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We present a new covariant approach to the quantum mechanics of a charged 1/2-spin
particle in given electromagnetic and gravitational fields. The background space is assumed
to be a curved Galilean spacetime, that is a curved spacetime with absolute time. This
setting is intended both as a suitable approximation for the case of low speeds and feeble
gravitational fields, and as a guide for eventual extension to fully Einsteinian spacetime.
Moreover, in the flat spacetime case one completely recovers the standard non-relativistic
quantum mechanics.

This work is a generalization of [18], where the quantum mechanics of scalar particles
was formulated within a similar approach.

1. Introduction

Recently Jadczyk and Modugno [17, 18] have proposed a new geometric formu-
lation of quantum mechanics of a scalar charged particle, with given gravitational
and electromagnetic classical fields, in the framework of a general relativistic Gali-
lean spacetime. In this paper we extend that formulation to quantum mechanics of
a particle with spin 1/2.

Our work is related to abundant literature on classical and quantum Galilean
theory, starting from E. Cartan [1] (see also [4, 5, 2, 3], [6], [13], [21], [36, 37],
[26, 27], [29), [32], [34], [22, 23, 24, 25, 19], [26, 27], [29], [32], [34], [36, 37], [39],
[40, 41], [42]). Moreover our theory has evident relations, but aiso important differ-
ences, with geometric quantization (see [43]). Our touchstone is the standard quantum
mechanics [38].

Our research is intended as a step toward a covariant formulation of quantum
mechanics in the Einstein general relativistic background. In fact, such a full goal
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would demand the solutions of too many problems at the same time; so, it is worth
splitting the research into steps by separating different kinds of difficulties.

We found that the Galilean general relativistic spacetime provides a suitable back-
ground for the start. Thus our current setting stands in between a non-relativistic and
a fully relativistic formulation of quantum mechanics. It is mathematically self-consist-
tent, while from the physical point of view it is intended both as a suitable appro-
ximation for the case of low speeds and feeble gravitational fields, and as a guide
for eventual extension to fully Einsteinian spacetime. Actually, the assumptions of a
classical spacetime with the absolute time and an Euclidean spacelike metric allows
us to skip (temporarily) some difficulties related to the Lorentz metric, but we pay
a price for that. Namely, we are forced to consider a weaker version of the Maxwell
and Einstein equations. Nevertheless, what we learn in this weakened context seems
to preserve its interest in view of future developments. Moreover, in the flat space-
time case one completely recovers the standard non-relativistic quantum mechanics
along with a new understanding of known objects.

The mathematical language of the paper is that of the geometry of fibred mani-
folds, jets and non-linear connections. We do not deal explicitly with theoretical group
representations: rather we directly obtain physical objects from our initial structures
via functorial methods; of course, the resulting objects are automatically equivariant
with respect to the action of the groups of automorphisms of the initial structures.
The reader who is not completely acquainted with this language will find, besides
intrinsic formulations, a full coordinate description of all results.

The main points of our theory can be summarized as follows.

First, we sketch the basic features of our background classical spacetime. Namely,
we assume a 4-dimensional spacetime fibred over time and equipped with a spacelike
Euclidean metric, a time preserving linear connection (the gravitational field) and
a 2-form (the electromagnetic field). We can couple the gravitational and electro-
magnetic fields into a unique spacetime connection; this yields a number of ‘total
geometric objects, including a cosymplectic 2-form which will play a key role. We
postulate the closure of this form, thus obtaining a link between the above geomet-
rical structures and the first Maxwell equation; moreover, we postulate a kind of
‘reduced’ Einstein and second Maxwell equations expressing the interaction of the
above fields with their matter sources. The cosymplectic form yields a distinguished
Lie algebra of functions which are called ‘quantizable’ in view of their role in the
theory of quantum operators.

Then we develop the quantum theory starting from the quantum bundle, defined
as a Hermitian bundle over spacetime; its fibres are either 1-dimensional (scalar case)
or 2-dimensional (spin case). On the scalar quantum bundle we assume a Hermitian
connection which, in a sense, is parametrized by all classical observers, and has some
natural properties (it is ‘universal’ and its curvature is proportional to the cosymplec-
tic form). In the spin case we postulate a ‘Pauli map’, which is an isometry between
the bundle of spacelike vectors and the bundle of Hermitian endomorphisms of the
quantum spin bundle; this, via a natural link with the scalar case, yields a Hermitian
connection on the quantum spin bundle. This is our only primitive quantum struc-
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ture; all other objects will be derived from it getting free from observers through
a ‘principle of projectability’, which is our implementation of covariance. In particu-
lar, we obtain a distinguished Lagrangian which yields the generalized Pauli equation
and conserved quantities. Quantum operators are obtained in three steps. First, we
exhibit a distinguished algebra of quantum vector fields which preserves the quan-
tum structures, and we study its relation with the algebra of quantizable functions.
Next, we show the natural action of quantum vector fields, as ‘almost-quantum opera-
tors’, on ‘quantum histories’ (sections of the quantum bundle). Finally, we introduce
the quantum Hilbert bundle over time and show how to obtain quantum operators
from almost-quantum operators. To this end, we have to eliminate the time deri-
vative; we accomplish this task by a geometric procedure which uses the quantum
Euler-Lagrange operator.

The original features of the paper can be summarized as follows.

[. Time, both in the classical and quantum theory, is not merely a parameter,
but it is an essential ingredient which deeply affects all involved structures. Actual-
ly we point out—in contrast to the approach which is usually implicit in geometric
quantization—that the spacelike structures do not carry sufficient physical information
for a covariant theory. Accordingly, we deal with a cosymplectic rather than symplectic
form, with a spacetime rather than vertical (spacelike) connection, and so on. Also,
jets are required for a manifestly covariant formulation; in particular, the jet space of
spacetime plays the role of phase-space and replaces the more standard tangent space.

[I. New connections are introduced and studied. These play a fundamental and
unifying role. In particular, the coupling of the electromagnetic and gravitational fields
is represented by a spacetime connection which works in classical field theory and
mechanics as well as in quantum mechanics; on the other hand, all quantum struc-
tures are derived from the quantum connection. With regard to the latter, we ob-
serve that the notion of ‘universality’ of a connection allows us to skip the prob-
lem of polarizations, which is typical in geometric quantization (we do not need to
know the constants of motion in order to develop the quantum theory). Further-
more, the quantum Euler-Lagrange operator is interpreted as a connection on the
infinite-dimensional Hilbert bundle (whose definition uses the notion of smoothness
introduced by A. Frélicher).

III. We obtain a generalized Pauli equation and quantum operators in the curved
case. Actually, a quantization procedure (a way of obtaining quantum operators from
classical observables) was not the primary goal of our approach; however, as a matter
of fact, we get a quantization just as a free consequence of geometric results arising
naturally in our discussion. We have obtained natural algebras of quantizable func-
tions and quantum vector fields, which yield quantum operators, in two steps: first
by considering sections of the quantum bundle over spacetime (almost-quantum ope-
rators), and then sections of the Hilbert bundle over time. In particular, we are able
to skip the problems of ordering, and achieve the quantum operator corresponding
to energy. Note also that, differently from other geometrical approaches to quan-
tum mechanics, no new quantum example is required (all non-relativistic examples of
standard quantum mechanics hold automatically in our formulation).
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IV. Incidentally, several results are obtained within the covariant approach to clas-
sical mechanics on a curved Galilean background. In particular, the study of the first
and second order spacetime connections and the cosymplectic form, and a compact
formulation of the link between the (non-relativistic) metric and spacetime connection.
Moreover we draw conclusions which are not a common belief: classical mechanics can-
not be covariantly formulated through a Lagrangian or Hamiltonian approach; only an
approach based on a non-linear connection is suitable for that (the Hamiltonian lan-
guage, however, has an important role in the correspondence principle for quantum
mechanics).

V. Finally, we introduce a new mathematically rigorous treatment of physical quan-
tities which makes our approach manifestly independent of the choice of measurement
units. Incidentally, these methods may also raise a pedagogical interest.

Remark: Throughout this paper we shall consider smooth manifolds and maps. For
the sake of simplicity we shall always refer to global maps. In some situations, however,
one should more properly refer to sheaves of local maps. The reader who is interested
in such a refinement will have no difficulty in reformulating our statements accordingly.

2. Preliminaries

2.1. Recalls on fibred manifolds

In this section we summarize the main concepts and notations of differential geo-
metry which we shall use throughout the paper.

2.1.1. Tangent space

Let M be a manifold. We denote the R-Lie algebra of functions f: M — R by M,
the tangent bundle of M by TM — M and the R-Lie algebra of vector fields X: M — TM
by TM. A local chart (z*) of M induces a local chart (z*,2*) of TM, a local basis of
vector fields (9y) := (8z») and a dual local basis of forms (d*) := (dz*). The tangent
prolongation of a map f: M — N is the map Tf: TM — TN with coordinate expression
Tf =0\f'd*®(d;o f).

2.1.2. Fibred manifolds

A manifold F is said to be fibred over the base space B if it is equipped with a
surjective map p: F — B whose rank equals the dimension of B. A fibred manifold can
be covered by local trivializations defined on open subsets F' C F. Thus the concept of
a fibred manifold is more general than that of a bundle (which can be covered by local
trivializations defined on open subsets of the type F' = p~1(U), where U C B is an open
subset).

A chart (z*,y*) of F is said to be fibred if the coordinates z* depend only on the
base space. A fibred chart of F induces the local frame of vector fields (0, ;) and the
dual local frame of forms (d*,d’) on F. Hence, we obtain also the chart (z*,y%; %, y)
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of TF, the local frame of vector fields (9y, 8;; 8;, ;) and the dual local frame of forms
(d*, dt,d>; db).

We have a natural projection TF — TB. A vector field X: F — TF is said to
be projectable if it admits a projection X: B — TB on the base space, ie. if its
coordinate expression is of the type X = X*8, + X'0;, with X* ¢ FB.

The vertical subbundle VF C TF of F is constituted by all vectors tangent to the
fibres and is characterized by the equation (z* = 0). Thus, a vector field X is vertical
iff it is projectable over 0, i.e. iff X* = 0. The subset VF C TF of all vertical vector
fields is an ideal.

We have a natural projection T*F — V*F, yielding the vertical restrictions of
forms which we shall indicate by a check (*). Thus, for example, (d*) is a local
frame of the vector bundle VF — F.

2.1.3. Jet space

The jet space at x € B of F — B is defined to be the set Ji,.F of all equivalence
classes of sections s: B — F which have the same value of s(z) and the same
derivatives 9,s'(z). The jet space J,F is the union of all J,F for z € B. We have
the natural fibred charts (z*,4% %) of JiF, and the jer prolongation js: B — J,F
characterized by the coordinate expression (y',y5)o jis = (s',0xs'). We can identify
Jis with T's: TB — TF, which projects over 1g. Accordingly, we can regard J.F as a
subbundle of T*B & TF whose elements are projectable over 1z. This inclusion is a
map!

x JiF — T*B(% TF,

with coordinate expression o = d*®@n, = d*®(9) + yiaj). We also have the com-
plementary map ¥: Jr — T*F ®p VF, with coordinate expression ¥ = ¥/ © 9, =
(- yld)®9;.

The vertical bundle of JiF over the base space F turns out to be

VeI F = J1F x(T*B% VF).
F

2.1.4. Connections

Connections will play an essential role in our approach. There are several equ-
ivalent ways to define the concept of a (possibly non-linear) connection (see [8, 20,
30, 33)).

In general, we present a connection on a fibred manifold F — B as a section
c: F — JiF which, via the natural inclusion n, can be seen as a horizontal prolonga-
tion ¢: F — T*B ®r TF, whose coordinate expression is of the type ¢ = d* (3 +
+c/\j 9;), with ¢/ € FF. The associated vertical projection is v.: F — T*F ®p VF, with
coordinate expression v, = (& — ¢/d*)®9; .

' is the Cyrillic character corresponding to Latin d.
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The covariant differential of a section s: B — F is defined to be the section
Vle]s := jis—cos = Ts sv,: B — T*B ®p TF, with coordinate expression Vs
=0xs' — ¢ os.

The curvature tensor of the connection ¢ is defined to be the tensor field R[c]: F —
A2(T*B)®FVF characterized by R[c](u,v) := ([uac, vac]—[u,v]1c) for any two vector
fields w,v: B — F. Namely the curvature tensor ‘measures’ how much the horizontal
prolongation c differs from being a morphism of Lie algebras. Its coordinate expression

is Rlc] = Ry/d*Ad" ® 05, where Ry,J = 8j,c] — ¢ fdnc).

2.1.5. Vertical space of a vector bundle

If p: F — B is a vector bundle, then one has the natural identification VF = F xgF.
This fact yields some important consequences. First, any section s: B — F can be
regarded as the basic vertical vector field F — VF: ¢ — (¢, s(p(¢)). Hence, if v: F — TF
is a linear vector field, projectable over v: B — T'B, then the Lie bracket [v, s] is a basic
vertical vector field, i.e. it determines the section v.s: B — F with coordinate expression
(v.8)) = v*drs? — v, s*. Moreover, any linear map f: F — F fibred over B can be
regarded as the vertical vector field F — VF: ¢ — (¢, f(v)). In particular, the Liouville
vector field? is defined to be the vertical vector field u: F — VF: ¢ — (i, ¢) associated
with 1f.

2.2. Units of measurement

Our theory is to be manifestly invariant with respect to any choice of measurement
units; this is just an aspect of the general covariance. In order to treat measurement
units in a rigorous way, we need a few technical concepts.

We observe that homogeneous units can be added and multiplied by real numbers;
however, in some cases, no zero unit exists and only multiplication by positive real
numbers is allowed. These facts lead us to define algebraically a semi-vector space as
a semi-field U associated with the semi-ring R* (the axioms are analogous to those
of vector spaces, with the only difference that U and R* are additive semi-groups and
not groups). Moreover, a semi-vector space is said to be positive if the multiplication
by numbers can be extended neither to Rt U {0} nor to R. Each vector space is also
a semi-vector space; moreover, a vector space and a basis yield a positive semi-vector
space. Thus, a semi-vector space is a vector space, or a positive semi-vector space, or a
positive semi-vector space extended by the zero element.

Several concepts and results of standard linear and multi-linear algebra related to
vector spaces can be easily reproduced for semi-vector spaces and positive semi-vector
spaces (including linear and multi-linear maps, bases, dimension, tensor products and
duality, with respect to RT). The main precaution to be taken is to avoid formulations
which involve the zero element.

In particular, we can define the tensor product (over R*) of semi-vector spaces; the
tensor product (over R™) of a semi-vector space and a vector space becomes naturally

2y is the Cyrillic character corresponding to Latin i.
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also a vector space. Consider an oriented 1-dimensional vector space U and the associa-
ted positive sub semi-space Ut; if V is another vector space, then UT @ V = U® V and,
in particular, Ut @ R = U® R. Moreover, we can define the R*-dual U* of a semi-vector
space U; if U is a positive 1-dimensional semi-vector space, then we obtain the natural
identification U ® U* = R*. Furthermore, if U is a positive 1-dimensional semi-vector
space, then we can easily define the ‘root’ (positive 1-dimensional semi-vector) space
U/ of U, for any positive integer r.

DEFINITION 2.1. A unit space is a 1-dimensional semi-vector space. &

In order to write formulae which resemble the standard ones used by physicists, we
adopt a ‘number-wise’ notation for unit spaces. Namely, if U and V are semi-vector
spaces and u € U, v € V, then we write uv = u® v; accordingly, we set U? := UgU
and the like. Moreover, if U is a unit space which does not contain 0, then we write
U~! = U* and denote by 1/u € U™! the dual element of u € U.

In our theory we shall assume the following fundamental unit spaces: the oriented
vector space T of time units, the positive space M of masses and the positive space L.
of lengths. A time unit of measurement is denoted by ug € TT or «° € TT*. We also
set u := u®®u° and the like. For any v € T, w € T*, according to our conventions,
we shall often write u%v, ugw € R.

Throughout this paper we shall be often concerned with scaled tensor fields, i.e.
with sections of tensor bundles originated by spacetime and tensorialized with unit
spaces. It is physically relevant the fact that fundamental tensor fields such as the
metric, the electromagnetic field and others are scaled.

We shall attach to each particle a mass m, a charge ¢ and a magnetic constant
i, where

meM, ¢qeQ:=T"@L¥?*oMV2 L4eT @L¥?gM""/?

Moreover, we shall postulate two universal coupling constants, namely the Newton
gravitational constant and the Planck constant

keT?QLE@M*, he(TH)* @L?®M.

As it is well known, in the Galilean framework we miss the speed of light ¢, which
cannot be interpreted in this context. Of course, this is a weak feature of the Galilean
theory.

3. Quantum mechanics of a scalar particle

This section is a summary of the main ideas involved in the scalar case, especially
those that are needed for the subsequent generalization to the quantum mechanics
of a particle with spin. We shall skip certain details concerning results which, later,
will be stated in the more general spin case. For further details and complete proofs
the reader should refer to [18].
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3.1. Classical spacetime

We introduce classical spacetime and the related fundamental structures that are
needed as a background for the quantum theory; further details can be found in [18].

POSTULATE C1. Classical spacetime is assumed to be a 4-dimensional oriented fibred
manifold ¢: E — T, where the base space T (time) is a 1-dimensional oriented affine
space associated with the vector space T. a

We shall not assume any distinguished splitting of the spacetime into space and
time (there is no distinguished observer). Actually our theory is observer-independent,
namely it fulfils the general relativity principle in the ‘Galilean’ sense (with the absolute
time).

We shall use fibred spacetime charts, denoted by (z*) := (2, y?), where the coor-
dinate 2 is defined through the time unit «° € T (see Section 2.2) and a time origin
10 € T by z%(e) := uO(t(e) — 7o)

We have the scaled time form dt: E — T®T*E, with the coordinate expression
dt = ug ® dz°.

Each fibre E, of E represents the ‘space at a given time’ 7 € T; by analogy with
Einstein relativity we say that the vertical space VE is constituted by all ‘spacelike’
vectors on E (while we are not allowed to use the term ‘timelike’ in the present context).

POSTULATE C2. The fibres of E are assumed to be scaled Riemannian manifolds,
i.e. spacetime is assumed to be equipped with a scaled vertical Riemannian metric g: E
— L2® (V*E ®¢ V*E). *

The coordinate expression of the metric is g = gn;dy" ® dy’ (we indicate by a check
(7)) vertical (i.e. spacelike) restrictions). We stress that, differently form the Einstein
case, we do not have a full spacetime metric: this is a weak feature of the Gali-
lean theory. The metric yields vertical ‘index-lowering’ and ‘index-raising’ isomorphisms,
¢": VE - L2Q V*E and ¢#: .2 @ V*E — VE, but no similar isomorphisms between TE
and T*E.

The metric and the time-form, along with the chosen orientation, yield the scaled
spacetime and spacelike volume forms:

v E—(TeL)® A*T*E, nE—-13@ A*V'E,
with coordinate expressions
v = \/|5T|u0®d0 ANd*ANEA = \/lauo@w,
n= \/l—g—|czl Ad? A d® = +/|gleo,
where for brevity we set
& =dz*, wi=dAd'APAL, wyi=08yaw=d Nd*AdE

The phase space of our theory is the jet bundle J,E — E; its induced fibred coordina-
tes are denoted by (2°, 37, y)). From the general theory of jet spaces (Subsection 2.1.3)
we recall that J1E can be regarded as a subbundle of T* ® TE over E, via the natural
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map n which has the coordinate expression x = u”® (8 + ¥}8;). Then JiE is consti-
tuted by all tensors v for which the time component vé,o = 1. In other words, having
chosen a time unit ug, the phase space J1E can be identified with the affine subbundle
of TE constituted by vectors v with the time component v = 1. We stress that the
tangent space is insufficient to represent the phase space of a theory which is explicitly
independent of the units of measurement.

The classical particle motion is defined to be a section s: T — E; its (observer-inde-
pendent) velocity is the jet prolongation jis: T — J,E C T* ® TE, with the coordinate
€Xpression

d1s = u @ ((8y 0 8) + By’ (B, 0 5)).

Thus the jet space J;E can be seen as the space of all 4-velocities of the particle.
We stress that 4-velocity v has no norm |jv||, and that its physical dimension is given
just by T* and not by T* ® L.

An observer is defined to be a section o: E — JiE, ie. a field of particle vel-
ocities. Incidentally note that an observer can be regarded as a (possibly non-linear)
connection on E — T (Subsection 2.1.4).

Differently from the Einstein case, the metric ¢ does not characterize a unique
qpanphmp connection; in order to fnllv ;mnrpmatp the mmctmn we need to examine

...........................................................................
spacetime connectlons in some detail. We ﬁrst remark that there is a natural bijection
between dt-preserving torsion-free linear connections on the tangent bundle TE — E

and torsion-free affine connections on the jet bundle J1E — E, i.e. respectively

K:TE—-TE g TTE, I JE—-TE & ThE
TE JE

The coordinate expressions of such connections are
K =d"®0 + (K{9" + K{,i°9)), =d*® (O + (I'{,uh + '),
with _ ‘
Kf _K,fx—rf F,JA
Then a spacetime connection is defined to be any of such equivalent connections.
One deals preferably with K in classical field theory, and with I' in classical and

quantum particle mechanics.
A spacetime connection yields, by vertical restriction, a linear connection

K VE—-TE ® TVE
VE
on the bundle VE — E, with the coordinate expression K' = d*® (9 + K{,9"9,).

This connection will play a central role in the classical and quantum theory of spin.
A further vertical restriction gives the vertical connection

K: VE—V*E @ VyxVE
VE

(which, more propcrly, is a family of connections: for each r € T, K, is a connection
on the manifold E, := t~1(7)). Its coordinate expression is K = d" ® (8, + K} ,9%0;).
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A spacetime connection is said to be metrical if it preserves the vertical metric,
ie. if V[K']g = 0. If K is metrical, then K is exactly the Riemannian connection
on the spacetime fibres; however, if K is the Riemannian connection, then K is not
necessarily metrical, since V[K']g involves the covariant derivatives of g also along
non-spacelike directions.

Recalling (Subsection 2.1.3) that

VeJL\E = J1E ;:((T* ® VE),

the vertical-valued 1-form associated with a spacetime connection I" can be seen as a
map
vr. J]E — T* ®(T*J1E ® VE)
JiE

with the coordinate expression vp = (d) — (I{ 3% + '] ,)d*) ;.
A spacetime connection yields the following two important objects: the (non-linear)
connection
yi=n.1: HLE—-T"®@TLE

on the fibred manifold J;E — T and the scaled 2-form3

2:=vr A9 HE - (T* QL) ® A2 T*J\E
on the manifold J1E (here A indicates exterior product followed by a metric contraction
and ¢: J1E — T*E®gVE is the complementary map of x introduced in Subsection 2.1.3).

These are called the second order connection and the cosymplectic form associated with
I'. Their coordinate expressions are

v=u"® B + 10 +¥0Y), Q2= gipu’@(d) -+d° — IJ") Ak,
where _ ' » ‘ , _ '
v o= ) oybys + 20w + Iy,  T] = (D{,y8 + I'{)d>.

These objects fulfil the equality v 2 £2 = 0, and it can be seen that they characterize I’
itself.
For any motion s the map

Vs = jas—vous: T (T"@TH)QVE
is called the (observer-independent) acceleration of s. Moreover,
dtARANDRANDR: LE - (T2@LS® A"T*JLE

is a scaled volume form on J:E. Also, if o: E — J,E is any observer, we have the
observed scaled 2-form

$:=20"2E - (T"2L) e A2T*E,

which, in a coordinate system adapted to o (namely g o 0 = 0), has the expression
&=-2u0® (Fojodo Adl + thodh A dJ)

3JaniSka has proved that this form is essentially the unique natural object of this kind in the present
framework.
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From coordinate expressions it can be proved that, for a given observer, a space-
time connection is characterized by V[K']g and ¢. Namely these objects can be seen,
in a sense, as the symmetric and antisymmetric parts of I" with respect to a splitting
determined by o. This is the keypoint for understanding how to characterize distingu-
ished spacetime connections. In fact, a complex theorem proved in [18] states that the
condition that {2 is closed, i.e.

an =0, (1)

is equivalent to the couple of conditions that K is metrical and, for every observer,
& is closed; a connection that satisfies this equation is then determined by ¢ and a
local potential of &, that is a 1-form

a: E - (T"®L)H@T'E

such that ¢ = 2da. Then a distinguished spacetime connection obeying eq. (1) is
determined, similarly to the Einsteinian case, by ten scalar potentials: here, these are
the six components of g and the four components of a.

POSTULATE C3. We assume that the gravitational and electromagnetic fields are
represented, respectively, by a spacetime connection I'® and by a scaled 2-form

F:E— (LeM)*@ A?TE. Fy

The gravitational and electromagnetic fields can be coupled in a natural way
through any constant ¢ € T* @ L3/2@M~1/2, Namely, consider a total cosymplectic
form

Qe := " + LcF.

where 2% is the cosymplectic form of I'". Then one sees that (2, characterizes, in a
natural way, a spacetime connection; namely there is a unique spacetime connection
I'. such that 2, = vy A ¥ (that is, f2. is exactly the cosymplectic form associated
with I.). Actually, we can write T, = I'" + I'*, where

i JE—-T"QTE SEQ VE.
We have the coordinate expressions:

(FC)}{k = Fhik’ (FC)ojk =TI, + %”JOCFJI‘-- (Te)do = Ty + uocF.
Furthermore, the second order connection v, := n . I, associated with I. fulfils the
condition ~. 4 §2. = 0 and splits as v = 1% + ¢, where

vor JE-T"@T*"@VE
has the coordinate expression v¢ = c(F% + F7,y)u’  69.

POSTULATE C4. We assume that the total connection I, obeys the first field equa-
tion d2,. =0 for all c. &

The closure of (2. implies that it is locally exact, but we cannot exhibit any
distinguished potential. Clearly, this postulate is equivalent to the couple of conditions
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df2" = 0 and dF = 0 (first Maxwell equation). Also the observed cosymplectic form
splits as & = &% + cF. Hence, a local potential a of & contributes both to the
gravitational and electromagnetic fields, and it reduces to the usual electromagnetic
potential in the flat spacetime case.

In [18] two possible natural choices for the coupling constant ¢ have been taken
into account (in the spin theory we shall consider a third possibility). The first choice,
which yields the classical mechanics of a given charged particle,* is ¢ = g/m, where
g€ Q:=T*®L¥?@M!Y? and m € M are the charge and the mass of the particle.
We obtain the (classical) equation of motion of the particle which can be expressed as
VIve]iis = 0 with ¢ = g/m. Then ¢ turns out to be just the Lorentz force.

The second choice is ¢ = /k, where « is the Newton’s gravitational constant. This
choice allows us to couple I', with matter sources. Namely:

POSTULATE C5. We postulate the second field equations:
=1 div'F = pdt,

where 7! is the Ricci tensor of K T is the timelike energy tensor, which involves x and
contains matter and electromagnetic terms; div® is the spacelike divergence operator; p
is the charge density of matter. &

These equations yield the following synthetic formula:

TR T T VR
where 7 s is the Ricci tensor of K 1, and T /; := T + /k pdt ® dt.

We remark that these equations are weaker than the usual Maxwell-Einstein equa-
tions. In fact, because the metric is only spacelike, r# and div! F carry less information
than the corresponding objects do in the Einstein case. Thus they can be covariantly
coupled only with the timelike components of the energy tensor and of the current.

Note also that the second field equations do not enter directly the quantum mecha-
nics of one particle, which is formulated with given background fields. One deals with
them only when considering specific examples of spacetime.

3.2. Scalar quantum mechanics

In the framework of the above described spacetime geometry we can now formulate
the quantum mechanics of a particle with given mass m and charge ¢, subjected to
given gravitational and electromagnetic fields. We shall deal with the total objects I/,
24/m> Yq/m -~ induced by the coupling constant ¢ := g/m (Section 3.1). For the sake
of simplicity, these will be usually denoted simply by I, {2, v,...

First we introduce the bundle which ‘carries quantum kinematics’. We stress that,
differently from standard geometric quantization, this bundle is over spacetime.

POSTULATE Q1. The scalar quantum bundle is assumed to be a (complex) line-bundle
ng: @ — E over spacetime, endowed with a Hermitian metric hg. &

4The same choice for a coupling constant yields the fundamental object of the quantum theory, the
quantum connection (see Section 3.2).
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We shall denote by b an hy-normalized frame of 0, and by z the corresponding chart
on the fibres of Q. The induced frame of VQ — @ will be denoted by dz. Quantum
histories are described by quantum sections W: E — Q, written locally as ¥ = b with
¥ := zo¥. In view of the Hilbert scalar product it is also useful to regard a quantum
section as a quantum density

=9 en E—Q":=LxQ 2 VASVE.

The Planck constant (Section 2.2) is defined as an element
Re(THyoL*eM.

Next we introduce the quantum connection, which is the main object of the qu-
antum theory. Consider a general Hermitian linear connection Y on the pullback
bundle Q' := J\E xg @ — J,E; it can be seen as a section®

4. Q' - T*JHE @ TQO
JIE
with the coordinate expression
U =d*@(0x +iUx202) + d)® (Y + i1 2 02),

where 4, 4;: JiE —R.

The coordinate condition q;? =0 for Y can be formulated in a geometric way in
the framework of systems of connections, by saying that Y is a ‘universal’ connection.
Very briefly, one proves the following fact (see [18, 8, 30] for details): if {£[o]} is a
system of connections of the bundle Q — E, parametrized by the family of observers
{0}, then there exists a unique connection Y of the bundle Q' — J,E such that,
for each observer o, the pullback o*Y equals £[o]. This connection Y is said to
be universal, and is characterized in coordinates by the condition U, = ¢, 1{? = 0.

Conversely, a connection Y of the bundle @' — J,E such that (I? = 0 is the universal
connection of a system of connections {£[o]} on the bundle Q — E.

POSTULATE Q2. We assume that the quantum connection Y is a Hermitian linear
universal connection whose curvature is proportional to the classical total cosymplectic
form, according to the formula

RY) = ip Qgm0 1g: Q1 — NI LE € Q,
where 1g = zb is the identity of Q. »

Then the quantum connection satisfies LI? = (. Because of the curvature require-
ment, the expression of the other components of Y turns out to be of the type

H D
Yy = —UU%, LIJ' = 7:"

54 is the Cyrillic character which is usually transliterated as Ch.
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where
H = u"(3mg;x1dus — mao): JE — (T oL @M,
p= p,-cij = uo(”rngjky(’)c + maj)cij: JIE-T* QLM V*E

are the classical Hamiltonian and momentum associated with the frame of reference
attached to the chosen chart, given a suitable gauge of the total potential ¢ of &.

We stress that the two simple assumptions, of the quantum bundle to be over spa-
cetime and of the quantum connection to be universal, enable us to avoid the intricate
problems related to polarizations, which are typical in geometric quantization.

If ¥ is a quantum section, then we have the quantum covariant differential

VUW: LJE—T'E % 0,
with the coordinate expression

Ve = ((aw + %uow) d° + (aﬂp -~ %pjl/i)dj) ®b.

Essentially, the quantum connection is the only structure assumed for the quantum
mechanics of a scalar particle; all other quantum objects, including the quantum La-
grangian and quantum operators, can be derived from it. But note that the quantum
connection ‘lives’ on the pull-back bundle @' — J,E. This fact can be expressed by say-
ing that Y is ‘parametrized’ by all observers (given an observer, one obtains by pull-back
an object living on @). However, physically significant objects should live on Q, i.e. qu-
antum theory should be observer-independent. This problem can be solved by means
of a principle of projectability. Namely, each time we are looking for a physical object
on @, we happen to meet two analogous distinguished objects on @7, and we are able
to show that there is a unique linear combination of them which projects on Q. Then
we assume that this combination is the searched physical object. This procedure works
pretty well in all cases and yields an effective heuristic method. Thus it can be regarded
as a new way of implementing the principle of general relativity in the framework of
quantum mechanics.

The principle of projectability enables us to exhibit a distinguished quantum Lagran-
gian:®

L: Q@ —L3@ AN TE,

with the coordinate expression
L~ - h —
—L[¥) = %(’t(waow — Ydov) — uogg’kajwamlf +
*iga,(60T — T0uD) + 10 T 200 - ) ) vigle

5Here we do not write down the procedure explicity, since it will be repeated later in the more general
case of a particle with spin.
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The quantum Lagrangian yields the quantum 4-momentum
p: 1@ — T"®TE 2 0,
with the coordinate expression
0 h, ; h ; /
pl¥] = u”{ ¥8s — g™ zuogﬁjw +a;% |0, | ®b.

The Euler-Lagrange equation associated with the quantum Lagrangian turns out
to be the generalized Schriodinger equation

0 h '
iU()a()’l;l) + Z"lt() 20\/|_.|g;g‘_t’l,/) + %am/) + Egjk (anj — Z%GJ> (ank — ir—;—ak>w = O,
which can be also obtained, in a coordinate-free way, from the quantum covariant
differentials of ¥ and p via the principle of projectability.

The invariance of the quantum Lagrangian with respect to the group U(1) yields
a conserved probability 4-current j: J1Q — L3 ® A3T*E, with the coordinate expression

Jlwl = \/@(%L/’ wo — (uoﬁg""(%w — oY) — ah&b) wh),

2m

where w) = 0, Jw.

3.3 Phase quantum operators

In this section we describe the correspondence between classical functions and
quantum operators. This is achieved by a new approach which is only roughly com-
parable to the usual one based on symplectic geometry. Actually, our phase space
J1E is odd-dimensional, thus there is no symplectic structure on it. Instead, we have
the cosymplectic form (2 which yields the linear morphism over J,E:

@ THE — T*J,E: v — %Q(U).

This is not an isomorphism. In fact, from v 2 = 0 it follows that 2° vanishes on
any v € TJiE which is in the image of +v: E — T*® TJ;E. However, consider the
vector subbundle over JE:

T*HE:={¢pcT*JE:y ¢ = 0};

let 72 JJE — T be any smooth map (called a time scale), and T,J,E the subbundle
of TJ;E whose elements have time component equal to 7, namely

T, hE := {v e TJLE :v° = 7(n(v))},

where 7 TJiE — J1E is the natural tangent bundle projection. Then one sees easily
that 2° is an isomorphism T,J,E — TrJiE.
Now, with any function f: J,E — R we can associate a 1-form:

dyf 1= df —~ . df: |E — TLJiE,
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and, for any time scale : J1E — T, the vector field
f# .= 0%, f). hE — T, J:E,

where 2# := (£2°)~!. In particular, by taking 7 = 0 we can define the generalized
Poisson bracket

{f1, f2} 1= 5 QUE (D),

which has the property
{f1. 23 = [E, ()T

In the quantum theory we shall be involved with projectable Hamiltonian lifts. Now,
one can prove that the vector field f# is projectable over a vector field E — TE iff
f is, with respect to the fibres of J1E — E, a polynomial of degree 2, whose second
derivative equals (m/h)Tg. Namely, the coordinate expression of f must be of the type

m _
f= uOOf”ﬁgjkyéyS + fiyd + fo

with f;, fo: E > R, f”: E — T, and 7 must be equal to f”. Functions of this kind will be
called quantizable phase functions. The classical time, position, momentum, Hamiltonian
and Lagrangian functions turn out to be of this kind.

If for any quantizable phase function we choose 7 = f”, we obtain the vector field

f#:= Q% hE — Ty JiE.

Its projection
X[f]: E—~TE,

with the coordinate expression
ho.
X[f1=u"f"80 - Uo*n—l!]]kfkaj,

is called the tangent lift of f.
Let now f; and f; be quantizable phase functions, and set

[f1, fol := {f1, fo} + (Fi'V)-fo = (F30)-f1

Then, after long computations, one proves that the previous formula defines a Lie
bracket. This coincides with the usual Poisson bracket in the particular case when the
involved quantizable functions are affine (ff = f; = 0). We shall indicate by A? the
Lie algebra of phase quantizable functions, and by TE the Lie algebra of all tangents
vector fields on E. Moreover, we indicate by FE the algebra of all (smooth) functions
E — R. Then from the previous results we easily obtain:

PROPOSITION 3.1. The tangent lift
AP L TE: £ X[f]

is an FE-linear epimorphism, with kernel FE C AY, and an R-Lie algebra morphism.
Namely, we have

X[l f211 = [X[f], X[fe]]- o



QUANTUM MECHANICS OF A SPIN PARTICLE 115

Next, in view of quantum operators we start by looking for distinguished vector
fields on Q7. Consider any vector field YT: QT — TQ' which is projectable over some
vector field X': J1E — TJ,E, Hermitian linear and such that the vertical restriction of
L(Y )Y vanishes. Then it can be proved that Y7 is of the type

Y= f# o9 +ifu Q1 - TQ,

where u: Q1 — V@' is the Liouville vector field (Subsection 2.1.5), f: J;1E — R is
a function and 7 a time scale. Moreover, Y[f] turns out to be projectable over a
vector field Y[f]: @ — TQ iff f is quantizable and 7 = f”. Then Y[f] is called the
quantum phase vector field corresponding to f, or the guantum lift of f. It has the
coordinate expression

Y[f] = «"f"8, — uO%fﬂ'aj + i(uoof”%ao — flaj + fo>zaz.

From this formula one sees that the space of all quantum phase vector fields on Q
is just the Lie algebra Q of all Hermitian linear projectable vector fields @ — TQ. A
long calculation shows that the map AY — Q: f — Y[f] is an isomorphism of R-Lie
algebras, namely we have

Yilf, f) = [Y[AL Y]

Recalling Subsection 2.1.5 we see that there is a natural way of defining Y.¥: E
— @ for any linear vector field Y: Q — T'Q projectable over X: E — TE. If Y
= X*d, +1iY?8z, we obtain the coordinate expression

Y = (XA 0zh — iY )b

The almost-quantum operator Y| f] corresponding to f, acting on quantum densities
P :=¥®,/n " is defined by

YT /i) = iYL & Vo) @ if ® .

Then, since Y.\/v = 1(div X)/u, where divergence is taken with respect to the vol-
ume form v, we obtain

VI @ i)y = iV + 1(div ) ® /1.

We then obtain a natural R-Lie algebra isomorphism between the Lie algebras of
quantizable phase functions and almost-quantum operators, if the bracket of two
almost-quantum operators Y[f1] and Y[f2] is defined by

(VIAL V] = —ilVA) YIfD,
where®

[VUAL YIfRIT = VIfi) o Y fa] — VIfal o V1]

"This extension to quantum densities is necessary in order to have symmetric operators (see Section 7.5).

8Throughout this paper we shall indicate commutators by this ‘blackboard bold’ bracket, as in general
we shall have to distinguish them from Lie brackets.
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The Euler-Lagrange operator [31, 9]
E: J,Q0 - L3® AN*T*E 2 Q*

derived from the quantum Lagrangian can be characterized, via the Hodge isomorphism
and the real part of the Hermitian metric k, by a map

xE¥F L0 - T ®0.
Then we define the Schrddinger operator, acting on quantum densities, by
S@") := —i«EF W] ® /1.

it can be proved that & is a symmetric operator with respect to the Hermitian product.

We shall sketch in the more general spin case (Section 7.5) the construction which
yields the infinite-dimensional pre-Hilbert bundle H'Q" — T over time (eventually, this
will yield the quantum Hilbert bundle HQ" — T by the completion procedure). Here we
just observe that, if f is a quantizable phase function, then in general the operator Y[ f]
will not correspond to a fibred automorphism of H'Q" over T; in fact the expression of
YIFI@™), if f” # 0, will contain the time derivative of ¥. In order to construct from
Y[f] such a fibred automorphism, which we shall indicate by f and call a pre-Hilbert
quantum operator, we have, in rough terms, to ‘climinate’ the time derivative. There is
a natural way of obtaining this result, namely by using the Schrédinger operator (whose
kernel is constituted by the solutions of the generalized Schrodinger equation)® and
setting

F=Yfl-if" 6.

The operator fis symmetric iff f” is constant. This is true in all physically significant
cases where f” is either 0 or ug. Thus, the above formula is our implementation of the
principle of correspondence, achieved in a purely geometric way. In particular, in the
flat spacetime case, these operators and their commutators correspond to the standard
ones.

4, Classical spin

It is well known that quantum spin has no classical counterpart in a strict sense.
However, we can give a mathematically self-consistent formulation of classical mech-
anics of a charged spinning particle, which under certain circumstances yields a good
approximation of the real mechanics and, at the same time, will constitute the back-
ground for the quantum spin.

4.1. Classical spin particle

We first note that g can be seen as a (non-scaled) metric on the vector bundle
L*® VE — E (this will be the fundamental bundle for spin particles). The induced

9The Schrddinger operator can also be seen as a connection on the infinite-dimensional pre-Hilbert
bundle.
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‘index-lowering’ and ‘index-raising’ morphisms will be indicated, respectively, by
¢ L"QVE-LQV*E, g¢*:L®V'E—>L*®VE.

We shall denote by (e,) a positively-oriented orthonormal frame of L.* ® VE. The
dual frame (¢”) of L® V*E determines a linear fibred chart (z*,¢") on L* & VE.
Consider any linear connection C: VE — T*E ®yr TVE on the bundle VE — E.
Clearly, C' can be regarded also as a connection
C:L*"@VE—-T'E ® T(L"®VE),
L QVE

;
with the coordinate expression
C =dr*®(0zs + CP €"ep),

where CJ := —(e?,V,[Cle,). Note that here ) is an index of the spacetime coor-
dinates, while the Latin indices appearing in this formula are related to the linear
coordinates ¢", on the fibres of L* ® VE, that are not induced by the spacetime co-
ordinates. Moreover, C is said to be metrical if V[C]g = 0. Then, in particular, the
vertical restriction K’ of a metrical spacetime connection is a connection of this type.

We shall indicate by UE — E the subbundle of L.* @ VE whose fibres are unit
2-spheres. The history of a classical spinning particle will be described by a section
u. T — UE. Its projection s: T — E is the particle motion in the usual way, while the
vertical vector field over it represents the particle’s spin; more precisely, the classical
intrinsic angular momentum of the particle is huv.

We can state the equation of motion for v by means of a couple of connections:
the spacetime connection I' := I,,,,, where ¢ is the charge and m is the mass of
the considered particle, and a metrical linear connection C := Kj, on the bundle
VE — E (which reduces to a connection on UE). Here,

peT QL2 gM~1/2
is a new coupling constant which we call the spin-magnetic field coupling constant.
We shall also write p as

M=G%, ¢ eR

Latter on, by comparing the flat case with standard formulae [28), the section pu: T
—T*®LY2@M~1/2@ VE will turn out to be the magnetic moment of the particle,
and the real number ¢ will turn out to be its gyromagnetic ratio. When q = e is the
positron’s charge, then ph/c = eh/2m is the so called Bohr magneron.

In an orthonormal frame (e,) the components of C := K, are given by

C'hr,‘s = fﬂl:y COT‘S = fh[;rs + U(J/‘Lﬁrs = fb()rs + 2uolu‘5rspépﬂ

where
B:=3+F E-L%*eMY?QVE

is the magnetic field.\° The tilde over the components of I'", F' and B indicates that

19In the Galilean context the magnetic field is observer-independent.
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these are components in the frame (e,). In particular we have
Br = lewf, = 1R,
Furthermore, C: VE — T*E @ TVE yields the map
~'i=n4C: LE X VE - T*®TVE,

with the coordinate expression
Y =’ @@ +yjd; +77e ), V" =(Cgs + CLu0)e

where (e; ) is the frame induced on VgVE. The couple (I',C) is a linear connection on
J1E xg UE — E. Thus the equation of motion for v can be formulated as

VYT 1= j1iv' = (v,7)ov" =0,

where
v = (i1s,u) E — JLE x UE.

Now the above equation splits into two equations: the equation of motion for s, which
is the standard one (Section 3.2), and that for v, which reads V[C];,sv = 0 (thus a
first-order equation: the covariant derivative of the spin vector along the particle motion
vanishes). In coordinates it reads

V[C]jlsu = uo(a[)Ur - COTpUp - C;:p(aosk){fp)er.
Moreover, the same equation can also be written as
VEISU —uu x B =0

in the flat spacetime case the above covariant derivative reduces to the ordinary deri-
vative, so that we obtain the standard equation [15].

For a classical charged particle in the flat case it is known [15] that the interaction
between spin and magnetic field yields an energy

—phg(u,B) = —ph+(U’ A F) = —%uhap”Upfrs.

This function is well-defined also in the general curved case. In order to see that it
has the same meaning, we should postulate the effect of spin on the electromagnetic
field, through a suitable current to be coupled to the field via the Maxwell equations,
and study the energy balance in the present context. We omit such analysis and simply
assume that the classical spin Hamiltonian H S: NExpVE 5 T*@T*®L2QM is given
byll
HS[v) := H][s] - phg(u, B),
that is _
HS = %mgjkyéy(’)“ — mag — %,uhaprse”Fm.

IINote that the first term on the right-hand side is observer-dependent, while the second is observer-
independent.
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We would be tempted to extend these arguments in order to include a spin-gravitation
energy. For example, formal similarity might suggest a term of the form

%eprsfp(fu()rs + fhrs(aosh))‘

Any interpretation of this kind, however, would need a more general approach to
the classical theory of angular momentum, which should include orbital angular mo-
mentum in a general relativistic context. We shall address this question in a future
work.

4.2. Quantizable functions

In view of quantum operators for spin particles we wish to extend the Lie algebra
of quantizable functions, by considering functions f: JiE xg (L* ® VE) — R.

In Section 3.3 we showed how the Lie algebra AP of quantizable phase functions
on JiE arises naturally from the geometric arguments. Up to now, we are not able
to extend those arguments to the spin case. Hence we present a more restricted
approach which, however, encompasses the most physically interesting examples.

The space of quantizable spin functions is defined to be the space AS := 45Qq 4SL
of all functions ¢: L* ® VE — R of the type ¢ = ¢Q + ¢L, where ¢l € ASL is linear,
#Q e ASQ is quadratic and proportional to g. Namely, the expression of ¢ € AS in
an orthonormal frame is of the type

¢ — ¢//5rsfrfs + ¢r€7"
with ¢”, ¢,: E - R.
By means of the vertical isomorphism g# any ¢ € AS yields'? the section
X[¢] =: ¢* + ¢1*. E — %" ® VE) oL" ® VE.
Its orthonormal frame expression is
X[¢p] =6 {(¢"e, @ e, + dser) 1= 60" e, Qe, + 9T,

By analogy with the phase functions we call X[¢] the tangent lift of ¢.

We indicate by VE the space of all vertical-valued vector fields on E. Then
L*® VE is naturally equipped with the FE-Lie algebra structure given by the cross-
-product. Since the map AV — L*® VE: ¢ — X [#] is an FE-linear isomorphism, it
induces an FE-Lie algebra structure on ASL. Moreover, we define an FE-Lie algebra
structure on A% by assuming A5Q to be an Abelian ideal. Then we have

[6,6]:= (8"* x 6#),  or  [$,0] = £, ¢, 0,¢".

Namely, only the linear parts of ¢ and 6 contribute to [4,6)].
Now we note that AF N .AS = {0}, and set

A= AT @ A5,
12An equivalent construction may be given by using the natural symplectic structure [11] of any Rie-

mannian manifold (here, all spacetime fibres). This fact might be useful for future generalizations of this
approach.
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We are going to define a bracket on .A. Since we have brackets on AP and AS, it
suffices to define the bracket between any f € AP and any ¢ € AS. Then we set

[£,6]:= V[C]xine" € A%,
and [¢, f] := —[f,¢]- Then AS and ASL are ideals of A. We have the coordinate
expression

0k = (w0180 = war 70, )ou + (405G, = o 141 ).

The new bracket fulfils the Jacobi identity in all cases except when one and only one
of the three factors belongs to ASL. In fact, by a straightforward calculation we prove

PROPOSITION 4.1. Let f1, fo € AF, 6,6 € AS. Then
[fly [¢9 0]] + [¢a [97 fl]] + [97 [fla ¢]] = Oa
[f1, [f2, 611 + U2, [8, Al + [0, L1, £o1] = RICUX[A1], X[ f2), 61#). o

Then A := AP @ AS will be called the R-algebra of quantizable functions. The tangent
lift of f + ¢ € A is defined to be X[f + ¢] := X[f] + X[¢]. Then we obtain a map

A - TE9 Vi(L*®VE) & (L* ® VE),

where Vv denotes the symmetrized tensor product. This is an FE-linear epimorphism,
and it turns out to be an R-algebra morphism if we take, on the right-hand space, the
bracket

[u,v], u,v € TE;
u X v, u,v € L* ®VE;

(e} V[Clw, weTE, vel*®VE,
0, u € VA(L*® VE).

The most important quantizable function is the classical spin Hamiltonian (Sec-
tion 4.1), which can be written as

HS H
H:= UO—ﬁ— = U (f - ,uBb).

5. Spin bundle and connection

In this chapter we shall introduce two basic mathematical objects: the spin bundle
and the Pauli map (a kind of ‘soldering form’); the latter, together with a spacetime
connection, yields in a natural way a connection on the spin bundle. In the next chapter,
this will allow us to formulate quantum mechanics of a particle with spin along the lines
of the scalar theory.
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5.1. Spin bundle

Consider a complex vector bundle ng: § — E with fibres of (complex) dimension
2, endowed with a Hermitian metric

hs: E — S* @ S*,
E

where S* and S* are the complex dual and antidual bundles, respectively (namely
the bundles of linear and antilinear morphisms § — C over E). We shall also be
involved with the ‘conjugate’ bundle §° := (§*)* = (§*)* (whose transition maps
are conjugate to those of S).

Consider an hg-orthonormal frame (¢,) of S, A = 1,2, and its dual frame (z*).
Then we have the linear fibred coordinate chart (z*,2%) on §. The conjugate chart
on §* will be denoted by (z*,z*"). The induced frame of VS will be denoted by
(8, := Bz,); its dual and antidual frames by (d* := dz*) and (4" := dz*"). Since
$ admits a bundle atlas constituted by hg-orthonormal charts, it can be regarded as
a bundle associated-with the principal bundle of all hg-orthonormal frames, with the
structure group U(2).

We shall also consider the case when § is endowed with an As-normalized non-sin-
gular 2-form

es: E — /\25*,

and define a normal spin frame to be an ordered hg-orthonormal frame such that
es = 2! Az%. Then S can be regarded as a bundle associated with the principal bundle
of normal spin frames, with the structure group SU(2).

Now we focus our attention on the vector bundle End(S) = S ®¢ S* of complex
linear endomorphisms, whose fibres are equipped with the standard structure of as-
sociative algebra, given by ¢f := ¢ o6, and with the induced structure of Lie algebra,
given by [¢,6] := [¢,6] := #0 —6¢. This bundle splits naturally into the direct sum
of the real subbundles of all Hermitian and anti-Hermitian endomorphisms:

End(S) = H@iH.
E

Moreover, H splits into the direct sum of the vector subbundle (1) generated by the
identity and the vector subbundle H, of all traceless endomorphisms, according to
the formula

¢=3(Tre)1+ (6 — 3(Trg)1).
Then we obtain
End(S) = (1) %HO %(il) %iHO.
The bundle Hy — E will play an essential role in the Galilean quantum theory of

spin. For this reason we are going to make a fairly detailed study of its rich algebraic
structure. Note that H, is constituted by all endomorphisms ¢ whose matrix, in any
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hs-orthonormal frame of S, is of the type (¢4;) = (g _j), with » € R, ¢ € C;

actually, the fibres of Hy have (real) dimension 3.
We first observe that the fibred map over E

ki Hox Ho — R: (6,0) = $ Tr(9 0 0),

turns out to be an Euclidean metric on the fibres of H,. Hence, we can regard Hy
as a bundle associated with the principal bundle of all k-orthonormal frames, with the
structure group O(3).

LEMMA 5.1. Let (C4) be an orthonormal frame of S, and (o,) an orthonormal frame
of Hy. Then, for each P € U(2), the endomorphisms

0':- = UrABP(CA)®(P*)_1(zB)7 r=1,2,3,

constitute a k-orthonormal frame with the same orientation as (o,.). Hence, there is a
unique P € SO(3) such that o/ = IBTsar. The map U(2) — SO@3): P — P is a group
epimorphism (which depends on the choice of ((,) and (o,)). In particular, the map
SU(2) — SO(3) is two-to-one.’3 o

The following lemma is the key for studying those structures of Hy which arise from
the algebra End(S).

LEMMA 5.2. For each ¢,6 € Hy we have
00 = k(¢,0)1 + i ¢,
where ¢ € Hy and
k(€ &) = k(o, 9) k(0,0) — (k(9,6))?,
k(¢,8) = k(8,£) = 0.
Moreover, we have 8¢ = k(¢,0)1 —i&. °

Thus H is closed neither under the associative multiplication (¢, 8) — ¢6 nor under
the commutator (¢, 8) — [¢, 8] := ¢8 — 8¢. However, we shall see that these operations
are related to further structures on Hj.

In particular, if ¢ € Hy and ||¢|| = 1, then

¢ =1,
if ¢,0 € Ho, 6]l = |16]l = 1 and k(¢,6) = 0, then
@0 = i€,

with € Ho, €]l = 1, k(¢, &) = k(8,£) = 0.

The above result yields a distinguished global orientation on the bundle Hy — E.
In fact, for each k-orthonormal frame (o.), the condition o102 = io3 determines an
orientation which does not depend on the frame choice.

13This last statement is a geometric reformulation, in our context, of a well-known algebraic result.
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The metric k and the above orientation yield a global volume form 7: E — ASHj.
Accordingly, the bundle Hy — E can be seen as associated with the principal bundle of
all positively oriented k-orthonormal frames, with the structure group SO(3).

A positively oriented orthonormal frame is called a set of Pauli endomorphisms.
Moreover, we set g := 1g, so that (o,), @ =0,1,2,3, is a frame of H.

For any hg-orthonormal frame ({,) we may consider, in particular, these elements
(¢.) in Hy whose matrix expressions o, = ¢,%,(, ® z” are given by the Pauli matrices:

(130 3) (b 2)). e

Then (o,) is a set of Pauli endomorphisms. Conversely, in virtue of the double
covering SU(2) — SO(3), for any given set (o,) of Pauli endomorphisms, there exists
an orthonormal frame (¢,) such that (o,%,) are the Pauli matrices. However, this
particular matrix representation will play no essential role in our treatment.
In terms of a set of Pauli endomorphisms the volume form 7 reads
N=01ANoa Aoy = %sp”‘ap No, Aoy,
and the statement of Lemma 5.2 reads
0,04 = brg0g + 067, 0p.

The metric k and the volume form 7 yield the cross-product Lie algebra structure
on H, given by

(8,8) = ¢ x 6 := (K" ($) N (6)).
In terms of any set of Pauli endomorphisms this reads
Or X s = €P,50p.

The type fibre of this Lie algebra is su(2), namely the Lie algebra of the Lie group
SU(2), which is usually called the angular momentum algebra.
The cross-product Lie algebra is related to the Lie algebra End(S) by the formula

¢ x6=—1[p0]
which, in a set of Pauli endomorphisms, reads
[or. o5l = 2ieP, 00, oOr [—i0,,~%0,] =¢", (~Lop).

Then we see that iHy is closed under the Lie bracket of End(S), and the map
Hy — iHy: ¢ — —5¢ is a Lie algebra isomorphism.

Remark 5.1: For all ¢,6 € Hy we have
o8 + 8¢ = 2k(p, O)1.
In terms of a set of Pauli endomorphisms this formula reads
0,05 + 050, =26, 1.

Then one sees easily that the Clifford algebra bundle of Hy (see [12]) coincides
with the real vector bundle underlying End(S) = S® S*, with the product given by
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ordinary composition. This result agrees with dimg End(S) = 8 = 24mHo A set of
Pauli endomorphisms yields the following set of generators of the Clifford algebra:

00, o1, 02, a3,
0102 = 103, 0203 =101, 0301 = i03,
010203 = iO’o.

This Clifford algebra will not enter our treatment in the Galilean context. However, it
is important for a comparison with the Einstein case. .

Remark 5.2: The Hermitian metric hs yields an isomorphism § ® $* — S®S°®. The
latter is the space of world spinors [35] that carries a natural Lorentz structure defined
via €. An analogous Lorentz metric can be defined on H, and the above isomorphism
is an isometry. Once hg has been assigned, the two constructions are equivalent. Then
k is just the restriction of the Lorentz metric to the canonical spacelike subbundle Hy,
while (1) is its orthogonal timelike subbundle. Moreover, (0,.) is an orthonormal frame
of H. .

5.2. Spin connections

Henceforth we assume that § is endowed with a Hermitian metric hg and a non-sin-
gular hg-normalized 2-form e5: E — AZS*.
The coordinate expression of a linear connection B: § — T*E ®¢ T'S on the bundle
S — E is of the typel4
B =d*®(0 +iB{,2%d,),

with By',: E — C. (The choice of writing the coefficients of the connection with the
factor i is merely a convention.) Moreover, we have the conjugate linear connection
B*: §* - T*E® TS", with the coordinate expression

B® = dz’ ® (Owx — iBsheZ? a0),

where By'.. = B',. We also have the induced linear connections on $* and S*, with
coefficients By,* = —B3', and Byge** = =By, = By 4.
A linear connection B on § will be called Hermitian if it fulfils V[B]hs = 0.

LEMMA 5.3. A linear connection B on S is Hermitian iff the coefficients of B in a
normal spin frame are given by
BXA B = Bl; U;,LAB’

where BY: E — R, and (o;) is any set of Pauli endomorphisms.
Proof: In any linear coordinate chart the condition V[B)hs = 0 reads
Orhaep — thees Bf,:' + ihaec B)\CB =0

148 is the Cyrillic character corresponding to Latin B.
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According to this formula, in an orthonormal chart the components B;*,, for each fixed
A, constitute Hermitian 2 x 2 matrices, and thus, for any set of Pauli endomorphisms,
are linear combinations of the matrices (o,',). .

LEMMA 5.4. A Hermitian connection B on S fulfils V[BJes =0 iff B, =0 in a
normal spin frame, that is iff we have
B, =BLos,. r=1,273,
for any set of Pauli endomorphisms.
Proof: In any linear coordinate chart the condition V{BJey = 0 reads
OzEap +iccsBS, +ic By, =0.

In a normal spin chart we have 0,e,5 = 0, hence the matrices (B',), for each fixed
A, are traceless. "

DEFINITION 5.1. A spin connection is a linear connection B on S such that
V[B]hs =0 and V[B]Es =0. &»

In the particular case when the matrices of the considered Pauli endomorphisms
are the usual Pauli matrices, the components of a spin connection are given by

B3 B} - iB3
Ay = X x T tby
(B») (B§ +iBy  -BY /)
Henceforth, by B we shall always indicate a spin connection.

Remark 5.3. A spin connection preserves aiso the Euclidean metric &, as one sees
from its definition via ¢ (or also by a direct calculation), namely V[B}k = 0. .

LEMMA 5.5. We have:
Va[Blog =0,
Vil[Blos = =B} [0, o5 s Ca® 2"
= —2BRe" 0,0 @27 = =2BYe" 0,
Proof:
v/\[B]Ua = VA[B](UQABCA 8 2%)
=05 .(=iBy,(c®2° +iB{ (. ®z7)
= _iB{)\(UpABgacB - J:CUpCB)CA & z"°
= —iBi[o,, 0al" s (4 % 27. .

PROPOSITION 5.1. The natural extension of B to S®S* gives rise, through re-
striction, to a real linear connection B: Hy — T*"E® TH, on the Hermitian traceless
subbundle Hy, — E. In a frame of Pauli endomorphisms the coefficients of B are
given by B, = 2B%¢,,. °

Conversely, we have
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PROPOSITION 5.2. Suppose that B: Hy — T*E®TH, is a linear connection such
that V[B]k = 0. Then there exists a unique spin connection B such that B = B. Its
coefficients are given by

Bf := 1¢,°PBy,,
that is
By, = ;6-"BJ 0,/
Proof: Uniqueness: If B exists, then V[B]o, = V[B]o, = BJ, = BJ,, that is
B;s = 2B§€T5P’
This equality determines the coefficients B} (and then also the coefficients By, ), since

it can be reversed as:
. 1_ sppr
B)\ .- 487~ B)‘s.

Existence: The spin connection whose real coefficients BY are given by the previous
formula satisfies b = B. s

From the above results we see how one is naturally involved with H, when consider-
ing Hermitian connections.

5.3. Pauli map

An orientation-preserving linear fibred isometry over E:
5 L*® VE — Hy,

will be called a Pauli map. If (e,) is a positively-oriented orthonormal frame of L* @ VE,
then (0,) := (X(e,)) is a set of Pauli endomorphisms. Henceforth, when dealing with
X we shall use the linear fibred charts on L.* ® VE and Hj induced by a given frame
(e-) and the corresponding frame (o,). So, the information relative to X' is encoded in
the choice of such an adapted chart.

A Pauli map is, obviously, an isomorphism of cross-product Lie algebras (see Sec-
tion 5.1). Moreover, we have the Lie algebra isomorphism —1X: L* ® VE — iHp.

A Pauli map can be naturally extended to tensor products by setting

% @? (IL*®VE)——>S%)S*: u®v — (u) o L(v) € Hy o Hy cs%s*.

PROPOSITION 5.3. Let C be a metrical linear connection on VE — E (Section 4.1).
Then there exists a unique spin connection B on S such that for any section v: E
— L* ® VE one has

Z(V[Cv) = V[BJ(Z(v))-
Namely, we have
B)?B = %57‘81)0;50'1;‘3‘

Proof: Since ¥ is an isomorphism, the connection C induces a connection B on Hj
according to the above requirement. We have X(V[Cle,) = V[B]o,, that is B], = Cy..
Since V[C]g=0, we also have V[B]k=0. Thus we only need to apply Proposition 5.2. u
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We shall be concerned with the curvature tensor R[B] of b. We have the coordinate
expression R[B] = R, ? z°d* A d" ®d,, where

R)\/fB =Za[)\B +B[§‘CBIHB

A
1] B
If we replace the coefficients By, in the previous formula with their expression given
in Proposition 5.3, we obtain, after some calculations, the following result.
PROPOSITION 5.4, We have
R[B] = —; Z(+R[C)).
where
R[C]: E - A’T*E® A* (LR V*E)

is the completely covariant curvature tensor of C. The coordinate expression of R[B]
is

R)\[J,AB = %87‘SPR[C]A;ISU;)AB=
where

R[CL,r,=0Cl. +CLCT o

Al s s As~pnqr

In particular we shall be involved with the connection By, induced by C := K3,
(Section 4.1). In that case, Proposition 5.4 is the analogous, for the spin connection,
of the formula R[Y] = i(m/h)f2&® 1y for the quantum connection.

6. Quantum spin

6.1. Quantum spin connection

In addition to the postulates of the classical theory (Section 3.1) and of the scalar
quantum theory (Section 3.2), we have the two following basic geometric postulates
of the quantum spin theory.

POSTULATE QS1. The spin bundle is a complex vector bundle S — E with fibres
of (complex) dimension 2, endowed with a Hermitian metric hg and a non-singular
hs-normalized 2-form eg. &

POSTULATE QS2. The Pauli map is an orientation-preserving linear fibred isometry
over E:

pIN H1*®VE—>H(). &
Then we define the quantum spin bundle to be the tensor product
W W:=Q<§E§S—>E.
The Hermitian metrics hg and hg, defined respectively on @ and S, yield a Hermitian

metric h := hg®hg on W. We shall indicate by b, := b® (., the orthonormal frame
of W induced by a normal frame b of @ and by a normal spin frame ({,) of S. The
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corresponding linear coordinates induced on W are denoted by w* := 2® 2#, and the
frame induced on VW — W by (Bw,).
Quantum histories will be described as sections ¥: E — W. Locally
v = WA®CA = wAb®< = ¢AbA1

where ¥* := ¢*b: E — Q is a scalar quantum history (4 = 1,2), ¢*: E — C.

We consider a particle with given values ¢ of the charge, m of the mass and p of
the spin-magnetic field coupling constant. Then we have (Section 4.1) the two spacetime
connections K,,,, and K,,. The first yields a quantum connection Y,,,, on @' (hence-
forth denoted simply as ). The second yields a connection C':5 K3, on L*® VE — E
(Section 4.1); this, in turn, yields via X' a spin connection Bj,, henceforth denoted
simply by B, whose components in a normal spin frame are given by

A _ sprlT LA _ pha
B/ = zér I/ o), =B/,

where B is the spin connection arising from I'! (vanishing coupling constant).
The quantum connection and the spin connection yield a Hermitian linear connection
Y% .= U B, called the quantum spin connection, on the vector bundle

w' .= ,E x W — J,E.

The components of U can be synthetically written as

A

A _ oA _ _0¢cA P
LIAB = U\O4p = q)‘é B + 950, 85

where we have set
qg 1= U,, q’; = B’/{,
that is (Section 3.2):
_pPi . —
, LIj"B——h— if A= B,
g, = %ers”C/\’sap"B if A# B.

The corresponding covariant derivative of a section ¥ turns out to be the section
V. LJE — T*E Qg W given by

VAl = (Va¥4)® (s + T4 ®(Vala)
= (Vab) @ (¥4C4) + 0B VA(F4C4).
The coordinate expression of V¥ is
V& = (z* — iU —iBy yp®)d* Qb,.
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We also have the derivatives:

V= 1.VE: JE - T W,
VO := Vg JLE - VEOW,

where n: J1E — T* @ TE is the natural map introduced in Section 3.1. Their coordi-
nate expressions are:

\

V= (9o +yh0,)* — (o + whH, v — i(Bg'y + ygB, " ) b,
VI = (0" — iU,0% — iB A0 )d @b,

We shall also be concerned with the curvature tensor of the quantum spin connec-
tion. By a simple calculation one sees that this is essentially the sum of the curvature
tensors of U and B (see Proposition 5.4):

R[U®B] = R[U]®1s + 1g® R[B]

Ujru6*s + R[B], s w?d* A dF @b,

6.2. Quantum spin Lagrangian and momentum

We have the following distinguished observer-dependent 4-forms over E:
Clo]:= L@, iV ®) + h(i VT, ) E - 13 A TE,
. h v ,
L[¥]:= Z—n—(g# QR)VY, V&) E — L3® A*TE,

where v is the spacetime volume form (Section 3.1). As in the theory without spin
we obtain a Lagrangian independent of any observer by the projectability principle.
Namely:

PROPOSITION 6.1. The form
L) = L[w] - L£]¥]

o .
is the unique linear combination (up to an overall factor) of £ and L which tumns
out to be independent of the observer.

Proof: A rather long computation shows that this is the unique linear combination
o v .

of £ and £ such that the coordinates ¥} disappear in its coordinate expression. m
Then we have the main dynamical postulate of the quantum spin theory:

POSTULATE QS3. The form £ of Proposition 6.1 is assumed to be the quantum
spin Lagrangian. &
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In the scalar case it is known [16] that the analogous procedure yields what is
essentially the unique natural and physically meaningful Lagrangian. Morever, note
that adding to our Lagrangian a term proportional to the natural function

q :
~h(¥, Z(B)): E - R

would simply amount to modifying the gyromagnetic ratio.
We have the coordinate expression

L[Z] = gheea (z'@"’aow'* 9 aB) oo +
+igap(* 09" — 97 9pt) + UO%W%C.@(IO — g'*a;a) +
2B, — 9" aeB AW+ o g BP0 T 5u®) +
+u0%gjkEjEBBkAE¢B:‘Zc.) |glw-
Note that to simplify this expression for £ we used the property that the coefficients

.. )
B}, are Hermitian: hee By e = hpecBy,.

In an h-orthonormal frame (b,) we have hoe, = ¢4, and then the Lagrangian
splits as
L[P] = L[P') + L[F?] + L[¥]spin,

where £[¥!] and L[¥?] (first two lines) are exactly the Lagrangians of the scalar wave
functions ¥! and ¥2. The spin Lagrangian L[¥]si, is the new part (with respect to
the scalar case) and contains interaction terms. By using Proposition 5.3, after some
calculations we can express it in terms of the vertical spacetime connection C.

PROPOSITION 6.2. We have
E[g’]smn = %hc'A (%(Cors - gjkakcjrs)ETSPUpABQﬁBac +
h e s —c*  —c*
+U0E9Jk0ksé‘r Po s (W70~ O;97) +
h kv r —c*
_UO%QJ C/Cy by ) |glw- o
It is interesting to look at the spin part of the Lagrangian in the flat case. Setting
Cls = 0, Cf, = uopF" s we obtain
‘C[W]spin = i‘UON hc'A(ﬁrssrspUpAB¢BEC W lglw
= juohoea BP0, 0"0" Viglw = Juop h(¥, D(B)P)+/lglw.

This is just the Pauli term which appears in the standard Lagrangian of a particle with
spin.
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We shall denote by
L: ZWW—L¥@ A'*T'E
the fibred morphism over E characterized by Lo j;¥ = L[¥] V¥. Here (and every-
where) J;W — W is the jet bundle of W with respect to the base space E. The
coordinate expression of £ is obtained from that of L[¥] by replacing »* with w

and 0,y* with w{. In order to write down the field equation for a section ¥, it is
convenient to express the Lagrangian as £ := fw, with w := d° Ad' Ad* Ad®. We have

oo oo Bk a—ce
b= $tee sV (1@ 0~ w*T5) — wo g 4
+igjkak(wAEf° - Ec°w]’-‘) + xw*w°" +
+xPofpww + ixP o) (wiws —w uf)),
where v, x?,x?: E — R are defined as the following shorthands:

m ;i h ] s
X = UOE(ZGO - gjkajak) - UO%QMCJ‘TSCEN

.— 1_s r ik r
Xp - 561‘1)(003 - g‘7 akC] s)v

Recalling that a jet bundle is affine, and since W — E is a vector bundle, we have
the following identification:

Vw1 W = J1W>u(/(T*E (%) W)
Then applying the vertical functor to the morphism £, after a contraction with the
spacetime volume form we obtain a map

sVwl: hWW—T"®TE % W,
where W* is the real dual bundle of W. The real part of the Hermitian metric A

is a positive-defined metric on the fibres of W, and allows us to trasform the above
morphism into the quantum momentum

p W= T QTE @ W,

which has the coordinate expression
plo] = u° (1/1A80 - i%gjk (ank - i%ak)wAaj - XTjUTAngaj> @by

6.3. Generalized Pauli equation

The generalized Pauli equation for a section ¥: E — W is defined to be the
Euler-Lagrange equation
EW]):=Eo0j¥ =0,
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where
E LW 1L3@ A*TE % w*

is the Euler-Lagrange operator [31, 9], which can be characterized, via contraction with
the spacetime volume form, by a morphism

*E: JHLE — T @ W*,
whose coordinate expression is of the type
*xE = E,duw? + Eqndw””.

The components £, and £,., which are conjugate to each other, can be calculated from
the standard Euler-Lagrange formula by treating formally w* and w*" as independent
real coordinates. Moreover, through the real part of the Hermitian metric A we can
transform +£ into a morphism

% LW - T QW.
This has the coordinate expression *& # = £°p,, where £ := 2R*°°£, .. We obtain

LEMMA 6.1. The components of the Euler-Lagrange operator of the quantum spin
Lagrangian are given by

£° = 2iw§ — 2iu’gFapwf + o ——0(v/|glg"*)w§ + —T;gjkwfk +

Vlal
+u’ (X + Lao Bk(\/mgj"aj)) w® +

Vel e

rud (x’ _ o |g|x”c)) 0,50 — 20X %,

Vlal

where x,x",x™: E — R are the functions defined in Section 6.2.

Note how the above expression for £¢ splits into the sum of a non-interaction part
and an interaction part. The interaction part consists of all those terms which contain
the sigma’s (last line). The non-interaction part is identical to the Euler-Lagrange ope-
rator without spin for each component of ¥, plus the new term —(%/8m)g’*C/,C¢ 4°
(contained in x).

Next we would like to write the generalized Pauli equation in a more compact way.
We shall accomplish this by defining two observer-dependent differential operators D’
and A°, which are immediate generalizations of the analogous operators defined in [18].

Recall that the connection U” := U® B is a map

y”. hExW - T*EQ TW.
E W
Given an observer o: E — J1E, consider its natural jet prolongation jo: J1E — J, 1E
c T* ® TJL,E, given by jo = u%® dy in adapted coordinates. Consider the map
5:= (o9 oo E— T ®TW,
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or, in adapted coordinates:
o =u"®[0 + i(Tow”* + Bgyw")ba].
Recalling Subsection 2.1.5 we set
1

b= <ﬁ’

L;(¥® \/E)>: E-T"QW
with the coordinate expression

DOW = uo (anA + ———80 ‘gi'l,/)A - in%aowA - iBOAszJB) bA.

219l
The observer-dependent vertical covariant derivative of ¥ is defined to be
VW= V¥oo E— VERW.

In a coordinate chart adapted to the observer (yg oo = 0), this derivative has the
expression
m

I

Then one defines the observer-dependent vertical Laplacian as

Vo = (5;@ — iu®—6%a; —iBj“B)dej®bA.

AW = (g¥, 60{70!7): E— W,

with the coordinate expression

(Aowy* = gi (5;} (aj - iu”%a]) - z'B].“B) (55 (6k - in%ak) - inHC)wC.

Then, taking into account the identity g/*I},"; = —ﬁaj(ghﬂ'\dgb, after some calcu-
g

lations one proves

PROPOSITION 6.3. The Euler-Lagrange operator can be written as
*E# (W] = 2<mow + —ﬁ—AO!If) o
2m

Another formulation of the generalized Pauli equation can be obtained by introdu-
cing the differential d[qs] associated with the connection U via the Frolicher-Nijen-

huis bracket [30], and the related divergence-type operator div[qs] defined through
the spacetime volume form wv.

PROPOSITION 6.4. If W: E — W is any quantum spin history, then xE# (W) is the

unique linear combination (up to a scalar factor) of %[Q’/] and div[qs]p[zp] which
projects over E. Namely

E#[W] = i(V[P] + div[IS]p[@]): E — T" o W. .
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In particular, let us write down the field equation in the flat case. By setting
I s = 0 and |g| := det(g) = 1 (ie. by using orthonormal Cartesian coordinates),
since may reduces to the electromagnetic potential A, we obtain the familiar Pauli
equation

thOgy© = uoigﬂ“ —ih8; — uPA; ) (—ihdy — uC ALY — ul Agyp® + LuguhB 0 y".
2m 3 ¥ 2 rB

For an electron p = —e/m (¢ = 2), thus the last term equals —(eh/2m)X(B)¥.
Next we focus our attention on quantum densities ¥7 := ¥ ® /7, whose coordinate
expression will be written as

U =T b @V, 7= Y gly.
The Euler-Lagrange operator yields the Pauli operator
PE) = —§+EF [T @ V7,

which is the analogous, for the spin case, of the Schrddinger operator introduced in
Section 3.2. We obtain

h
PE") = o (301/)“ = iUO%AOW’A - iUO%GOIP"A - iBoAB?P"B) ba ® Vo
One then sees that ¥ satisfies the generalized Pauli equation £[¥] = 0 iff ¥ satisfies

the equation P(¥7) = 0, that is:

.
0oy = —ugz— AU - uo%aow"" — B

6.4. Symmetries

We recall [9, 31] that the Nother theorem can be expressed in geometric form
through the Poincaré—Cartan form ©. The Poincaré-Cartan form of the Lagrangian £
can be calculated, similarly to the Euler-Lagrange form, by treating (w*) and (@*") as
formally independent coordinates. We obtain

L2 -* h y - L]
o= _\‘2|g|hc.A [i(ﬁc dw* — w*dw® ) Awy + (uo—n;g]k(w,’c‘dﬁc —wy, dw*) +

+ig*ap(wrdw®’ — w° dw?) + ixV oA (wP dw” Ec'dw3)> Awj +

+ (u()%gjkw;@g. + xww®" + XTUTABwBIEC')w] ,
where wy 1= 9y Jw.
Consider the natural action of the group U(1) on W given by
RxW—W: (¢,0) — e ™.

This action can be naturally prolonged to actions on TW and J;W. We then have two
one-parameter groups generated, respectively, by the vector fields v: W — TW and
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v: JIW — T.J1W, whose coordinate expressions are:
v = —iww,, v=—i(wdw, + widw)).

Moreover, v is the natural prolongation of » [30]. It is immediate to check that the
Lagrangian £ is invariant with respect to the natural action of the group U(1). We
have

L,L=L,0=0,

thus for each critical section ¥ we have the conserved probability current
AL —C* . a . h sk7C% A €% a
GO (wa10) = lglhooa | ¢ wo + o9 W v =y ) -

~g* ap” pt — x’"jEC'or"BwB>“’f] ‘
The corresponding conserved guantity is the wy component, ie. the probability density
h{&, ).

We have a larger simmetry in the case of flat spacetime and vanishing electro-mag-
netic field (set Cy, = 0 and F’, = 0). In this case the Lagrangian is invariant with
respect to the action of the group SU(2) given by

SURYx W —W: (Pu)— P u®dw,,

and its jet prolongation. In particular we have, for » = 1,2,3 and ¢ € R, the actions
of exp(%£o,) which yields the vector fields ». (on W) and their jet prolongation ,
whose coordinate expressions are:!®

- 1 A B —i_A B B A
v = 2000w, v = 50/ (wP0w, + wiow)).

The related conserved current is

(GO (v, 10) = /Iglhceaoy [ - Ec.d)swo +

. . }-2 — _,». ISy 3 ,
+g3k(zuo—2a(¢c vy —‘U)Z ¥?) + axt’ 1/18>wj]-

The conserved quantity is, up to integration, the expectation value of spin, that is
h(&, Z(@))n.

7. Quantum operators

We shall construct the algebra of quantum operators by a procedure which gen-
eralizes that used in the scalar case, and is divided into analogous steps. Starting
from the algebra A of all quantizable functions, we first construct the algebra W
of quantum vector fields W — TW, then the algebra O of almost-quantum operators
acting on quantum densities and, finally, the algebra @ of quantum operators on

15This action depends on the considered basis. However, the Lie algebra generated by the fields v, is
independent of the basis.
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the Hilbert bundle. At each step we put together ‘phase’ objects, coming from the
Lie algebra AP of quantizable functions on the phase space JiE, and ‘spin’ objects,
coming from the Lie algebra AS of quantizable spin functions on L* ® VE.

7.1. Quantum phase vector fields

In this section we examine the natural prolongation of quantum phase vector fields
on @ to vector fields on W.

LEMMA 7.1. There is a natural construction which, for each Hermitian linear vector
field Y: Q — TQ projectable over a vector field X: E — TE, yields a Hermitian linear
vector field

YW. w—TW
projectable over X. Let Y = X8y + iY?20z, with X ,Y*: E — R, be the coordinate
expression of Y. Then the coordinate expression of YY is
YW = X238y + (X By w® + Yw*)dw,.
Proof: Consider the horizontal lift of X by B, i.e. the vector field
X uB = X0\ +iX*B},2°0w,: E — TS,
which is also Hermitian and projectable over X. Then we have the tensor product

YR(XJB):Q0gS—T0 ® TS.
E TE

Now the universal property of the fibred tensor product over TE yields a linear fibred
morphism
6:TQ R TS—-TQ®S):=TW
TE E

over TE, with the coordinate expression
(w*,w*) ol =(z-2%2-2% +z.2%).
Thus by setting
Y¥:=00(Y®(X 1B))
we obtain the claimed result. »

We shall denote by W the space of all Hermitian linear projectable vector fields on
W. Clearly W is an FE-modulus, and an R-Lie algebra with respect to the standard
bracket. From the above lemma we see that the map @ - W: Y Y¥ is an FE-linear
isomorphism. In general, this is not an isomorphism of Lie algebras; namely, by direct
calculation one shows the following

LEMMA 7.2. If Y1,Y2: Q — TQ are both projectable, linear and Hermitian, then also
their Lie bracket is such, and we have

[Y1W7 YZW] = [Yl’ YQ]W + RW[B](X17 X2)$



QUANTUM MECHANICS OF A SPIN PARTICLE 137

where
RY[B]: E— A’T'E © VW e VW
E
is obtained from

R[B] E— AMT"EQ VS ® V*§
E S

by tensor product with the identity form E — VQ ®q V*Q (in these formulae all

vertical spaces are taken with respect to the base space E). In coordinates we have
Y, Y3 = (X18,X3 — X§8,X1)0x + i(X18,X3 ~ X380, X)Bw 0w, +

+i(X70\ Y5 — X300.Y )w* 0w, + R[By 1, X7 XEw®Ow,. o

If f: JJE — R is a quantizable phase function (Section 3.3), then the quantum

vector field Y[f]: @ — TQ yields a vector field Z[f] := Y"[f]: W — TW, which we

still call the quantum phase vector field corresponding to f, or the quantum lift of
f. Its coordinate expression is

ﬂﬂ:ﬁﬂ%—m%ﬂ@+

+ i((uOO%f”ao ~ fla; + fo>w" + (uof”BOAB — uoﬁijjAB)‘wB)awA.
m

Remark 7.4: The quantum phase vector field Z[f] can be recovered also by a
procedure similar to that used in the scalar case. In fact, the ‘upper’ vector field

LAY vifu W - TW,
where u: W' — VW' is the Liouville vector field, turns out to be projectable exactly
over Z[f]. .

The quantum lift A¥ — W: f— Z[f] is an FE-linear monomorphism. In general,
however, it is not an R-Lie algebra isomorphism. In fact from Lemma 7.2 we obtain

PROPOSITION 7.1. Let fi, fo: J1E — R be quantizable phase functions. Then we
have

(2141, 2[£01 = Z[[fi, f11 + R¥[BUX[Ai], X[fa)). o

7.2. Quantum spin vector fields

We can naturally associate a quantum vector field with each quantizable spin
function. Namely, for any ¢Q + ¢& € A5 := ASQ @ ASL (Section 4.2) we consider the
section -

¢:=;T(X[¢°) + 3£(X[¢"): E — A,

which has the coordinate expression
6 =3¢"00 + 1970

Now we observe that ¢ can be regarded as a linear fibred morphism ¢ S — S over
E. Hence, by tensorializing it with 1p: @ — @, we obtain the linear fibred morphism
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1o ® 5: W — W over E. Finally we recall that VW = WxgW (as W — E is a vector
bundle, see Subsection 2.1.5), and define the quantum spin vector field corresponding
to ¢, or the quantum lift of ¢, to be the Hermitian vertical vector field

Z[8): W — VI: w = (w,i(lp ® $)(w)),
whose coordinate expression is
Z[¢] = i(3¢" 04", + 3070 ) w5 0w,.
The map ¢ — Z[¢] is an FE-linear isomorphism and an R-Lie algebra isomorphism
from A> to the space VW of all vertical gHermitian) vector fields of V. Moreover, this
isomorphism associates the subalgebra ASL ¢ AS with the subalgebra VoW of traceless

vector fields, and the Abelian ideal ASQ ¢ AS with the Abelian ideal VW generated
by 1y. In fact, let ¢,0 € AS; then by a straightforward calculation one finds

[Z19), 218]] = Z[[#,6]] = Z[[e", 6" 7],
or, in orthonormal coordinates,
[Z[¢], Z[0]] = 2¢r8.6" 0, sw® w .

p

7.3. Quantum vector fields

In previous sections we defined quantum lifts of phase and spin quantizable functions.
Now, the direct sum of these lifts yields the quantum lift of quantizable functions:

Z: A=A A5 o W: F+ ¢ Z[F + 9] := Z[f] + Z[4],

with the coordinate expression
Z[f + ¢ =ulf"8 - uo%fjc‘)j + i((um%f”ao —fla;+ fo + %qﬁ”)w" +
+ (“Of”BoAB _ uO_:_lijjAB + %d’TUTAB)wB)awA‘

From the above formula we see that the map Z: A¥®.ASL — W is an FE-linear isomor-
phism; the map Z: A — W is an FE-linear epimorphism whose kernel is constituted
by quantizable functions f + ¢ € FE & ASQ such that f = —%4)”.

By a straightforward calculation we get

LEMMA 7.3. Let Y: Q — TQ be any linear vector field projectable over X: E — TE.
Let ¢ = ¢Q + gL € AS:= 45Q g ASL. Then

Y%, Z[¢]] = Z[V[C]x 4],
or, in coordinates,
[Y¥, 2[¢]] = $X*(0x8" — 6°C )0, wdwa.

Hence, the behaviour of the quantum lift Z with respect to the algebra structures
of A and W can be summarized as follows.
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THEOREM 7.1. Let fi, fo € AP, ¢1,¢0 € AS. Then

[Z1£1]. Z[f]] = Z[[ 1, fo]] + R¥[BUX[f1), X[ 1)),
[Z[1], Z[:]] = Z[[¢1, ¢21],
[Z1H]) Z2[:1)] = Z[1 fr, ). o

So we see that, if the curvature of C vanishes, then A is an R-Lie algebra and
the quantum lift is a morphism of Lie algebras.

7.4. Almost-quantum operators

Next we pass from quantum vector fields to operators. Like in the scalar case,
there is a natural way of applying the quantum vector field Z to a quantum section
with spin ¥ (see also Subsection 2.1.5); we obtain

ZY = (X " — i X B 0" + Yy*))b,.
The corresponding operator which acts on quantum densities
U= 0@ /0 E— W :=L¥?gWeVAVE,
is defined by!'®
ZW0R YD) = i(Z.(F VD) ® % ® V1,

and called an almost-quantum operator. Then we have

Z@ @) =i((Z9) + (divX)¥)® /1.
We shall denote by © the space of almost-quantum operators, and define the almost-
quantum operator lift to be the composition

A=W 0O f+¢é— Z[f]— Z(f + ¢].

which is an FE-linear morphism.
We define the bracket of any two (local) Hermitian operators Z; and Z, to be
the (local) Hermitian operator

[Z1, 2] := —i[[Z1, 22],
where [2,2:] := (21 0 25—230 2,) is the commutator of Z; and Z,. Then, by a

straighforward calculation, recalling Proposition 7.1, we obtain the following result:

THEOREM 7.2. The brackets of the almost-quantum operators corresponding to the
quantizable phase functions fi,f € AY and to the quantizable spin functions ¢,, s

16The reason for multiplying by i is that we want Hermitian operators, while Hermitian vector fields
give rise to gnti-Hermitian operators. The reason for the ‘odd’ multiplication and division by v is that Z
does not act naturally on the spacelike object 7, but acts naturally on the spacetime object v. We guess
that this point might be formulated in a more satisfactory way within a fully Einsteinian approach.
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€ AS are given by

(Z1A), 21511 = Z[[f1, f1I(27) + iR¥[BYX[f1], X[f2])9",
[2[¢1], Z[¢2]](7) = Z[[¢1, $2]1(FT),
[2[/1], Z[1)(F7) = Z[[f1, S111(F"). o

Note that the bracket of the almost-quantum operators corresponding to the
quantizable phase functions f; and f, (first formula in the above theorem) has a term
of the spin type, corresponding to the linear quantizable spin function ¢ € .AS™ whose
components are given by

¢ = %&S”R[C]AZSX[fl]’\X[fﬂ“-

7.5. Quantum operators on the Hilbert bundle

So far, quantum theory has been developed on a finite-dimensional bundle W? — E
over the spacetime. Now, we sketch how to introduce in a natural way an infinite-dimen-
sional Hilbert bundle HW” — T over time and obtain Hilbert operators from almost-
quantum operators. Essentially, the construction is the same in the scalar and spin cases
(we just replace W7 for Q7).

We focus our attention on the double fibred manifold W7 — E — T. Each (smooth)
local tube section ¥": E — W7 (i.e. each section which is defined on a ‘tubelike’ open
set of E) yields, for any given 7 € T, a (smooth) section ¥7: E, — W72. Next we consider
the fibred set SW"” — T, where the fibre SW?, 7 € T, is defined to be the set of all
(smooth) sections @1 E. — W!. Then clearly we have a natural injection ¥7 — Al
from all (smooth) tube sections ¥7: E — W" to all sections 7 T — SW.

In order to study geometrically the fibred set SW” — T, one could use the standard
methods of infinite-dimensional manifolds. But we can skip this unnecessary hard ma-
chinery and achieve our goal in a much simpler way by using the concept of smoothness
due to Frolicher (see {7, 18]). Accordingly, a section @n: T — SW? is smooth iff it
corresponds to a smooth section ¥"7: E — W,

We can repeat the above construction for any subsheaf of tube sections of the double
fibred manifold W" — E — T, and obtain a fibred subset of SW” — T; it is remarkable
that this inclusion preserves smoothness automatically. In particular, we consider the
fibred space H'W" — T associated with (smooth) tube sections ¥7: E — W" with
compact support. The fibres of H'W" are naturally endowed with a smooth pre-Hilbert
structure. Namely we define, V7 € T, a (non-complete) scalar product on H'W? by

@110 = [ he(@, ¥,

Our next goal is to obtain a pre-Hilbert bundle operator from each almost-quan-
tum operator Z. Let us consider a quantizable function f + ¢ € A and the associated
almost-quantum operator Z[f + ¢]. If f” = 0, then Z[f + ¢], which acts on smooth
sections ¥": T — SW" only through vertical derivatives and multiplication by scalar
functions, can be regarded as a linear fibred automorphism of the pre-Hilbert bundie
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over T. In other words, Z[f + ¢] can be regarded as a pre-Hilbert operator. On the
contrary, if f” # 0, then the expression of Z[f + ¢](¥") contains the time derivative of
¥, This means that Z{f + ¢] cannot be regarded as a pre-Hilbert operator. However,
we can solve this problem by ‘eliminating’ the time derivative in the following natural
and general way.

Consider the Pauli operator 8 (Section 6.3) acting on quantum densities (its
kernel is constituted by the solutions of the generalized Pauli equation).!” Then for
any f + ¢ € A we consider a linear fibred automorphism of the pre-Hilbert bundle
over T:

f+o=2[f+¢]-if" 2P,
and call it the pre-Hilbert quantum operator associated with f + ¢. In particular, if
f" =0 (this is equivalent to Z[f + ¢] being a vertical field), then f + ¢ = Z[f + &].

Let O be the set of all Hermitian linear fibred automorphisms of the pre-Hilbert
bundle over T. Then the map

is our correspondence principle.
THEOREM 7.3. Let f+ ¢ € A be a quantizable function such that f'" = constant.
Then the comesponding quantum pre-Hilbert operator f + ¢ is symmetric, ie.
(O] F+ o) = (F+ @) | 7).

Proof: It follows from the symmetry of the observer-dependent spacelike Laplacian,
from Gauss’ theorem and from the fact that the coefficients of the quantum spin
connection are Hermitian. "

Next we give the explicit expressions of the pre-Hilbert quantum operators cor-
responding to the physically most important quantizable functions. Consider first the
coordinates x* and the classical momenta p;/h; these are quantizable phase func-
tions J1E — R, whose quantum lifts are vertical-valued (for simplicity we assume that
spacetime fibres admit global spacelike coordinates, and refer to such charts). We
obtain

(W) = Z[2 () = 27,
p;/R(E") = Z[p; /RIF") = —(i8,9* + B/1")ba @1 = ~i(V;[Bl#) & /7.

These formulae enable us to write the observer-dependent vertical Laplacian as the
following generalization of a well-known formula:

AoPT = gk (pj/\ﬁ - uo%a]) (p?/\h — u.O%ak)W".

'7Incidentally, we observe that this operator can be nicely interpreted as a linear covariant differential
on the infinite-dimensional pre-Hilbert bundle [18).
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Let ¢ € AS be a quantizable spin function. Then
6= Z[g](F") = (3665 + 1070, )W ba ® /1.

Remark 7.5: Through the metric g, any vector field v: E — L* ® VE can be identi-
fied with the quantizable spin function v°. Then we can define the quantum spin vector
field associated with v as S[v] := Z[¢"] = {Z(v) ® 1o, and the corresponding qu-
antum spin operator as S[v](#") := iS[v].¥". On the other hand, the quadratic spin
function associated with g (¢" = 1) yields the operator 52, called the square of spin,
given by

5% = 6725[e,] o S[es] = Sler] o Slea] + S[ez] o Slez] + S[ea] o Slez] = 21.
Here one recovers the well-known facts about the spin operators. The operator 5% is

the Casimir invariant [14, 10] of this representation of su(2). For any unit vector field

u, S? and §[u] constitute a maximal set of commuting operators, with the eigenvalues

1(3 +1) = § and +3, respectively. .

From Sections 4.1 and 4.2 we recall that for a classical spinning particle we have the
Hamiltonian HS := H — phB’. Consider the Hamiltonian function

H:=uoHS/h: J1E x(L" ® VE) = R.

This is the main example of a quantizable function which has both phase and spin
components. We have the quantum vector lift

Z[H] := Z[ugH/h] — S[uopBl,
with the coordinate expression
Z{H] = 8 + 2(e.PCy, — 2uopBP)of,wb,
=0y + 16, P ,0,,wbs = Bp + 1B, w b,
The corresponding almost-quantum operator is then given by
Z[H](@") = (o™ + L&, PIR] 0,07 )ba ® V.
We obtain the following commutators:
[2[2"], Z2{="]}(") = O,
(2[2°], Z[p;/B1(P") = 0,
[2[y’], Z[px/RI@P") = i8]0,
[Z[p;/R), Z[px/RINP") = R[B], 5% "bs ® /7,
[2[2*), Z[4])I2") = O,
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[Zlp;/h), Z[s]J(F") = —iZ[V;[Clo](F"),

[(Z[y’}, Z[H]}¥™) = 0,

[2[2°), 2(H])(@") = —iw”,

(Z[p//h), Z[HN(W") = —4e,"PRII™),] 0,5 05bs @ /1.
[Z(H], Z[$])(#") = iZ[Vo[T*]5](#7).

The Hamiltonian function is also the main example of a quantizable function
whose associated sheaf and pre-Hilbert operators do not coincide. We have

H = Z[H] — iuy P.
that is
H@") = Z[H](F") — Lup +E#[¥] ® /7

h
= —uO%AOW" — uO%GOW" - UO%Z(B)W"

T nm — m
= uOﬁgﬂ” (Pj/h - U“g%‘) (pk/h - uogak)W -

m
~u’ T aol — u(,gZ(B)&V’.
The generalized Pauli equation can now be written as
(10" + B 0", @ /o = H(P).

Then it would be nice if we were able to interpret the second term on the left-hand
side as arising from the quantization of the energy of interaction between spin and
gravitational field, to be included in the total spin energy operator composed of a
spin-gravitation term and a spin-magnetic field term. An interpretation of this kind
would need a deeper understanding of classical and quantum energy in the general
relativistic Galilean context. We shall address this question in a future work.

Finally, the pre-Hilbert bundle yields the Hilbert bundle HW" — T by the standard
completion procedure. This bundle carries the standard probabilistic interpretation of
quantum mechanics. We stress that we do not have a unique Hilbert space, but a
Hilbert bundle over time. Indeed, a unique Hilbert space would be in conflict with
the Galilean principle of relativity. On the other hand, a global observer yields an
isometry between the fibres of the quantum Hilbert bundle.

Moreover, our symmetric pre-Hilbert operators will yield selfadjoint Hilbert ope-
rators under suitable functional hypotheses concerning the quantizable functions in-
volved and the potentials of the concrete background spacetime.
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