1NSTYTUT FIZYKI TEORETYCZNEJ UNIWERSYTETU WROCŁAWSKIEGO

PARTICLES MOTION IN A 'MULTIDIMENSIONAL UNIVERSE AND NONLINEAR HIGGS CHARGES

by

 \blacktriangleleft

A. BoroWiec and A.Z. Jadczyk

Preprint No 598

WROCŁAW, NOVEMBER 1983

ZGUWr., W-w, z. 980/35, B-5, 150+Z5

ķ.

•

Institute of Theoretical Physics University of Wroclaw Wroclaw, Cybulskiego 36

Wroclaw, November 1983 Preprint No 598

PARTICLES MOTION IN A MULTIDIMENSIONAL UNIVERSE AND NONLINEAR HIGGS CHARGES

by A.Borowiec and A.Z. Jadczyk

Institute of Theoretical Physics, University of Wroclaw Cybulskiego 36, 50-205 Wroclaw, Poland

Summary

Generalized Kerner-Wong equations are derived and compared with geodesic motion of freely falling particles in a multidimensional Universe with homogeneous fibres. It is argued that the new charges, which couple to the generalized Jordan-Thierry fields are nonlinear.

*Supported bY the MR.I.7 Research Program of the Polish Ministry of Science, Higher Education and Technology.

/

Recently a dimensional reduction scheme was proposed based on a multidimensional gravitational field constrained by an imposed global symmetry group. In the present note we use the notation and the results of (1]. Eisa multidimensional Universe endowed with a gravitational· field g_{AR} satisfying the Killing equations

$$
L_{\varepsilon_i} g_{AB} = 0 ,
$$

where $\frac{\varepsilon}{\mathrm{i}}$,

 $[\epsilon_i, \epsilon_j] = c_{ii}^k \epsilon_k$

are basic vectors in the Lie algebra G . The reduction theorem given in [1] shows that the remaining degrees of freedom in $g_{_{AP}}$ can be described in terms of a gravitational field $g_{\mu\nu}(x)$ on space-time M (the manifold of G-orbits), gauge field $A_{\mu}^{2}(x)$ on M with gauge group $K = N/H$, where H is the isotropy group and N is the normalizer of H in G, and Higgs fields $g_{\alpha\beta}(x) = (g_{\hat{\alpha}\hat{\beta}}, g_{ab})$. The indices we use run as follows

 $\sqrt{2}$

 μ, ν, σ - space-time i, j, k - G_s α, β, γ - S = G/H, $\hat{\alpha}, \hat{\beta}, \hat{\gamma}$ - H, $a_1b_2c_1 - L \approx G/N_1$

$$
\hat{a} \cdot \hat{b} \cdot \hat{c} = K \cong N/H
$$

Our aim is to investigate motion of test particles in external fields $g_{\mu\nu}$, $A_{\mu}^{\hat{a}}$, $g_{\alpha\beta}$. The simplest method to get equations of motion is by the Souriau method i.e. from the invariance principles (see [2], also [3] and references there). With the notation of [3] we get:

 $5...$

for a vertical invariant vector field $X = (x^2)$ on P

$$
(L_{x^{\omega}}^{\hat{a}})_{\mu} = D_{\mu}x^{\hat{a}},
$$

 (1)

 (2)

$$
L_{\chi} S_{\alpha\beta} = \chi^a (C_{\hat{a}\alpha,\beta}^c + C_{\hat{a}\beta,\alpha})
$$

for a horizontal invariant vector field $X = \lambda \zeta$ (λ -horizontal lift)

$$
(L_{\chi^{\omega}}{}^{\hat{a}})_{\mu} = r^{\hat{a}}_{\mu\nu}\zeta^{\nu} ,
$$

$$
L_{\chi} g_{\mu\nu} = \nabla_{\mu}\zeta_{\nu} + \nabla_{\nu}\zeta_{\mu}
$$

$$
L_{\chi} g_{\alpha\beta} = \zeta^{\mu}D_{\mu}g_{\alpha\beta} .
$$

The responce functional \bar{F} can be written as

$$
\langle F, \delta t \rangle = \int (\mathbf{i} T^{\mu\nu} \delta g_{\mu\nu} + J_{\hat{a}}^{\mu} \delta \omega_{\mu}^{\hat{a}} + \mathbf{i} Z^{\alpha \beta} \delta g_{\alpha \beta}) dt , \qquad (3)
$$

and assuming its vanishing for displacements δt given by (1) and (2) one gets $T^{\mu\nu} = m x^{\mu} x^{\nu}$, $J^{\mu}_{a} = q_{\hat{a}} x^{\mu}$ and evolution equations

 $\frac{D\dot{x}_{v}}{dt}$ = $(q_{\hat{a}} / m) F_{\mu\nu}^{\hat{a}} \dot{x}^{\mu} + \frac{1}{2m} Z^{\alpha\beta} D_{v} g_{\alpha\beta}$

$$
\frac{dq_{\hat{a}}}{dt} = \frac{1}{2} Z^{\alpha\beta} (C_{\hat{a}\alpha,\beta} + C_{\hat{a}\beta,\alpha})
$$

where.

$$
C_{\hat{a}\alpha,\beta} = g_{\beta\gamma} C_{\hat{a}\alpha}^{\gamma} \qquad (6)
$$

 (4)

(5)

It is remarkable that the restriction of the invariance group to K, as required by the above method, leaves completely undetermined time evolution of the "Higgs charges" $z^{\alpha\beta}$ which couple to the Higgs fields $\epsilon_{\alpha\beta}$.

In order to get a deterministic system of equations of motion one can try to project geodesic motions in E onto M. Here, however, one meets the following difficulty: a geodesic γ in E need not be contained in the principal bundle P realized as a submanifold of E. In fact, because the projections of γ onto the Killing vectors are constants of motion, the angle between γ and P (or rather translations of P) remains constant. To remedy this difficulty one could use action of the global symmetry group G , to transform γ back to P. Then, however, another problem arises-the group element implementing the transformation is unique only modulo the stability group H of P.

As. a result the effective charge looses its linearity - it takes values in the manifold of $Ad(H)$ -orbits in $S = G/H$.

The detailed analysis and interpretation of the resulting evolution equations is difficult and will be given elsewhere [4]. Here we re the explicit form of geodesic equations in E with (4) and (5) in order to get some idea about the nature of the Higgsonic charges $z^{\alpha\beta}$.

The local moving frame in E (vielbein) e_{Λ} we use consists of invariant horizontal vector fields e_{ij} , and fundamental vertical vector fields e_α . The Christoffel symbols of g_{AB} calculated at p P are

$$
\Gamma_{\alpha\beta,\gamma} = \frac{1}{2}(C_{\alpha\beta,\gamma} - C_{\gamma\alpha,\beta} + C_{\beta\gamma,\alpha}) \tag{7}
$$

$$
\Gamma_{\alpha\mu,\beta} = \Gamma_{\mu\alpha,\beta} = -\Gamma_{\alpha\beta,\mu} = \frac{1}{2}D_{\mu}\beta_{\alpha\beta} \qquad (8)
$$

$$
\Gamma_{\alpha\mu_{\bullet}\nu} = \Gamma_{\mu\alpha_{\bullet}\nu} = -\Gamma_{\mu\nu_{\bullet}\alpha} = \frac{1}{2} \Gamma_{\mu\nu_{\bullet}\alpha}
$$
 (9)

 $\Gamma_{\mu\nu,\sigma}$ /= (the Christoffel symbols of $g_{\mu\nu}$ on M).

Thus at $p \in P$ the geodesic equations are

$$
\frac{\mathbf{D}\dot{\mathbf{x}}_{\vee}}{dt} = \mathbf{F}_{\mathbf{D}\mathbf{H}}^{\hat{\mathbf{B}}} \dot{\mathbf{x}}^{\vee} \dot{\mathbf{x}}_{\hat{\mathbf{A}}} + \frac{1}{2} \mathbf{D}_{\mathbf{V}} \mathbf{g}_{\alpha\beta} \dot{\mathbf{x}}^{\alpha} \dot{\mathbf{x}}^{\beta} \tag{10}
$$

$$
\frac{dx^{\alpha}}{dt} + g^{\alpha\beta} \dot{x}^{\mu} (D_{\mu}g_{\beta\gamma}) \dot{x}^{\gamma} = g^{\alpha\beta} C_{\beta\gamma,\delta} \dot{x}^{\gamma} \dot{x}
$$

, .

(11)

• ..

• I

7

By comparing Eqs (4) and (10) we see that the Higgsonic charge $Z_{\alpha\beta}$ is not an independent quantity. We should have

 $z^{\alpha\beta} \approx \dot{x}^{\alpha}\dot{x}^{\beta}$ (12)

and

 $q_a \approx \frac{1}{6} R_a$

The difficulty in interpreting the equations (11) is that an observer in M which is blind to the extra dimensions $G \setminus H$ will not distinguish between geodesics γ and γh , where h is any element of the stability group H. Both geodesics pass through the same point $p \in P$ and have t he same projection on M, nevertheless the vertical components \mathbf{x}^{α} (taking values in G/H) differ by the transformation Ad(h). The dif ficulty does not arise for the components $\dot{\hat{x}}^{\hat{a}}$ since vectors in $K = Lie(K)$ are Ad(H)-invariant. However, the remaining Higgs charges Z_{ab} should be understood as being built out of the H-orbits $[q^a]$ rather than vectors $q^a \in L$. The least trouble for an interpretation gives the coupling $z^{ab}D_{\psi}g_{ab}$ in (10). Indeed, owing to the Ad(H)-invariance of $g_{\alpha\beta}$ [1] we find that $q^a q^b D_{\nu} g_{ab}$ depends on the equivalence class (H-orbit) [q] of q only. Also the coupling on the right hand side of (5) which gives rise to the coloured charge nonconservation, can be described in terms of equivalence classes [q] without any difficulties. The interpretation of the remaining geodesic equations (11) for $\alpha = a$

(13)

in terms of H-based quantities is given in [4], where evolution equation for the nonlinear Higgs charge $[q^a]$ is discussed. An alternative approach can be based on the following observation: among the symmetric tensors z^{ab} = $q^a q^b$, where q runs through the orbit [q], there is exactly one which is Ad(H)-invariant. Thus, as far as couplings via z^{ab} are important, one could try to eliminate the nonlinear $[q]$ -s completely. However it is difficult to see how (11) could give an evolution of the composite z^{ab} without being forced to use its (nonunique) "square root" a^2 . Therefore the nonlinearity of the Higgs charges [q] seems to be unavoidable.

 \checkmark

· References

 $\overline{}$

