not say ex­
plaining) not only those phenomena for which it was invented but also numerous 
others making many wonderful advances in technology possible. On the other way 
it is fair to say that the conceptual basis of Quantum Mechanics is still somewhat 
obscure. The class of models we introduced seems to provide a reliable means of 
extracting from mathematically consistent models of information transfer from Lq 
to Lc well defined predictions for the outcome of any experiment we can envisage 
- apart of course from the difficulty of solving the mathematical equations, which 
can be intricate and sophisticated. Physics is the study of reproducible phenomena 
and a statistical theory of the quantum world is all that theoretical physics whould 
seek. But as a statistical theory Quantum Mechanics is still a deterministic theory. 
On the other hand recent advances in study of chaos and algorithmic randomness 
suggest that near future can bring essentially new elements to our understanding of 
randomness - both in the realm of foundations of science and in the Nature itself. 
Any progress in this area may influence our current quantum paradigm. 
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