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We present a new covariant approach to the quantum mechanics of a charged l/2-spin 
particle in given eiectromagnetic and gravitational fields. The background space is assumed 
to be a curved Galilean spacetime, that is a curved spacetime with absolute time. This 
setting is intended both as a suitable approximation for the case of low speeds and feeble 
gravitational fields, and as a guide for eventual extension to fully Einsteinian spacetime. 
Moreover, in the flat spacetime case one completely recovers the standard non-relativistic 
quantum mechanics. 

This work is a generalization of [18], where the quantum mechanics of scalar particles 
was formulated within a similar approach. 

1. Introduction 

Recently Jadczyk and Modugno [17, 181 have proposed a new geometric formu- 
lation of quantum mechanics of a scalar charged particle, with given gravitational 
and electromagnetic classical fields, in the framework of a genera1 relativistic Gali- 
lean spacetime. In this paper we extend that formulation to quantum mechanics of 
a particle with spin l/2. 

Our work is related to abundant literature on classical and quantum Galilean 
theory, starting from E. Cartan [l] (see also [4, 5, 2, 31, [6], [13], [21], [36, 371, 
[26, 271, [291, [321, [341, [22, 23, 24, 25, 191, [26, 271, [29], [32], [34], [36, 371, [39], 
[40, 411, [421). M oreover our theory has evident relations, but also important differ- 
ences, with geometric quantization (see [43]). Our touchstone is the standard quantum 
mechanics [38]. 

Our research is intended as a step toward a covariant formulation of quantum 
mechanics in the Einstein general relativistic background. In fact, such a full goal 
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would demand the solutions of too many problems at the same time; so, it is worth 
splitting the research into steps by separating different kinds of difficulties. 

We found that the Galilean general relativistic spacetime provides a suitable back- 
ground for the start. Thus our current setting stands in between a non-relativistic and 
a fully relativistic formulation of quantum mechanics. It is mathematically self-consist- 
tent, while from the physical point of view it is intended both as a suitable appro- 
ximation for the case of low speeds and feeble gravitational fields, and as a guide 
for eventual extension to fully Einsteinian spacetime. Actually, the assumptions of a 
classical spacetime with the absolute time and an Euclidean spacelike metric allows 
us to skip (temporarily) some difficulties related to the Lorentz metric, but we pay 
a price for that. N amely, we are forced to consider a weaker version of the Maxwell 
and Einstein equations. Nevertheless, what we learn in this weakened context seems 
to preserve its interest in view of future developments. Moreover, in the flat space- 
time case one completely recovers the standard non-relativistic quantum mechanics 
along with a new understanding of known objects. 

The mathematical language of the paper is that of the geometry of fibred mani- 
folds, jets and non-linear connections. We do not deal explicitly with theoretical group 
representations: rather we directly obtain physical objects from our initial structures 
via functorial methods; of course, the resulting objects are automatically equivariant 
with respect to the action of the groups of automorphisms of the initial structures. 
The reader who is not completely acquainted with this language will find, besides 
intrinsic formulations, a full coordinate description of all results. 

The main points of our theory can be summarized as follows. 
First, we sketch the basic features of our background classical spacetime. Namely, 

we assume a 4-dimensional spacetime fibred over time and equipped with a spacelike 
Euclidean metric, a time preserving linear connection (the gravitational field) and 
a 2-form (the electromagnetic field). We can couple the gravitational and electro- 
magnetic fields into a unique spacetime connection; this yields a number of ‘total’ 
geometric objects, including a cosymplectic 2-form which will play a key role. We 
postulate the closure of this form, thus obtaining a link between the above geomet- 
rical structures and the first Maxwell equation; moreover, we postulate a kind of 
‘reduced’ Einstein and second Maxwell equations expressing the interaction of the 
above fields with their matter sources. The cosymplectic form yields a distinguished 
Lie algebra of functions which are called ‘quantizable’ in view of their role in the 
theory of quantum operators. 

Then we develop the quantum theory starting from the quantum bundle, defined 
as a Hermitian bundle over spacetime; its fibres are either l-dimensional (scalar case) 
or 2-dimensional (spin case). On the scalar quantum bundle we assume a Hermitian 
connection which, in a sense, is parametrized by all classical observers, and has some 
natural properties (it is ‘universal’ and its curvature is proportional to the cosymplec- 
tic form). In the spin case we postulate a ‘Pauli map’, which is an isometry between 
the bundle of spacelike vectors and the bundle of Hermitian endomorphisms of the 
quantum spin bundle; this, via a natural link with the scalar case, yields a Hermitian 
connection on the quantum spin bundle. This is our only primitive quantum struc- 
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ture; all other objects will be derived from it getting free from observers through 
a ‘principle of projectability’, which is our implementation of covariance. In particu- 
lar, we obtain a distinguished Lagrangian which yields the generalized Pauli equation 
and conserved quantities. Quantum operators are obtained in three steps. First, we 
exhibit a distinguished algebra of quantum vector fields which preserves the quan- 
tum structures, and we study its relation with the algebra of quantizable functions. 
Next, we show the natural action of quantum vector fields, as ‘almost-quantum opera- 
tors’, on ‘quantum histories’ (sections of the quantum bundle). Finally, we introduce 
the quantum Hilbert bundle over time and show how to obtain quantum operators 
from almost-quantum operators. To this end, we have to eliminate the time deri- 
vative; we accomplish this task by a geometric procedure which uses the quantum 
Euler-Lagrange operator. 

The original features of the paper can be summarized as follows. 
I. Time, both in the classical and quantum theory, is not merely a parameter, 

but it is an essential ingredient which deeply affects all involved structures. Actual- 
ly we point out-in contrast to the approach which is usually implicit in geometric 
quantization-that the spacelike structures do not carry sufficient physical information 
for a covariant theory. Accordingly, we deal with a cosymplectic rather than symplectic 
form, with a spacetime rather than vertical (spacelike) connection, and so on. Also, 
jets are required for a manifestly covariant formulation; in particular, the jet space of 
spacetime plays the role of phase-space and replaces the more standard tangent space. 

II. New connections are introduced and studied. These play a fundamental and 
unifying role. In particular, the coupling of the electromagnetic and gravitational fields 
is represented by a spacetime connection which works in classical field theory and 
mechanics as well as in quantum mechanics; on the other hand, all quantum struc- 
tures are derived from the quantum connection. With regard to the latter, we ob- 
serve that the notion of ‘universality’ of a connection allows us to skip the prob- 
lem of polarizations, which is typical in geometric quantization (we do not need to 
know the constants of motion in order to develop the quantum theory). Further- 
more, the quantum Euler-Lagrange operator is interpreted as a connection on the 
infinite-dimensional Hilbert bundle (whose definition uses the notion of smoothness 
introduced by A. Frolicher). 

III. We obtain a generalized Pauli equation and quantum operators in the curved 
case. Actually, a quantization procedure (a way of obtaining quantum operators from 
classical observables) was not the primary goal of our approach; however, as a matter 
of fact, we get a quantization just as a free consequence of geometric results arising 
naturally in our discussion. We have obtained natural algebras of quantizable func- 
tions and quantum vector fields, which yield quantum operators, in two steps: first 
by considering sections of the quantum bundle over spacetime (almost-quantum ope- 
rators), and then sections of the Hilbert bundle over time. In particular, we are able 
to skip the problems of ordering, and achieve the quantum operator corresponding 
to energy. Note also that, differently from other geometrical approaches to quan- 
tum mechanics, no new quantum example is required (all non-relativistic examples of 
standard quantum mechanics hold automatically in our formulation). 
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IV. Incidentally, several results are obtained within the covariant approach to clas- 
sical mechanics on a curved Galilean background. In particular, the study of the first 
and second order spacetime connections and the cosymplectic form, and a compact 
formulation of the link between the (non-relativistic) metric and spacetime connection. 
Moreover we draw conclusions which are not a common belief: classical mechanics can- 
not be covariantly formulated through a Lagrangian or Hamiltonian approach; only an 
approach based on a non-linear connection is suitable for that (the Hamiltonian lan- 
guage, however, has an important role in the correspondence principle for quantum 
mechanics). 

V. Finally, we introduce a new mathematically rigorous treatment of physical quan- 
tities which makes our approach manifestly independent of the choice of measurement 
units. Incidentally, these methods may also raise a pedagogical interest. 

Remark: Throughout this paper we shall consider smooth manifolds and maps. For 
the sake of simplicity we shall always refer to global maps. In some situations, however, 
one should more properly refer to sheaves of local maps. The reader who is interested 
in such a refinement will have no difficulty in reformulating our statements accordingly. 

2. Preliminaries 

2.1. Recalls on fibred manifolds 

In this section we summarize the main concepts and notations of differential geo- 
metry which we shall use throughout the paper. 

2.1.1. Tangent space 

Let M be a manifold. We denote the R-Lie algebra of functions f: M -+ R by 5’34, 
the tangent bundle of M by TM --) M and the R-Lie algebra of vector fields X: M --+ TM 
by IM. A local chart (xx) of M induces a l&al chart (z?,z?) of TM, a local basis of 
vector fields (ax) := (&CA) and a dual local basis of forms (&) := (&). The tangent 
prolongation of a map f: M + N is the map Tf: TM -+ TN with coordinate expression 
Tf = dAfidX @ (& 0 f). 

2.1.2. Fibred manifolds 

A manifold F is said to be fibred over the base space B if it is equipped with a 
surjective map p: F + B whose rank equals the dimension of B. A fibred manifold can 
be covered by local trivializations defined on open subsets F’ c F. Thus the concept of 
a fibred manifold is more general than that of a bundle (which can be covered by local 
trivializations defined on open subsets of the type F’ = p-l(U), where U c B is an open 
subset). 

A chart (xx, y”) of F is said to be jibred if the coordinates ?’ depend only on the 
base space. A fibred chart of F induces the local frame of vector fields (ax, &) and the 
dual local frame of forms (d’, di) on F. Hence, we obtain also the chart (z’, vyi; ix, #) 
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of TF, the local frame of vector fields (ax, 8,; ai, d;) and the dual local frame of forms 

(&, di, d?; d”). 
We have a natural projection TF + TB. A vector field X: F + TF is said to 

be projectable if it admits a projection g: B + TB on the base space, i.e. if its 
coordinate expression is of the type X = XX& + X2&, with Xx E 3B. 

The vertical subbundle VF c TF of F is constituted by all vectors tangent to the 
fibres and is characterized by the equation (i A = 0). Thus, a vector field X is vertical 
iff it is projectable over 0, i.e. iff X A = 0 The subset VF c ‘TF of all vertical vector . 
fields is an ideal. 

We have a natural projection T*F + V*F, yielding the vertical 
forms which we shall indicate by a check ( ” ). Thus, for example, 
frame of the vector bundle VF --) F. 

restrictions of 
(a) is a local 

2.1.3. Jet space 

The jet space at J: E B of F + B is defined to be the set Jl,F of 
classes of sections s: B + F which have the same value of S(Z) 

all equivalence 
and the same 

derivatives &,s”(z). The jet space JIF is the union of all J1,F for z E B. We have 
the natural fibred charts (xx, y”, yi) of JIF, and the jet prolongation jls: B + JIF 
characterized by the coordinate expression (y”, yi) o j,s = (s’, 8~s~). We can identify 
j,s with Ts: TB + TF, which projects over 1 B. Accordingly, we can regard JIF as a 
subbundle of T’B 8~ TF whose elements are projectable over 1~. This inclusion is a 
map1 

A: JIF + T*B & TF, 
F 

with coordinate expression A = dX @ ~~ = dX @(a~ + ~;a,). We also have the com- 
plementary map 29: JF + T*F @F VF, with coordinate expression 19 = 19.’ $3 a, = 

(# - yjxd’)@$. 
The vertical bundle of JIF over the base space F turns out to be 

VFJIF = JIF $T*B$ VF). 

2. I. 4. Connections 

Connections will play an essential role in our approach. There are several equ- 
ivalent ways to define the concept of a (possibly non-linear) connection (see [S, 20, 
30, 331). 

In general, we present a connection on a fibred manifold F + B as a section 
c: F + JIF which, via the natural inclusion A, can be seen as a horizontal prolonga- 
tion c: F + T*If 8~ TF, whose coordinate expression is of the type c = dX 8 (a,, + 
+cx’a,), with c: E FF. The associated vertical projection is u,: F --7‘ T*F @F VF, with 
coordinate expression V, = (d3 - cjdx) @ 8, . 

‘A is the Cyrillic character corresponding to Latin d. 
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The covutiunt differential of a section s: B --f F is defined to be the section 

Vcls := jls - c o s = Ts A I/,: B + T*B $3~ TF, with coordinate expression VXS’ 
= dxsi - cx” 0 s. 

The curvature tensor of the connection c is defined to be the tensor field R[c]: F -+ 
A’(T*B)c%VF characterized by R[c](u, U) := i([ UJC, VAC]-[u,u]x) for any two vector 
fields U,ZJ: B --f F. Namely the curvature tensor ‘measures’ how much the horizontal 
prolongation c differs from being a morphism of Lie algebras. Its coordinate expression 
is R[c] = R$dX Ad” @ a,, where Rx p = a,,ci - clphcp;. 

2.1.5. W-tical space of a vector bundle 

If p: F + B is a vector bundle, then one has the natural identification VF -_ F XBF. 
This fact yields some important consequences. First, any section s: B + F can be 
regarded as the basic vertical vector field F + VF: cp H (cp, s(p(cp)). Hence, if w: F --) TF 
is a linear vector field, projectable over g: B --f TB, then the Lie bracket [v, s] is a basic 
vertical vector field, i.e. it determines the section w.s: B + F with coordinate expression 
(KS)” = VA&S j - vJksk. Moreover, any linear map f: F + F fibred over B can be 
regarded as the vertical vector field F -+ VF: cp H (cp, f(v)). In particular, the Liouville 
vector field2 is defined to be the vertical vector field II: F -+ VF: cp H (cp, ‘p) associated 
with 1~. 

2.2. Units of measurement 

Our theory is to be manifestly invariant with respect to any choice of measurement 
units; this is just an aspect of the general covariance. In order to treat measurement 
units in a rigorous way, we need a few technical concepts. 

We observe that homogeneous units can be added and multiplied by real numbers; 
however, in some cases, no zero unit exists and only multiplication by positive real 
numbers is allowed. These facts lead us to define algebraically a semi-vector space as 
a semi-field U associated with the semi-ring R+ (the axioms are analogous to those 
of vector spaces, with the only difference that ILI and Rf are additive semi-groups and 
not groups). Moreover, a semi-vector space is said to be positive if the multiplication 
by numbers can be extended neither to Rf U (0) nor to R. Each vector space is also 
a semi-vector space; moreover, a vector space and a basis yield a positive semi-vector 
space. Thus, a semi-vector space is a vector space, or a positive semi-vector space, or a 
positive semi-vector space extended by the zero element. 

Several concepts and results of standard linear and multi-linear algebra related to 
vector spaces can be easily reproduced for semi-vector spaces and positive semi-vector 
spaces (including linear and multi-linear maps, bases, dimension, tensor products and 
duality, with respect to IR?). The main precaution to be taken is to avoid formulations 
which involve the zero element. 

In particular, we can define the tensor product (over I@) of semi-vector spaces; the 
tensor product (over IR+) of a semi-vector space and a vector space becomes naturally 

2u is the Cyrillic character corresponding to Latin i. 
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also a vector space. Consider an oriented l-dimensional vector space U and the associa- 
ted positive sub semi-space U +; if V is another vector space, then lLl+ @iv = U@V and, 
in particular, U+ @ IR = UJ @ R. Moreover, we can define the lR+-dual U* of a semi-vector 
space U; if UJ is a positive l-dimensional semi-vector space, then we obtain the natural 
identification U @ W* Z R+. Furthermore, if UJ is a positive l-dimensional semi-vector 
space, then we can easily define the ‘root’ (positive l-dimensional semi-vector) space 
U1lr of U, for any positive integer T. 

DEFINITION 2.1, A unit space is a l-dimensional semi-vector space. * 

In order to write formulae which resemble the standard ones used by physicists, we 
adopt a ‘number-wise’ notation for unit spaces. Namely, if U and V are semi-vector 
spaces and u E U, v E V, then we write UZ) - u @ V; accordingly, we set ILJ2 := UJ @ U 
and the like. Moreover, if U is a unit space which does not contain 0, then we write 
U-’ = LJ* and denote by l/u E U-l the dual element of u E ILJ. 

In our theory we shall assume the following fundamental unit spaces: the oriented 
vector space T of time units, the positive space Ml of masses and the positive space L 
of lengths. A time unit of measurement is denoted by ug E ‘P or u” E T+*. We also 
set uOO : = u” @ u” and the like. For any v E 7i”, w E T*, according to our conventions, 
we shall often write u”u, uow E R. 

Throughout this paper we shall be often concerned with scaled tensor fields, i.e. 
with sections of tensor bundles originated by spacetime and tensorialized with unit 
spaces. It is physically relevant the fact that fundamental tensor fields such as the 
metric, the electromagnetic field and others are scaled. 

We shall attach to each particle a mass m, a charge q and a magnetic constant 
CL, where 

Moreover, we shall postulate two universal coupling constants, namely the Newton 
gravitational constant and the Planck constant 

KET*%L3@M*, FL E (T+)* $3 IL2 @ M. 

As it is well known, in the Galilean framework we miss the speed of light c, which 
cannot be interpreted in this context. Of course, this is a weak feature of the Galilean 
theory. 

3. Quantum mechanics of a scalar particle 

This section is a summary of the main ideas involved in the scalar case, especially 
those that are needed for the subsequent generalization to the quantum mechanics 
of a particle with spin. We shall skip certain details concerning results which, later, 
will be stated in the more general spin case. For further details and complete proofs 
the reader should refer to [18]. 
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3.1. Classical spacetime 

We introduce classical spacetime and the related fundamental structures that are 
needed as a background for the quantum theory; further details can be found in [18]. 

POSTULATE Cl. Classical spacetime is assumed to be a 4-dimensional oriented fibred 
manifold t: E --+ T, where the base space T (time) is a l-dimensional oriented affine 
space associated with the vector space T. * 

We shall not assume any distinguished splitting of the spacetime into space and 
time (there is no distinguished observer). Actually our theory is observer-independent, 
namely it fulfils the general relativity principle in the ‘Galilean’ sense (with the absolute 
time). 

We shall use fibred spacetime charts, denoted by (xx) : = (x0, y”), where the coor- 
dinate x0 is defined through the time unit u” E ‘I’ (see Section 2.2) and a time origin 
r. E T by x0(e) := uO(t(e) - ~0). 

We have the scaled time form dt: E ---f ‘iT@ T’E, with the coordinate expression 
dt = u. 18 dz”. 

Each fibre E, of E represents the ‘space at a given time’ T E T; by analogy with 
Einstein relativity we say that the vertical space VE is constituted by all ‘spacelike’ 
vectors on E (while we are not allowed to use the term ‘timelike’ in the present context). 

POSTULATE C2. The fibres of E are assumed to be scaled Riemannian manifolds, 
i.e. spacetime is assumed to be equipped with a scaled vertical Riemannian metric g: E 
--+ IL2 @I (V*E @E V*E). + 

The coordinate expression of the metric is g = ghjayh @ I& (we indicate by a check 
( ” ) vertical (i.e. spacelike) restrictions). We stress that, differently form the Einstein 
case, we do not have a full spacetime metric: this is a weak feature of the Gali- 
lean theory. The metric yields vertical ‘index-lowering’ and ‘index-raising’ isomorphisms, 
gb: VE-+IL2@V*Eandg#:IL2@V*E 4 VE, but no similar isomorphisms between TE 
and T*E. 

The metric and the time-form, along with the chosen orientation, yield the scaled 
spacetime and spacelike volume forms: 

ZI: E -+ (T@lL3)@ A~T*E, 7: E ---f IL3 @ /I~ V*E, 

with coordinate expressions 

where for brevity we set 

dX := dlcX > w:=d”Ad%d2Ad3, wo:=do~w=d1~d2~d3. 

The phase space of our theory is the jet bundle JIE + E; its induced fibred coordina- 
tes are denoted by (x0, yj, ~6). From the general theory of jet spaces (Subsection 2.1.3) 
we recall that JIE can be regarded as a subbundle of T* @ TE over E, via the natural 
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map A which has the coordinate expression A = ufl @(&J + ~;a,~). Then JiE is consti- 

tuted by all tensors u for which the time component U$ = 1. In other words, having 
chosen a time unit uo, the phase space JIE can be identified with the affine subbundle 
of TE constituted by vectors v with the time component 2r0 = 1. We stress that the 
tangent space is insufficient to represent the phase space of a theory which is explicitly 
independent of the units of measurement. 

The classical particle motion is defined to be a section s: T 4 E; its (observer-inde- 
pendent) velocity is the jet prolongation jis: T + J,E c ?r* $x TE, with the coordinate 
expression 

j1.s = U0 @3 ((&Jo s) + &.?‘(a, 0 s)). 

Thus the jet space JIE can be seen as the space of all 4-velocities of the particle. 
We stress that 4-velocity v has no norm il,uI[, and that its physical dimension is given 
just by ll’” and not by T* C$ IL. 

An observer is defined to be a section o: E 4 JIE, i.e. a field of particle vel- 
ocities. Incidentally note that an observer can be regarded as a (possibly non-linear) 
connection on E + T (Subsection 2.1.4). 

Differently from the Einstein case, the metric g does not characterize a unique 
spacetime connection; in order to fully appreciate the question, we need to examine 
spacetime connections in some detail, We first remark that there is a natural bijection 
between &-preserving torsion-free linear connections on the tangent bundle TE + E 
and torsion-free affine connections on the jet bundle JlE ---i E, i.e. respectively 

K: TE + T*E @ TTE, I-: J,E 4 T*E 8 T.JIE. 
TE .I] E 

The coordinate expressions of such connections are 

I< = dX C3, (ax + (Ki,Ij” + K:,j.o););), r = dX @(ax + (&y,:. + &)a:‘). 

with 

“x”P = K,L = rip = r;,. 

Then a spacetime connection is defined to be any of such equivalent connections. 
One deals preferably with K in classical field theory, and with r in classical and 
quantum particle mechanics. 

A spacetime connection yields, by vertical restriction, a linear connection 

K’: VE + T*E @ TVE 
VE 

on the bundle VE + E, with the coordinate expression K’ = d” 8 (8, + Kih$hi31’). 
This connection will play a central role in the classical and quantum theory of spin. 
A further vertical restriction gives the vertical connection 

I?: VE --7‘ V*E @ &/EVE 
VE 

(which, more properly, is a family of connections: for each 7 E T, kT is a connection 
on the manifold E T : = t-l(~)). Its coordinate expression is k = cP 63 (8, + Kl k$kf3,‘). 
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A spacetime connection is said to be metrical if it preserves the vertical metric, 
i.e. if V[K’]g = 0. If K is metrical, then k is exactly the Riemannian connection 
on the spacetime fibres; however, if fi is the Riemannian connection, then K is not 
necessarily metrical, since V[K’]g involves the covariant derivatives of g also along 
non-spacelike directions. 

Recalling (Subsection 2.1.3) that 

VEJIE = JIE ,““* @ VE), 

the vertical-valued l-form associated with a spacetime connection I’ can be seen as a 

map 
vy: JIE -+ T’ @ (T*J& & VE) 

1 

with the coordinate expression z+ = ($ - (r:,g: + r:J&) @ 8,. 
A spacetime connection yields the following two important objects: the (non-linear) 

connection 
Y:=AJ~: J1E-+‘I’*@TJlE 

on the fibred manifold JIE + T and the scaled 2-form3 

0 := vr\r9: JIE+(T*@iLz)@ A~T*J~E 

on the manifold J$ (here X indicates exterior product followed by a metric contraction 
and 29: JlE + T*E@EVE is the complementary map of A introduced in Subsection 2.1.3). 
These are called the second order connection and the cosymplectic form associated with 
r. Their coordinate expressions are 

y = U0 @ (aa + y;a, + +a;>, n = gj& @ (dj, - y4P - I++) A 6’“, 

where 
73 := rA,&& + 2rloy,h + r,j,, r, := (r,j,y,” + rjO)dX. 

These objects fulfil the equality y J R = 0, and it can be seen that they characterize r 
itself. 

For any motion s the map 

V[,-y]jr s : = j2s-~oojls: T--,(IIT*@,T’)c~VE 

is called the (observer-independent) acceleration of s. Moreover, 

dtr\L’AQr\O: J1E--t(~-2~iL6)@ /i7T*J1E 

is a scaled volume form on JlE. Also, if o: E + JIE is any observer, we have the 
observed scaled 2-form 

@ := 20’0: E -+ (‘II’* @ lL2) @ /I~ T*E, 

which, in a coordinate system adapted to o (namely yi o o = 0), has the expression 
@= -2u” @ (rojodo A d-l + rhjodh A d3). 

3JaniSka has proved that this form is essentially the unique natural object of this kind in the present 
framework. 
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From coordinate expressions it can be proved that, for a given observer, a space- 
time connection is characterized by V[K’]g and @. Namely these objects can be seen, 
in a sense, as the symmetric and antisymmetric parts of r with respect to a splitting 
determined by o. This is the keypoint for understanding how to characterize distingu- 
ished spacetime connections. In fact, a complex theorem proved in [18] states that the 
condition that R is closed, i.e. 

dQ = 0: (1) 

is equivalent to the couple of conditions that K is metrical and, for every observer, 
Q, is closed; a connection that satisfies this equation is then determined by g and a 
local potential of @, that is a l-form 

a: E: + (7r* @L”)@jT*E 

such that @ = Zda. Then a distinguished spacetime connection obeying eq. (1) is 
determined, similarly to the Einsteinian case, by ten scalar potentials: here, these are 
the six components of g and the four components of a. 

POSTULATE C3. We assume that the gravitational and electromagnetic fields are 
represented, respectively, by a spacetime connection rb and by a scaled 2-form 

F:~+(L@M)i’“c3j A’T*E. * 

The gravitational and electromagnetic fields can be coupled in a natural way 
through any constant c E ‘IT* @IL 3/2 8 M1-i12. Namely, consider a total cosymplectic 

f on?1 

L$ := Rb + ;cF. 

where L?h is the cosymplectic form of rh. Then one sees that fi, characterizes, in a 
natural way, a spacetime connection; namely there is a unique spacetime connection 
r? such that Qc = or, 7i 19 (that is, L?, is exactly the cosymplectic form associated 
with rc). Actually, we can write r, = rh + r:, where 

r,E : JIE --i ?r* @T*E 6~ VE. 

We have the coordinate expressions: 

(r& = rbllc, (r& = rbik + i 2 U()CPk. (rc& = rQ& + uOC~;j. 

Furthermore, the second order connection yr := A J r, associated with r,, fulfils the 
condition “ic _J Q, = 0 and splits as y = yb + r,‘, where 

y;: JIE+a*@Ir*@VE 

has the coordinate expression 7,” = c(F:, + F2,y$’ @a:). 

POSTULATE C4. We assume that the total connection r,. obeys the first field equa- 
tion df& = 0 for all c. * 

The closure of 0, implies that it is locally exact, but we cannot exhibit any 
distinguished potential. Clearly, this postulate is equivalent to the couple of conditions 
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dL?h = 0 and dF = 0 (first Maxwell equation). Also the observed cosymplectic form 
splits as @ = @ + CF. Hence, a local potential a of @ contributes both to the 
gravitational and electromagnetic fields, and it reduces to the usual electromagnetic 
potential in the flat spacetime case. 

In [18] two possible natural choices for the coupling constant c have been taken 
into account (in the spin theory we shall consider a third possibility). The first choice, 
which yields the classical mechanics of a given charged particle,* is c = q/m, where 
qEQ:=T*@IL 3/2 @ M1l2 and m E Ml are the charge and the mass of the particle. 
We obtain the (classical) equation of motion of the particle which can be expressed as 
V[rC]jls = 0 with c = q/m. Then 7,’ turns out to be just the Lorentz force. 

The second choice is c = 6, where n is the Newton’s gravitational constant. This 
choice allows us to couple r, with matter sources. Namely: 

POSTULATE C5. We postulate the second field equations: 

rtl =T, di@F=pdt, 

where ,b is the Ricci tensor of Kh; T is the timelike energy tensor, which involves K and 
contains matter and electromagnetic terms; divb is the spacelike divergence operator; p 
is the charge density of matter. * 

These equations yield the following synthetic formula: 

where r+ is the Ricci tensor of K&, and Tfi := T + &p dt @ dt. 
We remark that these equations are weaker than the usual Maxwell-Einstein equa- 

tions. In fact, because the metric is only spacelike, .h and divb F carry less information 
than the corresponding objects do in the Einstein case. Thus they can be covariantly 
coupled only with the timelike components of the energy tensor and of the current. 

Note also that the second field equations do not enter directly the quantum mecha- 
nics of one particle, which is formulated with givea background fields. One deals with 
them only when considering specific examples of spacetime. 

3.2. Scalar quantum mechanics 

In the framework of the above described spacetime geometry we can now formulate 
the quantum mechanics of a particle with given mass m and charge q, subjected to 
given gravitational and electromagnetic fields. We shall deal with the total objects r,,,, 
n q/m, Yq/nl . . . induced by the coupling constant c := q/m (Section 3.1). For the sake 
of simplicity, these will be usually denoted simply by r, 0, y,. . . 

First we introduce the bundle which ‘carries quantum kinematics’. We stress that, 
differently from standard geometric quantization, this bundle is over spacetime. 

POSTULATE Ql. The scalar quantum bundle is assumed to be a (complex) line-bundle 
TQ: Q -+ E over spacetime, endowed with a Hermitian metric hQ. * 

*The same choice for a coupling constant yields the fundamental object of the quantum theory, the 

quantum connection (see Section 3.2). 
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We shall denote by b an ha-normalized frame of Q, and by z the corresponding chart 
on the fibres of Q. The induced frame of VQ + Q will be denoted by dz. Quantum 
histories are described by quantum sections !4? E + Q, written locally as 9 = $b with 
ti := z o 9. In view of the Hilbert scalar product it is also useful to regard a quantum 
section as a quantum density 

The Planck constant (Section 2.2) is defined as an element 

Next we introduce the quantum connection, which is the main object of the qu- 
antum theory. Consider a general Hermitian linear connection Y on the pullback 
bundle QT := JIE xE Q + JIE; it can be seen as a section5 

Y: QT ---t T* JIE y; TQ 
1 

with the coordinate expression 

The coordinate condition Yy = 0 for Y can be formulated in a geometric way in 
the framework of systems of connections, by saying that Y is a ‘universal’ connection. 
Very briefly, one proves the following fact (see [18, 8, 301 for details): if {[[o]} is a 
system of connections of the bundle Q + E, parametrized by the family of observers 
{o}, then there exists a unique connection Y of the bundle Q’ + JIE such that, 
for each observer o, the pullback o*Y equals [[o]. This connection Y is said to 
be universal, and is characterized in coordinates by the condition YA = &, Y(: = 0. 

Conversely, a connection Y of the bundle QT + JIE such that ?I: = 0 is the universal 
connection of a system of connections {([o]} on the bundle Q + E. 

POSTULATE Q2. We assume that the quantum connection Y is a Hermitian linear 
universal connection whose curvature is proportional to the classical total cosymplectic 
form, according to the formula 

where 1~ = z b is the identity of Q. * 

Then the quantum connection satisfies ?I; = 0. Because of the curvature require- 
ment, the expression of the other components of Y turns out to be of the type 

5Y is the Cyrillic character which is usually transliterated as Ch. 



112 D. CANARUTTO, M. MODUGNO and A. JADCZYK 

where 

are the classical Hamiltonian and momentum associated with the frame of reference 
attached to the chosen chart, given a suitable gauge of the total potential a of @. 

We stress that the two simple assumptions, of the quantum bundle to be over spa- 
cetime and of the quantum connection to be universal, enable us to avoid the intricate 
problems related to polarizations, which are typical in geometric quantization. 

If P is a quantum section, then we have the quantum covariant differential 

V[Y]!P: JIE + T*E @ Q, 
E 

with the coordinate expression 

Essentially, the quantum connection is the only structure assumed for the quantum 
mechanics of a scalar particle; all other quantum objects, including the quantum La- 
grangian and quantum operators, can be derived from it. But note that the quantum 
connection ‘lives’ on the pull-back bundle Qt --+ JIE. This fact can be expressed by say- 
ing that Y is ‘parametrized’ by all observers (given an observer, one obtains by pull-back 
an object living on Q). However, physically significant objects should live on Q, i.e. qu- 
antum theory should be observer-independent. This problem can be solved by means 
of a principle of projectability. Namely, each time we are looking for a physical object 
on Q, we happen to meet two analogous distinguished objects on Qf, and we are able 
to show that there is a unique linear combination of them which projects on Q. Then 
we assume that this combination is the searched physical object. This procedure works 
pretty well in all cases and yields an effective heuristic method. Thus it can be regarded 
as a new way of implementing the principle of general relativity in the framework of 
quantum mechanics. 

The principle of projectability enables us to exhibit a distinguished quantum Lagran- 
gian? 

Lc: J,Q + IL3 @ /i4 T*E, 

with the coordinate expression 

6Here we do not write down the procedure explicity, since it will be repeated later in the more general 
case of a particle with spin. 
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The quantum Lagrangian yields the quantum 4momentum 

p: J,Q-?r*@TE@Q, 
E 

with the coordinate expression 

p[!P] = u” $ + a,>?$ dh @bb. ) ) 
The Euler-Lagrange equation associated with the quantum Lagrangian turns out 

to be the generalized Schrijdinger equation 

which can be also obtained, in a coordinate-free way, from the quantum covariant 
differentials of P and p via the principle of projectability. 

The invariance of the quantum Lagrangian with respect to the group U(1) yields 
a conserved probability 4-current j: J,Q + JL” @ r\“T*E, with the coordinate expression 

where dx := & J U. 

3.3 Phase quantum operators 

In this section we describe the correspondence between classical functions and 
quantum operators. This is achieved by a new approach which is only roughly com- 
parable to the usual one based on symplectic geometry. Actually, our phase space 
JIE is odd-dimensional, thus there is no symplectic structure on it. Instead, we have 
the cosymplectic form R which yields the linear morphism over JIE: 

Rb: TJIE t T’J,E: IJ H +). 

This is not an isomorphism. In fact, from y J R = 0 it follows that Rb vanishes on 
any II E TJlE which is in the image of 7: E + T* @TJIE. However, consider the 
vector subbundle over JlE: 

T,JIE := {C#J E T*JIE : y , +!I = O}; 

let 7: JIE 4 ?T be any smooth map (called a time scale), and T,JlE the subbundle 
of TJIE whose elements have time component equal to 7, namely 

T,JIE := {v E TJlE : Y’ = T(TT(w))}, 

where T: TJlE + JIE is the natural tangent bundle projection. Then one sees easily 
that Rb is an isomorphism T, JIE -+ T; JIE. 

Now, with any function f: JIE + R we can associate a l-form: 

d,f := df -? Adf: JIE + T;JIE, 
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and, for any time scale 7: JIE -+ T, the vector field 

f,# := fI,#(d, f): JIE + T, JIE, 

where a,# := (fib)-‘. In particular, by taking r = 0 we can define the generalized 
Poisson bracket m # # 

{fl> fz) := - fl((fl), > tfz)ll>, 
ii 

which has the property 

{fi> f& = Kfi),#> <f2>,#1. 

In the quantum theory we shall be involved with projectable Hamiltonian lifts. Now, 
one can prove that the vector field f,# is projectable over a vector field E + TE iff 
f is, with respect to the fibres of JlE -+ E, a polynomial of degree 2, whose second 
derivative equals (m/h)Tg. Namely, the coordinate expression of f must be of the type 

m 
f = uoof”2figjCY;Y; + fjY{ + fo 

with f~,f,:E-+lR, f”: E -+ T, and r must be equal to f”. Functions of this kind will be 
called quantizuble phase functions. The classical time, position, momentum, Hamiltonian 
and Lagrangian functions turn out to be of this kind. 

If for any quantizable phase function we choose T = f”, we obtain the vector field 

f# := L?$,: JIE + Tf”JIE. 

Its projection 
X[f]: E -+ TE, 

with the coordinate expression 

x[f] = ,‘f”d,, - t&,-$jkf&, 

is called the tangent lift of f. 

Let now fl and f2 be quantizable phase functions, and set 

[fl,f21 := {fl>f2) + (fl’rhf2 - tf;r).fl. 

Then, after long computations, one proves that the previous formula defines a Lie 
bracket. This coincides with the usual Poisson bracket in the particular case when the 
involved quantizable functions are affine (fr = fl = 0). We shall indicate by dP the 
Lie algebra of phase quantizable functions, and by ‘7E the Lie algebra of all tangents 
vector fields on E. Moreover, we indicate by 3E the algebra of all (smooth) functions 
E ---f R. Then from the previous results we easily obtain: 

PROPOSITION 3.1. The tangent lift 

dP + IE: f H X[f] 

is an 3E-linear epimorphism, with kernel 3E c dP, and an R-Lie algebra morphism. 
Namely, we have 

X[lfll fill = [X[fll, Wfill. 0 
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Next, in view of quantum operators we start by looking for distinguished vector 
fields on QT. Consider any vector field Yt : Qt + 7’QT which is projectable over some 
vector field Xi: JiE -+ T&E, Hermitian linear and such that the vertical restriction of 
L(Yt)q vanishes. Then it can be proved that Yt is of the type 

Y;[f] := f,# J =I + ifki: Q’ + TQ’> 

where n: Qt + VQT . 1s the Liouville vector field (Subsection 2.1.5) f: JiE 4 R is 
a function and r a time scale. Moreover, YJ[f] turns out to be projectable over a 
vector field Y[f]: Q + TQ iff f is quantizable and r = f”. Then Y[f] is called the 
quantum phase vector field corresponding to f, or the quantum lift of .f. It has the 
coordinate expression 

From this formula one sees that the space of all quantum phase vector fields on Q 
is just the Lie algebra &! of all Hermitian linear projectable vector fields Q + TQ. A 
long calculation shows that the map AP + &: f H Y[f] is an isomorphism of R-Lie 
algebras, namely we have 

Recalling Subsection 2.1.5 we see that there is a natural way of defining Y.P: E 
+ Q for any linear vector field Y: Q + TQ projectable over X: E + TE. If Y 
= XX& + iYZdz, we obtain the coordinate expression 

Y.P = (X%3& - iY”?J)b. 

The almost-quantum operator Y[f] corresponding to .f, acting on quantum densities 
PO := P @ v$,7 is defined by 

Then, since Y.& = $(div X),/G, where divergence is taken with respect to the vol- 
ume form U, we obtain 

Y[f](S 8 fi) = i(Y.!P -I- i(div_X)S) 8 ,/@ 

We then obtain a natural R-Lie algebra isomorphism between 
quantizable phase functions and almost-quantum operators, if 
almost-quantum operators Y[fi] and y[f2] is defined by 

[YLfll, YLMI := -~uY[fll,Y~f2ln, 

where8 

I[YVll>YU2lll := YLfll O YLM - YV21 0 YVll 

the Lie algebras of 
the bracket of two 

7This extension to quantum densities is necessary in order to have symmetric operators (see Section 7.5). 

“Throughout this paper we shall indicate commutators by this ‘blackboard bold’ bracket, as in general 

we shall have to distinguish them from Lie brackets. 
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The Euler-Lagrange operator [31, 91 

&: J,Q -+ IL3 8 A4 T*E F Q* 

derived from the quantum Lagrangian can be characterized, via the Hodge isomorphism 
and the real part of the Hermitian metric h, by a map 

*&#: &Q-T*@Q. 

Then we define the Schrtidinger operator, acting on quantum densities, by 

G(!P) := -$*Eq!P] @ &. 

It can be proved that G is a symmetric operator with respect to the Hermitian product. 
We shall sketch in the more general spin case (Section 7.5) the construction which 

yields the infinite-dimensional pre-Hilbert bundle H’QV + T over time (eventually, this 
will yield the quantum Hilbert bundle HQ’i + T by the completion procedure). Here we 
just observe that, if f is a quantizable phase function, then in general the operator y[f] 
will not correspond to a fibred automorphism of H’Q” over T, in fact the expression of 

Y[fWv), if f” # 0, will contain the time derivative of 9. In order to construct from 

y[f] such a fibred automorphism, which we shall indicate by f^ and call a pre-Hilbert 
quantum operator, we have, in rough terms, to ‘eliminate’ the time derivative. There is 
a natural way of obtaining this result, namely by using the Schrodinger operator (whose 
kernel is constituted by the solutions of the generalized Schrodinger equation)g and 
setting 

f^:= Y[f] - if” J G. 

The operator f^is symmetric iff f” is constant. This is true in all physically significant 
cases where f” is either 0 or ~0. Thus, the above formula is our implementation of the 
principle of correspondence, achieved in a purely geometric way. In particular, in the 
flat spacetime case, these operators and their commutators correspond to the standard 
ones. 

4. Classical spin 

It is well known that quantum spin has no classical counterpart in a strict sense. 
However, we can give a mathematically self-consistent formulation of classical mech- 
anics of a charged spinning particle, which under certain circumstances yields a good 
approximation of the real mechanics and, at the same time, will constitute the back- 
ground for the quantum spin. 

4.1. Classical spin particle 

We first note that g can be seen as a (non-scaled) metric on the vector bundle 
IL* @ VE + E (this will be the fundamental bundle for spin particles). The induced 

gThe Schriidinger operator can also be seen as a connection on the infinite-dimensional pre-Hilbert 

bundle. 
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‘index-lowering’ and ‘index-raising’ morphisms will be indicated, respectively, by 

gb: IL*@VE+IL@V*E, g#: IL@3v*E-+L*@vVE. 

We shall denote by (e,) a positively-oriented orthonormal frame of IL.* @ VE. The 
dual frame (F’) of IL @ V*E determines a linear fibred chart (z’, Ed) on IL* E VE. 

Consider any linear connection C: VE + T’E @VE TVE on the bundle VE -, E. 
Clearly, C can be regarded also as a connection 

(3: IL* @ VE -+ T*E L’gvF T(L* @ VE), 

with the coordinate expression 

C = dx’ @ (6’xx + C{,.crep). 

where C,P,, := -(P, Vx[C]e,). Note that here X is an index of the spacetime coor- 
dinates, while the Latin indices appearing in this formula are related to the linear 
coordinates cf‘, on the fibres of IL’ @ VE, that are not induced by the spacetime co- 
ordinates. Moreover, C is said to be metrical if V[C]g = 0. Then, in particular, the 
vertical restriction K’ of a metrical spacetime connection is a connection of this type. 

We shall indicate by UE + E the subbundle of IL* @ VE whose fibres are unit 
2-spheres. The history of a classical spinning particle will be described by a section 
(J: T + UE. Its projection s: T -+ E is the particle motion in the usual way, while the 
vertical vector field over it represents the particle’s spin; more precisely, the classical 
intrinsic angular momentum of the particle is $tLzi. 

We can state the equation of motion for u by means of a couple of connections: 
the spacetrme connectron F := r,,,, where q is the charge and m is the mass of 
the considered particle, and a metrical linear connection C := K&, on the bundle 
VE + E (which reduces to a connection on UE). Here, 

P E T” @ IL”/2 @M/11-‘/2 

is a new coupling constant which we call the spin-magnetic field coupling constunt. 
We shah also write P as 

Latter on, by comparing the flat case with standard formulae [28], the section pclc;: T 
-+ T* 63 ILlI @MI-‘/” @ VE will turn out to be the magnetic moment of the particle, 
and the real number G will turn out to be its gyromagnetic ratio. When q = e is the 
positron’s charge, then @/G = eti/2m is the so called Bohr magneton. 

In an orthonormal frame (e,) the components of C := Kb, are given by 

C,r,s = i;q,, c,:, = ?;‘l& + zL@P7 = ?& + 21L0pEQ% 

where ” 
B:= ;*F: E+lL --5i2 6& M112 @ VE 

is the magnetic jield. lo The tilde over the components of rh, P and B indicates that 

“‘In the Galilean context the magnetic field is observer-independent. 
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these are components in the frame (e,). In particular we have 

jTjP = 1, SPp- = $TSPjY 
27. s 2 7.S’ 

Furthermore, C: VE -+ T”E & TVE yields the map 

Y ‘:=,zr,C: JIExVE+T*@TVE; 
E 

with the coordinate expression 

y’ = U0 @ (a0 + ya 3 ja. + TITe; ), 7’7 = (C,T, + C;sygh)~S, 

where (e;) is the frame induced on VEVE. The couple (r, C) is a linear connection on 
JIE XE UE -+ E. Thus the equation of motion for u can be formulated as 

V[y’]r.:’ := jru’ - (7, 7’) 0 U’ = 0, 

where 
u ’ := (jls, cl) : E + JIE ; UE. 

Now the above equation splits into two equations: the equation of motion for s, which 
is the standard one (Section 3.2), and that for U, which reads VICljlsu = 0 (thus a 
first-order equation: the covariant derivative of the spin vector along the particle motion 
vanishes). In coordinates it reads 

VICljlsu = u’(~~u~ - CoTpuP - C,Tp(~osh)uP)e,. 

Moreover, the same equation can also be written as 

‘+I - pu x B = 0; 

in the flat spacetime case the above covariant derivative reduces to the ordinary deri- 
vative, so that we obtain the standard equation [1.5]. 

For a classical charged particle in the flat case it is known [15] that the interaction 
between spin and magnetic field yields an energy 

-phg(u, B) = -pti*(ub A P) = -;ph~~~~u~F,,. 

This function is well-defined also in the general curved case. In order to see that it 
has the same meaning, we should postulate the effect of spin on the electromagnetic 
field, through a suitable current to be coupled to the field via the Maxwell equations, 
and study the energy balance in the present context. We omit such analysis and simply 
assume that the classical spin Hamiltonian HS: J1ExE17E--,T*@T*@L2@Misgiven 
byl’ 

Hs[u] := H[s] - pfig(u, B), 

that is 

“Note that the first term on the right-hand side is observer-dependent, while the second is observer- 
independent. 
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We would be tempted to extend these arguments in order to include a spin-gravitation 
energy. For example, formal similarity might suggest a term of the form 

Any interpretation of this kind, however, would need a more general approach to 
the classical theory of angular momentum, which should include orbital angular mo- 
mentum in a general relativistic context. We shall address this question in a future 
work. 

4.2. Quantizable functions 

In view of quantum operators for spin particles we wish to extend the Lie algebra 
of quantizable functions, by considering functions f: JIE xE (lL* @ VE) + R. 

In Section 3.3 we showed how the Lie algebra dP of quantizable phase functions 
on JIE arises naturally from the geometric arguments. Up to now, we are not able 
to extend those arguments to the spin case. Hence we present a more restricted 
approach which, however, encompasses the most physically interesting examples. 

The space of quantizable spin functions is defined to be the space AS := dsQ@dsL 
of all functions 4: IL* @ VE --) II% of the type C$ = 4Q + bL, where 4L E dsL is linear. 
dQ E dSQ is quadratic and proportional to g. Namely, the expression of d E AS in 
an orthonormal frame is of the type 

C$ = C#7Sr,ErCs + &ET‘, 

with @‘, #Q.: E + R. 
By means of the vertical isomorphism g# any C$ E AS yields” the 

X[$] =: dQ# + 4L#: E -+ g2(JL* @ VE) F IL’ B VE. 

Its orthonormal frame expression is 

X[$] = ?7’($“er C% e, + 4ser) := ~Y’d”e~ 9 e,9 + +Ter. 

section 

By analogy with the phase functions we call X[4] the tangent lift of 4. 
We indicate by UE the space of all vertical-valued vector fields on E. Then 

IL* @C UE is naturally equipped with the FE-Lie algebra structure given by the cross- 
-product. Since the map dsL + IL* @ liE: $L 
induces an 3E-Lie algebra structure on dsL. 

H X[4] is an FE-linear isomorphism, it 

structure on AS by assuming dSQ 
Moreover, we define an 3E-Lie algebra 

to be an Abelian ideal. Then we have 

[&S] := (4L# x 19~#)~, or [f$,C?] = E~~c#+~I~E~ 

Namely, only the linear parts of C$ and 0 contribute to [4,0]. 
Now we note that dP n AS = {0}, and set 

A:= APeAS. 

12An equivalent construction may be given by using the natural symplectic structure [II] of any Rie- 
mannian manifold (here, all spacetime fibres). This fact might be useful for future generalizations of this 

approach. 
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We are going to define a bracket on A. Since we have brackets on dP and AS, it 
suffices to define the bracket between any f E dP and any 4 E AS. Then we set 

[f, $I:= Wlx1f4~ E dsL, 

and [+,f] := -[f,$]. Then AS and dsL are ideals of A. We have the coordinate 
expression 

The new bracket fulfils the Jacobi identity in all cases except when one and only one 
of the three factors belongs to dsL. In fact, by a straightforward calculation we prove 

PROPOSITION 4.1. Let fi, fi E dP, 4,B E AS. Then 

vi, [4J, 41 + [hi@> fill f LO, vi, 411 = 0; 

Ul, [fit 411 + Vi> [A fill + [A LA, J-211 = B[wwll, xLf21, $L#). 0 

Then A := APeAS will be called the R-algebra of quantizable functions. The tangent 
lift of f + d, E A is defined to be X[f + 41 := Xff] + Xf$]. Then we obtain a map 

A + 2-E $ v2(lL* 8 VE) @ (IL* &a VE), 

where V denotes the symmetrized tensor product. This is an FE-linear epimorphism, 
and it turns out to be an R-algebra morphism if we take, on the right-hand space, the 
bracket 

I 

]u, VI, u,v E 2-E; 

(WV) - ;;> 
u,w E lL*@VE; 

UV, UEIE, WEL*@VE; 

0, u E v2(lL* 8 UE). 

The most important quantizable function is the classical spin Hamiltonian (Sec- 
tion 4.1), which can be written as 

HS * H := ZLO~ .= zca @L?b). 

5. Spin bundle and connection 

In this chapter we shall introduce two basic mathematical objects: the spin bundle 
and the Pauli map (a kind of ‘soldering form’); the latter, together with a spacetime 
connection, yields in a natural way a connection on the spin bundle. In the next chapter, 
this will allow us to formulate quantum mechanics of a particle with spin along the lines 
of the scalar theory. 
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5.1. Spin bundle 

Consider a complex vector bundle xs: S -+ E with fibres of (complex) dimension 
2, endowed with a Hermitian metric 

where S* and Sf are the complex dual and antidual bundles, respectively (namely 
the bundles of linear and antilinear morphisms S + C over E). We shall also be 

involved with the ‘conjugate’ bundle S’ := (Sz)* 3 (S*)f (whose transition maps 
are conjugate to those of S). 

Consider an hs-orthonormal frame (CA) of S, A = 1,2, and its dual frame (P). 
Then we have the linear fibred coordinate chart (z’, zA) on S. The conjugate chart 
on S’ will be denoted by (&‘, ZA* ). The induced frame of VS will be denoted by 

(a, := dz,); its dual and antidual frames by (cP := dP) and (dA’ : = dP*). Since 
S admits a bundle atlas constituted by hs-orthonormal charts, it can be regarded as 
a bundle associated-with the principal bundle of all hs-orthonormal frames, with the 
structure group U(2). 

We shall also consider the case when S is endowed with an hs-normalized non-sin- 
gular 2-form 

Q: E + A2S*. 

and define a normal spin frame to be an ordered hs-orthonormal frame such that 
ES = z1 AZ”. Then S can be regarded as a bundle associated with the principal bundle 
of normal spin frames, with the structure group SU(2). 

Now we focus our attention on the vector bundle End(S) = S BE S* of complex 
linear endomorphisms, whose fibres are equipped with the standard structure of as- 
sociative algebra, given by 40 : = 4 o 8, and with the induced structure of Lie algebra, 
given by [& B] := [4,131 := &9 - 04. This bundle splits naturally into the direct sum 
of the real subbundles of all Hermitian and anti-Hermitian endomorphisms: 

End(S) = H@ iH. 
E 

Moreover, H splits into the direct sum of the vector subbundle (1) generated by the 
identity and the vector subbundle H,, of all traceless endomorphisms, according to 
the formula 

(b = +(Tr+)l + (&- $(Tr#)l). 

Then we obtain 

End(S) = (1) @Z-IO @(il) @ iHO. 
E E E 

The bundle HO -+ E will play an essential role in the Galilean quantum theory of 
spin. For this reason we are going to make a fairly detailed study of its rich algebraic 
structure. Note that Ha is constituted by all endomorphisms 4 whose matrix, in any 
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hs-orthonormal frame of S, is of the type (qF,) = 
( > 

i _,” , with T E R, c E @; 

actually, the fibres of He have (real) dimension 3. 
We first observe that the fibred map over E 

k: HO ; Ho + IR: (q$O) H i Tr(4 o 0) 

turns out to be an Euclidean metric on the fibres of Ho. Hence, we can regard He 
as a bundle associated with the principal bundle of all Ic-orthonormal frames; with the 
structure group O(3). 

LEMMA 5.1. Let (CA) be an orthonormal frame of S, and (ar) an orthononnal frame 
of Ho. Then, for each P E U(2), the endomorphisms 

a: := a& P(C,&N(P*)-~(Z~), r = 1,2,3, 

constitute a h-orthonormal frame with the same orientation as (a,). Hence, there is a 

unique P E SO(3) such that a: = pga,. The map U(2) + SO(3): P ++ P is a group 
epimolphism (which depends on the choice of (CA) and (a, )). In particular, the map 
SU(2) -+ SO(3) is two-to-one.13 0 

The following lemma is the key for studying those structures of Ho which arise from 
the algebra End(S). 

LEMMA 5.2. For each qJ8 E Ho we have 

Cje = !c(qs,6)1+ ic$, 

where < E HO and 

Moreover, we have 04 = k(q4,O) 1 - i <. 0 

Thus Ho is closed neither under the associative multiplication ($,0) cf ~$0 nor under 
the commutator (4,0) H I[qS, f3J := @3 - 04. However, we shall see that these operations 
are related to further structures on Ho. 

In particular, if C$ E HO and 11qS1 = 1, then 

44 = I, 

if 1$,0 E HO, 1fq511 = l[Oll = 1 and /c(#,c~) = 0, then 

l$e = it, 

with < E HO, 11~11 = 1, k(h.9 = k(@,l) = 0. 

The above result yields a distinguished global orientation on the bundle Ho -+ E. 
In fact, for each Ic-orthonormal frame (a,), the condition c1c2 = icr3 determines an 
orientation which does not depend on the frame choice. 

13This last statement is a geometric reformulation, in our context, of a well-known algebraic result. 
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The metric k and the above orientation yield a global volume form 5j: E + A~&. 
Accordingly, the bundle Ho -+ E can be seen as associated with the principal bundle of 
all positively oriented Ic-orthonormal frames, with the structure group SO(3). 

A positively oriented orthonormal frame is called a set of Paz& endomorphisms. 
Moreover, we set go := IS, so that (a,), a = 0, 1,2,3, is a frame of H. 

For any hs-orthonormal frame (CA) we may consider, in particular, these elements 
(a,.) in HO whose matrix expressions o, = trrAB& @ zB are given by the Pauli matrices: 

(u,A,):= (( y i),( 8 -i),( h _y)), r=1,2,3. 

Then (a,) is a set of Pauli endomorphisms. Conversely, in virtue of the double 
covering SU(2) -+ SO(3), for any given set ((TV) of Pauli endomorphisms, there exists 
an orthonormal frame (CA) such that (u,“,) are the Pauli matrices. However, this 
particular matrix representation will play no essential role in our treatment. 

In terms of a set of Pauli endomorphisms the volume form ?j reads 

and the statement of 

The metric k and 
on Ho given by 

l q= Ul Au~/lu;j = yJ& prsup Au, AU,?. 

Lemma 5.2 reads 

urL7, = 6 r.500 + i EPTl?ap. 

the volume form Gj yield the cross-product Lie algebra structure 

(&8) H $4 x I9 := ?jqkb(q5) A kb@)). 

In terms of any set of Pauli endomorphisms this reads 

or x 0, = &P,a up. 

The type fibre of this Lie algebra is 521(2), namely the Lie algebra of the Lie group 
SU(2), which is usually called the angular momentum algebra. 

The cross-product Lie algebra is related to the Lie algebra End(S) by the formula 

which, in a set of Pauli endomorphisms, reads 

I[grr UsI = 2i EPTs up, or [[ - ;a,, -$&]I = Ep,,s (-$7,). 

Then we see that i& is closed under the Lie bracket of End(S), and the map 
Ho + iH0 : 4 H - iq5 is a Lie algebra isomorphism. 

Remark 5.1: For all 4,8 E Ha we have 

40 + I94 = 2/44,8)1 

In terms of a set of Pauli endomorphisms this formula reads 

aPaB + OsU, = 25,,7 1. 

Then one sees easily that the Clifford algebra bundle of Ho (see [12]) coincides 
with the real vector bundle underlying End(S) z S@S*, with the product given by 
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ordinary composition. This result agrees with dimlig End(S) = 8 = 2dimHo. A set of 
Pauli endomorphisms yields the following set of generators of the Clifford algebra: 

(Tl(T2CT3 = iflo. 

This Clifford algebra will not enter our treatment in the Galilean context. However, it 
is important for a comparison with the Einstein case. l 

Remark 5.2: The Hermitian metric hs yields an isomorphism S @S* + S 8s’. The 
latter is the space of world spinors [35] that carries a natural Lorentz structure defined 
via E. An analogous Lorentz metric can be defined on H, and the above isomorphism 
is an isometry. Once hs has been assigned, the two constructions are equivalent. Then 
Ic is just the restriction of the Lorentz metric to the canonical spacelike subbundle HO, 
while (1) is its orthogonal timelike subbundle. Moreover, (oa) is an orthonormal frame 
of H. 0 

5.2. Spin connections 

Henceforth we assume that S is endowed with a Hermitian metric hs and a non-sin- 
gular hs-normalized 2-form ES: E + A2S*. 

The coordinate expression of a linear connection B: S -+ T*E @E TS on the bundle 
S -+ E is of the type14 

B = dX 8 (ax + i13;,zB a,), 

with I&: E -+ @. (The choice of writing the coefficients of the connection with the 
factor i is merely a convention.) Moreover, we have the conjugate linear connection 
E;‘: S* + T*E @ TS’, with the coordinate expression 

B’ = dzX @ (&xx - il$‘;.z -B*&*), 

where Eii. = E;xAB. We also have the induced linear connections on S* and ST, with 
coefficients SxBA = -B f, and ~~~~~~ = -E;,Ai. = ExBA. 

A linear connection B on S will be called Hermitian if it fulfils V[B]hs = 0. 

LEMMA 5.3. A linear connection B on S is Hermitian iff the coeficients of E; in a 
normal spin frame are @en by 

G x”, = q+x 

where Sg: E + Ii%, and (uj) is any set of Pauli endomorphisms. 

Proof: In any linear coordinate chart the condition V[S]h, = 0 reads 

&h,., - ihCeB E;;. + ih,., STB = 0. 

l*B is the Cyrillic character corresponding to Latin B. 
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According to this formula, in an orthonormal chart the components Si,, for each fixed 
X, constitute Hermitian 2 x 2 matrices, and thus, for any set of Pauli endomorphisms, 
are linear combinations of the matrices (a,:,). n 

LEMMA 5.4. A Hermitian connection I; on S fuffils V[E;]ES = 0 ifl Ey = 0 in a 
normal spin frame, that is iff we have 

BA XB = s; fl,“,* r = 1,2,3. 

for any set of Pauli endomorphisms. 

Proof: In any linear coordinate chart the condition V[E;]Q = 0 reads 

&EAB + i&CBG;,q + ZEAJ3TB = 0. 

In a normal spin chart we have d E x AB = 0, hence the matrices (13tB), for each fixed 
X, are traceless. n 

DEFINITION 5.1. A spin connection is a linear connection E on S such that 
V[B]hs = 0 and V[E]Q = 0. * 

In the particular case when the matrices of the considered Pauli endomorphisms 
are the usual Pauli matrices, the components of a spin connection are given by 

Henceforth, by G we shall always indicate a spin connection. 

Remark 5.3. A spin connection preserves also the Euclidean metric k, as one sees 
from its definition via E (or also by a direct calculation), namely V[E]k = 0. 0 

LEMMA 5.5. We have: 

Proof: 

VA wa = vA[q(g ,“,c4 8 zB) 
= ~~,(-ic~,~~c Lx zB + is,“,<A c$ zC) 
= -iS”,(cT,“,c& - o&.~pcB)~A cg zB 
= -iq[oI’, c7,JjAB CA x P. m 

PROPOSITION 5.1. The natural extension of E to S @S* gives rise, through re- 
striction, to a real linear connection s: Ho --f T*E cs TH, on the Hennitian traceless 

subbundle Ho + E. In a frame of Pauli endomorphisms the coeficients of c are 
given by s{,9 = ~BTE~~~. 0 

Conversely, we have 



126 D.CANARUlTO,M.MODUGNO and A. JADCZYK 

PROPOSITION 5.2. Suppose that B: Ha + T*E @ THO is a linear connection such 

that V[B]lc = 0. Then there exists a unique spin connection B such that s = B. Its 
coefficients are given by 

BP .= 1, SPBr 
A’ 47. As, 

that is 
B A = $,SPB;s~pAe. XB 

Proof: Uniqueness: If B exists, then V[B]a, = V[B]a, + B{, = B,‘,, that is 

Bx’s = 2BP&’ x BP’ 

This equality determines the coefficients ST (and then also the coefficients BiB), since 
it can be reversed as: 

BP .= 1, SPBr 
A’ 4 T x.3. 

Existence: The spin connection whose real coefficients S: are given by the previous 

formula satisfies B = B. n 

From the above results we see how one is naturally involved with HO when consider- 
ing Hermitian connections. 

5.3. Pauli map 

An orientation-preserving linear fibred isometry over E: 

C: ‘L*@VE-tHO, 

will be called a Pauli map. If (e,) is a positively-oriented orthonormal frame of IL* 18 VE, 
then (or) := (c(e,)) is a set of Pauli endomorphisms. Henceforth, when dealing with 
,X we shall use the linear fibred charts on IL* @ VE and Ho induced by a given frame 
(e,) and the corresponding frame (a,). So, the information relative to C is encoded in 
the choice of such an adapted chart. 

A Pauli map is, obviously, an isomorphism of cross-product Lie algebras (see Sec- 
tion 5.1). Moreover, we have the Lie algebra isomorphism - $C: lL* 18 VE + iHO. 

A Pauli map can be naturally extended to tensor products by setting 

,X2: @’ (IL* 8 VE) -+ S @ S*: 
E 

~~~HC(U)OZ~(~))EHOOH~CS~S*. 

PROPOSITION 5.3. Let C be a metrical linear connection on VE --t E (Section 4.1). 
Then there exists a unique spin connection B on S such that for any section v: E 
4 IL* @I VE one has 

W[Cl~> = VPl(~(~)>. 
Namely, we have 

BA xJ3 = $ET8PCXTSOPAB. 

Proof: Since C is an isomorphism, the connection C induces a connection B on Ho 
according to the above requirement. We have C(V[C]es) = V[B]a,, that is B,‘, = Cl,. 
Since V[C]g=O, we also have V[B]k=O. Thus we only need to apply Proposition 5.2. n 
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We shall be concerned with the curvature tensor R[E;] of l% We have the coordinate 
expression R[6] = RX&zBdX A d’” ~8 8, , where 

RA XllB = idjAB,,q B + $,~I$ B’ 

If we replace the coefficients E;iB in the previous formula with their expression given 
in Proposition 5.3, we obtain, after some calculations, the following result. 

PROPOSITION 5.4. We have 

where 

R[B] = -;C(*B[C]), 

l?[C]: E 4 A~T*E @ A” (IL @ V*E) 

is the completely covariant curvature tensor of C. The coordinate expression qf R[E] 
is 

RA = ALL 23 $.bPR[C]XI:,9~~AB:B 

where 

R[ClA/Is = ax q:, + c:,Jyq~ 0 

In particular we shall be involved with the connection I+ induced by C := k-a,, 
(Section 4.1). In that case, Proposition 5.4 is the analogous, for the spin connection, 
of the formula R[Y] = i(m/h)fi 8 1~ for the quantum connection. 

6. Quantum spin 

6.1. Quantum spin connection 

In addition to the postulates of the classical theory (Section 3.1) and of the scalar 
quantum theory (Section 3.2), we have the two following basic geometric postulates 
of the quantum spin theory. 

POSTULATE QSl. The spin bundle is a complex vector bundle S --+ E with fibres 
of (complex) dimension 2, endowed with a Hermitian metric hs and a non-singular 
hs-normalized 2-form Ed. * 

POSTULATE QS2. The Pauli map is an orientation-preserving linear fibred isometry 
over E: 

C: IL* @ VE + H,l. 4 

Then we define the quantum spin bundle to be the tensor product 

7rw: W:=Q@S-E. 
E 

The Hermitian metrics hQ and hs, defined respectively on Q and S, yield a Hermitian 
metric h := he 63 hs on W. We shall indicate by b, := b 8 CA the orthonormal frame 
of W induced by a normal frame b of Q and by a normal spin frame (cl) of S. The 
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corresponding linear coordinates induced on W are denoted by w* := z @ zA, and the 
frame induced on VW+ W by (a~,). 

Quantum histories will be described as sections 9: E -+ W. Locally 

where PA := tiAb: E ---) Q is a scalar quantum history (A = 1,2), $P: E + @. 
We consider a particle with given values q of the charge, m of the mass and p of 

the spin-magnetic field coupling constant. Then we have (Section 4.1) the two spacetime 
connections Kpl, and KzP. The first yields a quantum connection Y,,, on QT (hence- 
forth denoted simply as Y). The second yields a connection C :r K& on IL* @ VE --f E 
(Section 4.1); this, in turn, yields via C a spin connection E&, henceforth denoted 
simply by B, whose components in a normal spin frame are given by 

E;$ = ;@Jrb;g$B = I;bjJB, 

E;A =r 
OB @y?rqs + UOpFTs)o;B 

= &T 
SP$F gA 

OS pe + +OP~p~pAs 

= Sb& + $LOpB%pAB, 

where Eh is the spin connection arising from Fb (vanishing coupling constant). 
The quantum connection and the spin connection yield a Hermitian linear connection 

Y w := Y @ 6, called the quantum spin connection, on the vector bundle 

WT := JIEx W-t JIE. 
E 

The components of Yw can be synthetically written as 

YA x.9 = 9;GaAB = “$9, + 9pxu&, 

where we have set 
Y”x := Yx, h ._ 9x .- Sk, 

that is (Section 3.2): 

Y A = ~ETw~ppAB XB if A # B. 

The corresponding covariant derivative of a section P turns out to be the section 
VP: JIE + T*E @E W given by 

vx!P := (V,X!P) @ 4-A + PA @ (VJXCA) 

= (Vxb) @ (P%) + b @ VA(P“&). 

The coordinate expression of VP is 

VP = (a~$* - iqA$A - iB,A,$B)dX @b,. 
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We also have the derivatives: 

where A: JIE + T* @ TE is the natural map introduced in Section 3.1. Their coordi- 

nate expressions are: 

&=UO 
( 

(80 + y@&” - i(Y,, + &I,)?$” - i&& + Y$&)tiR) h.4: 

V’J = (8,+” - iYI,$“ - i13,“,+B)dJ @b,. 

We shall also be concerned with the curvature tensor of the quantum spin connec- 
tion. By a simple calculation one sees that this is essentially the sum of the curvature 

tensors of Y and E (see Proposition 5.4): 

R[Y @ E;] = R[Y] 8 1s + IQ @t R[B] 

= iEn,,, $3 l,+J - f’Q @ c(*B[c]) 

= (R[Y]A~P~ + R[13],,;‘,)w”dX A 8’ @b,. 

6.2. Quantum spin Lagrangian and momentum 

We have the following distinguished observer-dependent 4-forms over E: 

&] := #(9, i G @i) + h(i + @‘, P))v: E ---f IL” @ A4 T*E, 

i[!@] : = &(g# @ h)(f’P, fN+: E i IL” @z ~~ T*E, 

where w is the spacetime volume form (Section 3.1). As in the theory without spin 

we obtain a Lagrangian independent of any observer by the projectability principle. 

Namely: 

PROPOSITION 6.1. The form 

C[P]:= &-i[!q 

is the unique linear combinatkn (up to an overall factor) of 2 and & which turns 
out to be independent of the observer. 

Proof: A rather long computation shows that this is the unique linear combination 
* 

of i and C such that the coordinates yi disappear in its coordinate expression. n 

Then we have the main dynamical postulate of the quantum spin theory: 

POSTULATE QS3. The form ,C of Proposition 6.1 is assumed to be the quantum 
spin Lagrangian. * 
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In the scalar case it is known [16] that the analogous procedure yields what is 
essentially the unique natural and physically meaningful Lagrangian. Morever, note 
that adding to our Lagrangian a term proportional to the natural function 

;h(p, C(B)!@: E + LR 

would simply amount to modifying the gyromagnetic ratio. 
We have the coordinate expression 

Note that to simplify this expression for C we used the property that the coefficients 
EJbB are Hermitian: h,.,B,Cz. = h,.,B,C,. 

In an h-orthonormal frame (bA) we have hceA = bCeA, and then the Lagrangian 
splits as 

C[!@] = .C[Sl] + C[S2] + L[p]spin, 

where ,!Z[91] and 13[S2] (first two lines) are exactly the Lagrangians of the scalar wave 
functions lTil and p2. The spin Lagrangian L:[@],,i, is the new part (with respect to 
the scalar case) and contains interaction terms. By using Proposition 5.3, after some 
calculations we can express it in terms of the vertical spacetime connection C. 

PROPOSITION 6.2. We have 

It is interesting to look at the spin part of the Lagrangian in the flat case. Setting 
Cjr8 = 0, Cers = uo@, we obtain 

C[@lspin = iuOP hc*,(~‘.E,sP~~~~U~Co)~W 

= $uop h,.,z,RPupAB G”?“* v$$ = $0~ h(*, WW)d& 

This is just the Puuli term which appears in the standard Lagrangian of a particle with 
spin. 
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We shall denote by 

the fibred morphism over E characterized by C o ji!P = _fZ[P] VP. Here (and every- 
where) J,W ---t W is the jet bundle of W with respect to the base space E. The 
coordinate expression of C is obtained from that of ,C[!P] by replacing ti* with zc” 
and a~@’ with wi. In order to write down the field equation for a section P, it is 
convenient to express the Lagrangian as C := ew, with w := d” A d1 A d2 Ed”. We have 

+ig’“ak(w*~~’ _ g* wf) + XW*W”* + 

+ pf7p*B w %iF* + ixp.7iTpAB(w*W~* - iP’w,~) , ) 
where x, yp, xp7: E + IR are defined as the following shorthands: 

x:=U°F$2aa-g jkajak) - ~O$g.ikc,‘,(;;;‘,, 

X * := ~&~“(co’, - g’kakcjyy), 

X PI 
FL 

:= uo_E,Spgjk 

4m 
C’ k B . 

Recalling that a jet bundle is affine, and since W + E is a vector bundle, we have 
the following identification: 

VwJIW= J,W;(T*E $ W). 

Then applying the vertical functor to the morphism l, after a contraction with the 
spacetime volume form we obtain a map 

*VW/2 JIW + T* @TE c$ W, 
E 

where w” is the real dual bundle of W. The real part of the Hermitian metric h 
is a positive-defined metric on the fibres of W, and allows us to trasform the above 
morphism into the quantum momentum 

p: JIW-t lI’*@TE @ W, 
I? 

which has the coordinate expression 

p[9] = 210 $“a0 _ i_.!Jgjk 

6.3. Generalized Pauli equation 

The generalized Pauli equation for a section !i? E -+ W is defined to be the 
Euler-Lagrange equation 

&[@I : = I 0 j‘J!P = 0, 
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where 
E: JzW-+IL3@ A~T*E $ w” 

is the Euler-Lagrange operator [31, 91, which can be characterized, via contraction with 
the spacetime volume form, by a morphism 

*E: J2E --+ T* @w*, 

whose coordinate expression is of the type 

& = &,dwA + EA.dWA*. 

The components E, and EA., which are conjugate to each other, can be calculated from 
the standard Euler-Lagrange formula by treating formally wA and WA’ as independent 
real coordinates. Moreover, through the real part of the Hermitian metric h we can 
transform *E into a morphism 

*E#: J2W 4 T’ @ W. 

This has the coordinate expression *&# = Fb,, where EC := 2hAoC&..,.. We obtain 

LEMMA 6.1. The components of the Euler-Lagrange operator of the quantum spin 
Lagrangian are given by 

EC = 2i&$ - 2i?_&‘gikakwjc + ’ 

where x,x’, xTj: E -+ R are the functions defined in Section 6.2. 

Note how the above expression for Ic splits into the sum of a non-interaction part 
and an interaction part. The interaction part consists of all those terms which contain 
the sigma’s (last line). The non-interaction part is identical to the Euler-Lagrange ope- 
rator without spin for each component of 9, plus the new term -(h/8m)g~kCj~sC~,~C 
(contained in x). 

Next we would like to write the generalized Pauli equation in a more compact way. 
We shall accomplish this by defining two observer-dependent differential operators D” 
and &, which are immediate generalizations of the analogous operators defined in [18]. 

Recall that the connection Yw : = Y 63 B is a map 

Yw: JIE x W---f T*E @ TW. 
E W 

Given an observer o: E --+ JIE, consider its natural jet prolongation jo: JIE -+ J1 JIB 
c ‘I’* @ TJIE, given by jo = UO @ 80 in adapted coordinates. Consider the map 

Z:= (joA”)oo: E--+?r*@TW. 
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or, in adapted coordinates: 

iT = U0 @ [aa + i(?fawJA + EOABWB)bA]. 

Recalling Subsection 2.1.5 we set 

Do9 := L,#@&) 
> 

: E-T*&W 

with the coordinate expression 

The observer-dependent vertical covariant derivative of 9 is defined to be 
I 

V%JI:= V@oo: E+V*E@W. 

In a coordinate chart adapted to the observer (yi o o = 0), this derivative has the 
expression 

Then one defines the observer-dependent vertical Laplacian as 

do@ := (g#, V”V”~): E -+ W, 

with the coordinate expression 

Then, taking into account the identity gjkYkh3 = -J=$j(ghj&J), after some calcu- 

lations one proves 

PROPOSITION 6.3. The Euler-Lagrange operator can be written as 

Another formulation of the generalized Pauli equation can be obtained by introdu- 

cing the differential d[Ys] associated with the connection Ys via the FrGlicher-Nijen- 

huis bracket [30], and the related divergence-type operator div[Ys] defined through 
the spacetime volume form v. 

PROPOSITION 6.4. If 9: E -+ W is any quantum spin histoly, then *&#[@I is the 

unique linear combination (up to a scalar factor) of 6[9] and div[Y’]p[p] which 
projects over E. Namely 

*&#[P] = i(+[P] + div[Y’]p[S]): E -+ T* @ W. 0 
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In particular, let us write down the field equation in the flat case. By setting 
7;h;, = 0 and 191 := det(g) = 1 ( i.e. by using orthonormal Cartesian coordinates), 
since rna~ reduces to the electromagnetic potential Ax, we obtain the familiar Pauli 
equation 

iK?a$” = ua&gjk(-ifi8j - u’Aj)(-ih& - u’A~)$,” - u~AO@ + ~~~~~~~~~~~~~~ 

For an electron p = -e/m (G = 2), thus the last term equals -(ek/2m)C(B)S. 
Next we focus our attention on quantum densities 97 : = !P @ Jii, whose coordinate 

expression will be written as 

Pq = qFabA @J;;, $YA := m$fY 

The Euler-Lagrange operator yields the Puuli operator 

q3(!&Ii”) := -; *Eqq @ J?j, 

which is the analogous, for the spin case, of the Schriidinger operator introduced in 
Section 3.2. We obtain 

!$3(97) = u” (dc$~)“~ - i~o&dVq* - iu°Fa&qA - iE,j“BQqB) b, @ a. 

One then sees that 12i satisfies the generalized Pauli equation &[9] = 0 iff !V satisfies 
the equation p(V) = 0, that is: 

6.4. Symmetries 

We recall [9, 311 that the Nother theorem can be expressed in geometric form 
through the Poincare-Cartan form 0. The Poincare-Cartan form of the Lagrangian C 
can be calculated, similarly to the Euler-Lagrange form, by treating (w”) and (.W”‘) as 
formally independent coordinates. We obtain 

@=Y$& 
C-A 

[ 

i(iiFdWA - WAdiiF')A\~ + 

( 

uo~g~yw$w* -wpWA)t 

+ig’k,k(wAd?f - WC’dwA) + ifja~AB(wBdE7C* - EC*dwB) 
> 

A wj + 

where WJ, := 8~ AW. 
Consider the natural action of the group U(1) on W given by 

RxW+W: (#,<)k-+e-i4C. 

This action can be naturally prolonged to actions on TW and Jr W. We then have two 
one-parameter groups generated, respectively, by the vector fields v: W -+ TW and 
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71: 51 W + T Ji W, whose coordinate expressions are: 

v = --iWAdW*, - ‘v = -i(w*dw, + w,Aawi). 

Moreover, 1) is the natural prolongation of v [30]. It is immediate to check that the 
Lagrangian C is invariant with respect to the natural action of the group U(1). We 
have 

L,C = L,@ = 0: 

thus for each critical section !P we have the conserved probability current 

The corresponding conserved quantity is the w. component, i.e. the probability density 

h(@, 0~ 
We have a larger simmetry in the case of Aat spacetime and vanishing electro-mag- 

netic field (set C;,9 = 0 and F”, = 0). In this case the Lagrangian is invariant with 
respect to the action of the group SU(2) given by 

~(2) x w -+ w (P, q H pABdaW,. 

and its jet prolongation. In particular we have, for T = 1,2,3 and b E LX, the actions 
of exp(!$a,) which yields the vector fields g, (on IV,) and their jet prolongation P, 
whose coordinate expressions are:r5 

21r = ;o,ABWBaWA, v7. = +.,AB(WBaW,4 + wfaw;). 

The related conserved current is 

(jS)*(_v, i 0) = mhc.,, CT,“, 

The conserved quantity is, up to integration, the expectation value of spin, that is 

h(@, C(V)? 

7. Quantum operators 

We shall construct the algebra of quantum operators by a procedure which gen- 
eralizes that used in the scalar case, and is divided into analogous steps. Starting 
from the algebra A of all quantizable functions, we first construct the algebra W 
of quantum vector fields W -+ TW, then the algebra 0 of almost-quantum operators 
acting on quantum densities and, finally, the algebra 5 of quantum operators on 

IsThis action depends on the considered basis. However, the Lie algebra generated by the fields c, is 

independent of the basis. 
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the Hilbert bundle. At each step we put together ‘phase’ objects, coming from the 
Lie algebra dP of quantizable functions on the phase space JiE, and ‘spin’ objects, 
coming from the Lie algebra ds of quantizable spin functions on IL* @ VE. 

7.1. Quantum phase vector fields 

In this section we examine the natural prolongation of quantum phase vector fields 
on Q to vector fields on W. 

LEMMA 7.1. There is a natural construction which, for each Hermitian linear vector 
field Y: Q -+ TQ projectable over a vector field X: E -+ TE, yields a Hermitian linear 
vector field 

Yw: W-+TW 

projectable over X. Let Y = Xx& + iY Z~d~, with Xx, Y z: E -+ IR, be the coordinate 
expression of Y. Then the coordinate expression of Yw ti 

YW = XX& + i(XAI;,A,wB + Y=wA)aWa. 

Proof: Consider the horizontal lift of X by B, i.e. the vector field 

X J E; = Xxdx + iX%;&Vw,.,: E + TS, 

which is also Hermitian and projectable over X. Then we have the tensor product 

Y@((XJB): Qc$S-TQ$C&TS. 

Now the universal property of the fibred tensor product over TE yields a linear fibred 
morphism 

8: TQF~TS+T(Q$S):=TW 

over TE, with the coordinate expression 

(WA, riP) 0 B = (2. ZA, 2. iA + i. P). 

Thus by setting 
YW:= eo(Y@(xJB)) 

we obtain the claimed result. D 

We shall denote by W the space of all Hermitian linear projectable vector fields on 
W. Clearly W is an 3E-modulus, and an R-Lie algebra with respect to the standard 
bracket. From the above lemma we see that the map & -+ W: Y H Yw is an 3E-linear 
isomorphism. In general, this is not an isomorphism of Lie algebras; namely, by direct 
calculation one shows the following 

LEMMA 7.2. Zf YI, Y2: Q -+ TQ are both projectable, linear and Hermitian, then also 
their Lie bracket is such, and we have 

lY,w, Y,“] = Ir,, y21W + RWMX,, X2), 
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where 
Rw[S]: E ---f A~T”E @ VW $ V*W 

E 

is obtained from 
R[B]: E --+ A~T*E @ VS @ V*S 

E S 

by tensor product with the identity form E + VQ i8Q V*Q (in these formulae all 
vertical spaces are taken with respect to the base space E). In coordinates we have 

[YT, Y,“] = (Xfd,X,X - x,“a,x#x + i(Xf&X,x - X;a,X;)s;,W%, + 

+$X:&Y,” - X;dxY;‘)wAdw, + R[13]X,A,X;X;~B6’~/,. 0 

If f: JIE + R is a quantizable phase function (Section 3.3), then the quantum 
vector field Y[f]: Q + TQ yields a vector field Z[f] := Yw[f]: W + TW, which we 
still call the quantum phase vector field corresponding to f, or the quantum lift of 
f. Its coordinate expression is 

Z[f] = u()f”d” - U&a, + 

+i (( UOOm II 

df a0 - paj + f. WA + 
> ( UOf”E& - u,$3;“, wB dwq,. 

m ) 1 
Remark 7.4: The quantum phase vector field Z[f can be recovered also by a 

procedure similar to that used in the scalar case. In fact, the ‘upper’ vector field 

f#,YW+if~: Wt -+TWT> 

where II: w + VWT is the Liouville vector field, turns out to be projectable exactly 
over Z[f]. . 

The quantum lift dP + W: f H Z[f] is an FE-linear monomorphism. In general, 
however, it is not an R-Lie algebra isomorphism. In fact from Lemma 7.2 we obtain 

PROPOSITION 7.1. Let fI,fi: JIE + IF? be quantizable phase functions. Then we 
have 

7.2. Quantum spin vector fields 

We can naturally associate a quantum vector field with each quantizable spin 
function. Namely, for any 4Q + 4L E A ’ := dSQ @ dsL (Section 4.2) we consider the 
section 

5 := $“(X[C$~]) + +(X[C$~]): E --+ H, 

which has the coordinate expression 

J= @“O(J + @&.. 

Now we observe that 4 can be regarded as a linear fibred morphism $: S + S over 
E. Hence, by tensorializing it with IQ: Q -+ Q, we obtain the linear fibred morphism 
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IQ @ & W + W over E. Finally we recall that VW s W XEW (as W -+ E is a vector 
bundle, see Subsection 2.1.5), and define the quantum spin vector field corresponding 
to c$, or the quantum lift of 4, to be the Hermitian vertical vector field 

z[C#J]: w+ VW: W H (W, i(lQ 8 &i(W)), 

whose coordinate expression is 

Z[@] = i(~~“Uo”, + ;@O;~)WVWA. 

The ma C$ I-+ Z[4] is an FE-linear isomorphism and an R-Lie algebra isomorphism 
from A %!P to the space WV of all vertical Hermitian) vector fields of W. Moreover, this 

8 isomorphism associates the subalgebra A L c AS with the subalgebra VOW of traceless 
vector fields, and the Abelian ideal dSQ c AS with the Abelian ideal Vi W generated 
by 1~. In fact, let c$, 0 E AS; then by a straightforward calculation one finds 

[-qd, ‘qS]l = =m4,41 = m4L, eLII, 
or, in orthonormal coordinates, 

[Z[C$], z[e]] = $@W-PpAeW~dWA. 

7.3. Quantum vector fields 

In previous sections we defined quantum lifts of phase and spin quantizable functions. 
Now, the direct sum of these lifts yields the quantum Zift of quantizuble functions: 

2: d:=dP$dS-+W: f++Z[f+$]:= Z[f]+Z[@& 

with the coordinate expression 

WA + 

From the above formula we see that the map 2: dP@dSL + W is an FE-linear isomor- 
phism; the map 2: A -+ W is an FE-linear epimorphism whose kernel is constituted 
by quantizable functions f + 4 E FE @I dSQ such that f” = - ZC$“. 

By a straightforward calculation we get 

LEMMA 7.3. Let Y: Q + TQ be any linear vector jield projectable over X: E -+ TE. 
Let 4=&Q+$LEds:=dSQ@dSL. Ben 

[YW, Z[411 = m?Clx41, 
or, in coordinates, 

[YW, .Z[$]] = ;xA(a# - $!mJs)(T,AgWBBWA. 

Hence, the behaviour of the quantum lift 2 with respect to the algebra structures 
of A and W can be summarized as follows. 
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Let f~, fi E AP, &, 42 E AS. Then 

[Wll, -ml1 = afl, fill + mwnfIl,x[.f2l), 

IZ[hl, ZL4211 = m41>4211, 

[Wll? ~[hll = .mfl, 4111. 

So we see that, if the curvature of C vanishes, then A is an R-Lie algebra and 
the quantum lift is a morphism of Lie algebras. 

7.4. Almost-quantum operators 

Next we pass from quantum vector fields to operators. Like in the scalar case, 
there is a natural way of applying the quantum vector field 2 to a quantum section 
with spin 9 (see also Subsection 2.1.5); we obtain 

2.I = (X9&” - i(X%,A,?jB + YZ$‘A))bA. 

The corresponding operator which acts on quantum densities 

VI=@@& E4V’:=L3/2@W@~, 

is defined by16 

Z(!F@fi) := i(Z.(I@\/;))+&fi: 

and called an almost-quantum operator. Then we have 

2(9 @ J;T) = i((2.p) + a(div X)@) 8 J;?. 

We shall denote by 0 the space of almost-quantum operators, and define the almost- 
quantum operator lift to be the composition 

which is an FE-linear morphism. 
We define the bracket of any two (local) Hermitian operators 21 and 22 to be 

the (local) Hermitian operator 

[a,221 := 4 I[&, 2,111 

where [Z,, Z2J := (2, o 22-22 o 2,) is the commutator of 21 and 2,. Then, by a 
straighforward calculation, recalling Proposition 7.1, we obtain the following result: 

THEOREM 7.2. The brackets of the almost-quantum operators corresponding to the 
quantizable phase functions fi, fi E AP and to the quantizable spin functions c+?Q, & 

r6The reason for multiplying by i is that we want Hermitian operators, while Hermitian vector fields 

give rise to anti-Hermitian operators. The reason for the ‘odd’ multiplication and division by ti is that 2 

does not act naturally on the spacelike object n, but acts naturally on the spacetime object V. We guess 

that this point might be formulated in a more satisfactory way within a fully Einsteinian approach. 
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E AS are given by 

]2Vll> Xf2llP”) = 2[[fl, f211(@9 + iRWIBl(X[fl], X[f21).@V, 

[-5[hl, 2[42llW = ~][~1~~211(~11), 

]~[f11~~[~111(~“) = 2[[fl> 4111(@“). 0 

Note that the bracket of the almost-quantum operators corresponding to the 
quantizable phase functions fi and f2 (first formula in the above theorem) has a term 
of the spin type, corresponding to the linear quantizable spin function 4 E dsL whose 
components are given by 

4” = ~~T”“~tCIX,‘,X[filXXt~21~1. 

7.5. Quantum operators on the Hilbert bundle 

So far, quantum theory has been developed on a finite-dimensional bundle JV + E 

over the spacetime. Now, we sketch how to introduce in a natural way an infinite-dimen- 
sional Hilbert bundle HN”7 + T over time and obtain Hilbert operators from almost- 
quantum operators. Essentially, the construction is the same in the scalar and spin cases 
(we just replace WTT for Qv). 

We focus our attention on the double fibred manifold JV + E t T. Each (smooth) 
local tube section !P: E + N” (i.e. each section which is defined on a ‘tubelike’ open 
set of E) yields, for any given r E T, a (smooth) section !PT: E, t w. Next we consider 
the fibred set SJV -+ T, where the fibre SW?, r E T, is defined to be the set of all 

(smooth) sections $7: E, - IV!,!,. Then clearly we have a natural injection P H $7 
from all (smooth) tube sections P: E + W to all sections @q: T t SW. 

In order to study geometrically the fibred set SIP + T, one could use the standard 
methods of infinite-dimensional manifolds. But we can skip this unnecessary hard ma- 
chinery and achieve our goal in a much simpler way by using the concept of smoothness 

due to Frolicher (see [7, IS]). Accordingly, a section @I: T + SW is smooth iff it 
corresponds to a smooth section !P: E --f W. 

We can repeat the above construction for any subsheaf of tube sections of the double 
fibred manifold w” + E + T, and obtain a fibred subset of SNm --+ T, it is remarkable 
that this inclusion preserves smoothness automatically. In particular, we consider the 
fibred space H’U”, + T associated with (smooth) tube sections P: E + N” with 
compact support. The fibres of H’Un7 are naturally endowed with a smooth pre-Hilbert 
structure. Namely we define, ‘v”r E T, a (non-complete) scalar product on H’q by 

Our next goal is to obtain a pre-Hilbert bundle operator from each almost-quan- 
tum operator 2. Let us consider a quantizable function f + 4 E A and the associated 
almost-quantum operator 2[f + $1. If f” = 0, then 2[f + 41, which acts on smooth 
sections @: T + SW only through vertical derivatives and multiplication by scalar 
functions, can be regarded as a linear fibred automorphism of the pre-Hilbert bundle 
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over T. In other words, 2[f + 41 can be regarded as a pre-Hilbert operator. On the 
contrary, if f” # 0, then the expression of 2[f + d](V) contains the time derivative of 
V. This means that 2[f + 41 cannot be regarded as a pre-Hilbert operator. However, 
we can solve this problem by ‘eliminating’ the time derivative in the following natural 
and general way. 

Consider the Pauli operator !J3 (Section 6.3) acting on quantum densities (its 
kernel is constituted by the solutions of the generalized Pauli equation).17 Then for 
any f + 4 E d we consider a linear fibred automorphism of the pre-Hilbert bundle 
over T: 

fx+4 = 2[f + $51 - if” i !$?, 

and call it the pre-Hilbert quantum operator associated with f + #. In particular, if 

f” = 0 (this is equivalent to Z[f + 41 being a vertical field), then fT4 = 2[f + d]. 

Let ??J be the set of all Hermitian linear fibred automorphisms of the pre-Hilbert 
bundle over T. Then the map 

d-6,: f++fTd 

is our correspondence principle. 

THEOREM 7.3. Let f + C$ E A be a quantizable function such that f” = constant. 

Then the corresponding quantum pre-Hilbert operator fT~,3 is symmetric, i.e. 

Proof: It follows from the symmetry of the observer-dependent spacelike Laplacian, 
from Gauss’ theorem and from the fact that the coefficients of the quantum spin 
connection are Hermitian. n 

Next we give the explicit expressions of the pre-Hilbert quantum operators cor- 
responding to the physically most important quantizable functions. Consider first the 
coordinates xx and the classical momenta pj/fi; these are quantizable phase func- 
tions JlE + IF!, whose quantum lifts are vertical-valued (for simplicity we assume that 
spacetime fibres admit global spacelike coordinates, and refer to such charts). We 
obtain 

p;?jL(!V) f 2~,/h](!v) = -(ia&” + 13;lg@ybA C3 J;i = -i(V,[S]!F)Cz &f. 

These formulae enable us to write the observer-dependent vertical Laplacian as the 
following generalization of a well-known formula: 

‘71ncidentally, we observe that this operator can be nicely interpreted as a linear covariant differential 
on the infinite-dimensional pre-Hilbert bundle 1181. 
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Let 4 E AS be a quantizable spin function. Then 

J G Z[$](!P”) = ($$“S”, + &Yar”B)$%A 63 fi. 

Remark 7.5: Through the metric g, any vector field w: E + IL* 8 VE can be identi- 
fied with the quantizable spin function u b. Then we can define the quantum spin vector 
field associated with v as S[V] := Z[vb] = +X(U) @ IQ, and the corresponding qu- 

antum spin operator as S[v](!P) := iS[w].!P~. On the other hand, the quadratic spin 
function associated with g (4” = 1) yields the operator S2, called the square of spin, 
given by 

5” = sr”S[e,] 0 S^[e,] = S[er] 0 $11 + S[es] 0 &a] + S^[es] 0 $!a] = ;1. 

Here one recovers the well-known facts about the spin operators. The operator s^” is 
the Casimir invariant [14, lo] of this representation of su(2). For any unit vector field 
U, s^” and S^[U] constitute a maximal set of commuting operators, with the eigenvalues 
$( f + 1) = a and ii, respectively. b 

From Sections 4.1 and 4.2 we recall that for a classical spinning particle we have the 
Hamiltonian HS := H - ptiBb. Consider the Hamiltonian function 

H := uoHS/h: JlE ,“(L* @ VE) --f Iw. 

This is the main example of a quantizable function which has both phase and spin 
components, We have the quantum vector lift 

Z[H] := 2[u0H/tL] - S[uopB], 

with the coordinate expression 

Z[H] = 6’,, + ;(E,T& - 2~~p~~)&p1~b, 

= a0 + ;E,SP?;~;s$ewBb,, = 13, + iB$f’~db,. 

The corresponding almost-quantum operator is then given by 

Z[H](!P) = (i&$“” + &.SPr Os~pA&qB)bA 8 6. -I 7. 

We obtain the following commutators: 

[.q3%q~p]1(9q) = 0, 
M~"lAP,lww = 0, 
[Z[yj], Zlp~/h]](S?‘) = isjp, 

LQ,l~l> ~bdf=dltW = fWlj~&% @ ~‘6, 

L+Al, -qmw = 0, 
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[2[z0], Z[H]](!q = -i!P, 

~~[pll~l,~[~11(9'7) = --'1ETR~R[r~13(;-.~~l,~B~~ f4fi. 

[2[ffl,~[411(~~) = ~~[w~wcw 
The Hamiltonian function is also the main example of a quantizable function 

whose associated sheaf and pre-Hilbert operators do not coincide. We have 

H = 2[H] - iuo ‘p. 

that is 

ji(P-77) = Z[H](!V) - +,1 *@[@i] @ fi 

-uomaO!V - u(,~C(B)!P~~. 
h 2 

The generalized Pauli equation can now be written as 

(i&#“” + I+&@ V8)bA @ J;; = K?(V). 

Then it would be nice if we were able to interpret the second term on the left-hand 
side as arising from the quantization of the energy of interaction between spin and 
gravitational field, to be included in the total spin energy operator composed of a 
spin-gravitation term and a spin-magnetic field term. An interpretation of this kind 
would need a deeper understanding of classical and quantum energy in the general 
relativistic Galilean context. We shall address this question in a future work. 

Finally, the pre-Hilbert bundle yields the Hilbert bundle HIV + T by the standard 
completion procedure. This bundle carries the standard probabilistic interpretation of 
quantum mechanics. We stress that we do not have a unique Hilbert space, but a 
Hilbert bundle over time. Indeed, a unique Hilbert space would be in conflict with 
the Galilean principle of relativity. On the other hand, a global observer yields an 
isometry between the fibres of the quantum Hilbert bundle. 

Moreover, our symmetric pre-Hilbert operators will yield selfadjoint Hilbert ope- 
rators under suitable functional hypotheses concerning the quantizable functions in- 
volved and the potentials of the concrete background spacetime. 
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