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Abstract. We present an axiomatic approach to Dirac’s equation in General Relativity based
on intrinsically covariant geometric structures. Structure groups and the related principal bundle
formulation can be recovered by studying the automorphisms of the theory. Various aspects can
be most neatly understood within this context, and a number of questions can be most properly
addressed (specifically in view of the formulation of QFT on a curved background). In particular,
we clarify the fact that the usual spinor structure can be weakened while retaining all essential
physical aspects of the theory.
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Introduction

In physics literature, Dirac’s equation is usually introduced and studied on flat
Minkowski spacetime [IZ80, Ka61], while spinors have been extensively used
within the context of classical General Relativity [HT85, PR84, PR88, Wa84].
Generalization of the quantum theory to curved spacetime is not so popular,
perhaps because formulation of QFT on a curved background [BD82, Pr95]
encounters severe difficulties and even paradoxes. On the other hand, there exists
a rich mathematical literature about spinor structures and the Dirac equation on
curved spacetime and general Riemannian manifolds, based essentially on the
language of groups and principal bundles [BTu87, Bl81, BLM89, BTr87, Ge68,
Ge70].

Despite the abundance of available literature, the nonexpert reader who wishes
to understand the basic aspects of the relativistic physics of 1

2-spin particles – and
is not really interested in mathematical generalizations – will be puzzled by the
not quite clear and, sometimes, misleading presentations found in the textbooks.
Even the initiated may have some difficulties in stating clearly all the precise
relations between the various objects appearing in the theory: which is to be
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viewed as fundamental and which as a derived object?; what does assuming a
given object precisely imply from the algebraic and dynamical point of view?;
why a charged spinor is not exactly a ‘spinor with charge’ (there is a subtle
involvement of the group Z2)?, and so on.

This presentation is intended as a setting-up of the fundamental mathematical
concepts needed for the Dirac equation in General Relativity. Our strategy is to
deal with a set of ‘minimal geometric data’, namely we present a formulation
containing no distinguished or chosen object devoid of a precise physical inter-
pretation. This is to be contrasted with usual matricial formulations, which tend
to mix different levels and different questions. Our language is essentially that of
vector bundles and connections on vector bundles. The principal bundle approach
is recovered a-posteriori, the symmetry group being a group of automorphisms of
the assumed structures. Actually, we recognize that principal bundle techniques
are invaluable for many purposes, but we also observe that several essential fea-
tures of the theory of connections, which are commonly attributed to principal
bundles, can be formulated with greater generality – and even simplicity – at a
more basic level.

At the algebraic level, the fundamental objects are the complex vector bundle
W of ‘4-spinors’ over general relativistic spacetime M, a Dirac map? γ: TM→
End(W) and a Hermitian 2-form k on W, with signature (2, 2), commuting with
γ (this is essentially the ‘Dirac adjoint’ map usually denoted by ψ 7→ ψ̄). The
group of automorphisms turns out to be a kind of complexified Spin group,
which in mathematical works is often denoted by Spinc (here is the involvement
of the group Z2). Namely, this structure is weaker than the usually assumed
spinor structure, but we argue that it is completely sufficient for describing all
physical facts. Assuming a proper spinor structure amounts to fixing a ‘charge
conjugation’ C or, equivalently, a symplectic form ε of a certain type on W. At
the purely algebraic level, there is no stringent motivation to regard any one
of the three objects, k, C and ε, as more fundamental than the others; if one
is fixed, the others are determined up to some factor. But a factor which may
change from point to point is a physical field; the connections which preserve
our Spinc structure contain the electromagnetic potential in a natural way, with
correct gauge transformations. Fixing C or ε yields a global 1-form A, which is
too much. So, by assuming given C or ε, we would get an unnecessary extra-
structure. Similarly, fixing a positive Hermitian metric on W is equivalent to
fixing an observer, so this is an unnecessary extra-structure too. We also stress
that the 2-spinor approach turns out to be completely equivalent to our weakened
4-spinor approach. In particular, note that in W = S⊕SF, where S is the 2-spinor
bundle, k is just a natural contraction.

A language which is not based on principal bundles in an essential way,
besides being suitable for the kind of clarification we seek, may suggest gen-

? This yields what is also called a ‘module of Clifford algebras’.
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eralizations which, in the principal bundle context, are hardly attainable. For
example, one could allow for k to become a dynamical rather than a fixed and
static object. This would mean that the gauge group itself can be a dynamical
variable and need not be constant throughout spacetime. In such a case, standard
principal bundle techniques will apply only in some regions.

Similarly, it is easy to generalize our formulation in such a way as to allow
discussion of spacetimes with a degenerate metric of nonconstant rank and no
requirement for the existence of Spinc structures [CJ96]. Such a formulation of
the dynamics may prove to be necessary in those approaches that strive to include
quantum fluctuations of the metric. The ‘classical’ approach is not suitable for
this purpose.

Even if an expert may find that we presented no essentially new mathe-
matical results, our consistent scheme is not at all a trivial consequence of
known facts. The paper can be seen as a self-consistent alternative introduc-
tion to the Dirac equation of 1

2-spin particles. The reader is supposed to have
some familiarity only with the very basic concepts concerning (real and com-
plex) vector bundles and connections, which are briefly recalled in the first sec-
tion.

PART I: PRELIMINARIES

1. Some Essential Mathematics

In this section we summarize the main prerequisite concepts and notations.

1.1. TANGENT SPACE

The tangent bundle of a manifold M will be denoted by TM → M. A local
chart (xλ) of M yields the local chart (xλ, ẋλ) of TM, the local basis of vector
fields (∂xλ) and the dual local basis of forms (dxλ). The tangent prolongation
of a map f : M → N is the map Tf : TM → TN with coordinate expression
Tf = ∂λf

jdλ⊗ (∂j ◦ f).
A manifold F is said to be fibred over the base space B if it is equipped with

a surjective map p: F→ B whose rank equals the dimension of B. A bundle is
a fibred manifold which can be covered by local trivializations defined on open
‘tubelike’ subsets.

A chart (xλ, yj) of F is said to be fibred if the coordinates xλ depend only
on the base space. A fibred chart of F yields the local frame of vector fields
(∂xλ, ∂yj) and the dual local frame of forms (dxλ, dyj) on F. Hence, we also
obtain the chart (xλ, yi; ẋλ, ẏi) of TF.

The vertical subbundle V F ⊂ TF is constituted by all vectors tangent to the
fibres and is characterized by the equation (ẋλ = 0). Thus, a vector field X is
vertical iff Tp(X) = 0, i.e. iff its coordinate expression is X = Xj∂yj .

ACAP1294.tex; 13/02/1998; 16:45; v.7; p.3



62 DANIEL CANARUTTO AND ARKADIUSZ JADCZYK

1.2. JET SPACE

The jet space at x ∈ B of the fibred manifold p: F → B is defined to be the
set JxF of all equivalence classes of sections s: B → F which have the same
value s(x) and the same derivatives ∂λsi(x) (this condition is independent of
the particular chosen chart). The jet space JF is the union of all JxF for x ∈ B.
We have the natural fibred chart (xλ, yj , yjλ) of JF, and the jet prolongation
js: B→ JF characterized by the coordinate expression (yj , yjλ)◦js = (sj, ∂λs

j).
We can identify js with Ts: TB→ TF, which projects over 1TB. Accordingly,
we can regard JF as the subbundle of T ∗B⊗FTF whose elements are projectable
over 1TB ∈ T ∗B⊗BTB.

If p′: F′ → B is another fibred manifold, then the jet prolongation of a fibred
map f : F → F′ is the fibred map Jf : JF → JF′ with coordinate expresssion
y′jλ ◦ Jf = ∂λf

j + yhλ∂hf
j .

We have a natural isomorphism JV F ∼= V JF, which is immediately read as
coordinate ‘exchange’ in the respective fibred coordinates (xλ, yj , ẏj , yjλ, ẏ

j
λ) and

(xλ, yj , yjλ, ẏ
j , ẏjλ). This fact allows the jet prolongation of any vertical vector

field v: F → V F to a vertical vector field v′ ∼= Jv : JF → V JF, with
coordinate expression v′ = vj∂yj + (∂λv

j + yhλ∂hv
j)∂yλj . This construction can

be generalized [MM83b] to the jet prolongation of any vector field on F.

1.3. CONNECTIONS

There are several equivalent ways to define the concept of a (possibly nonlinear)
connection on a general fibred manifold [Ga72, Ko84, MM83a, Mo91].

In general, we present a connection on a fibred manifold F → B as a sec-
tion c: F → JF which, via the natural inclusion, can be seen as a horizontal
prolongation c: F → T ∗B⊗FTF, whose coordinate expression is of the type
c = dxλ⊗ (∂xλ + c j

λ ∂yj), with c j
λ : F→ R.

The associated vertical projection is νc: F → T ∗F⊗FV F, with coordinate
expression νc = (dyj − c j

λ dxλ)⊗ ∂yj .
The covariant differential of a section s: B→ F is defined to be the section

∇[c]s := js − c ◦ s = Tsy νc: B → T ∗B⊗FTF, with coordinate expression
∇λsj = ∂λs

j − c j
λ
◦ s.

The curvature tensor of the connection c is defined to be the tensor field
R[c]: F → ∧2(T ∗B)⊗FV F characterized by R[c](u, v) := 1

2 ([uy c, v y c] −
[u, v] y c) for any two vector fields u, v: B → F. Namely, the curvature tensor
‘measures’ how much the horizontal prolongation c differs from being a mor-
phism of Lie algebras. Its coordinate expression is R[c] = R j

λµ dxλ∧dµ⊗ ∂yj ,
where R j

λµ = ∂[λc
j
µ] + c h[λ∂hc

j
µ].

If F→ B is a vector bundle, then JF→ B also turns out to be a vector bun-
dle. A connection c: F→ JF is then said to be linear if it is a linear morphism
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over B. In linear fibred coordinates this means c j
λ = c jλ k y

k with c jλ k: B→ R. In
the domain of a given linear fibred chart (a ‘gauge’) we have the endomorphisms
cλ: B→ End(F) whose matrix expression is (c jλ k).

? Local expressions of covari-
ant derivatives can be conveniently expressed through these, e.g.∇λs = ∂λs−cλs
where ∂λs denotes the covariant derivative of the trivial connection induced by
the gauge (that whose coefficients vanish in the gauge). Similarly, the expression
of the curvature tensor can be written Rλµ = ∂[λcµ] − c[λcµ].

1.4. COMPLEX SPACES

If X is any set and f : X → C then we denote by f̄ the conjugate map, f̄(x) :=
f(x).

Let U be an n-dimensional complex vector space. Then U is also a 2n-
dimensional real vector space. We shall denote by UF and U∗ the complex
and real dual spaces, respectively. Moreover we shall denote by UF the antidual
space, i.e. the space of all antilinear maps U→ C. We have the (conjugation) anti-
isomorphism K: UF → UF: λ 7→ λ̄, and the natural inclusion U∗ ⊂ UF ⊕ UF.

The conjugate space of U is defined to be U := UFF ∼= UFF. Conjugation,
denoted again by K, is an anti-isomorphsim UFF ∼= U→ U: u 7→ ū. We have

UF ∼= UF ∼= UF, UF ∼= UF ∼= UF.

Let (ζa) be a basis of U, a = 1, . . . , n, and (za) the dual basis of UF. Then
we have the conjugate bases (ζ̄a. ) := (ζa) of U and (z̄a

.
) := (za) of UF. If

u = uaζa and λ = λaz
a then ū = ūa

.
ζ̄a. and λ̄ = λ̄a. z̄

a. with ūa
.

= ua,

λ̄a. = λa.
The (real) differential of a function f : U → R is a 1-form df : U → U∗ ⊂

UF ⊕ UF. In coordinates we write

df =
∂f

∂za
dza +

∂f

∂z̄a.
dz̄a

.
,

namely, we formally consider za and z̄a
.

as real independent coordinates (see for
example [We80]).

Conjugation can be naturally extended to tensor products of the above spaces
with any number of factors. If τ is a tensor then τ̄ has dotted indices in the place
of undotted indices of τ , and vice-versa.

A tensor w ∈ U⊗U is said to be Hermitian if w̄ = wT, where T denotes trans-
position. In coordinates this means w̄ab

.
= wb

.a. We have the real decomposition
U⊗U = H⊕ iH into Hermitian and anti-Hermitian subspaces.

A Hermitian 2-form is a Hermitian tensor h ∈ UF⊗UF. The associated
quadratic form u 7→ h(u, u) is real-valued. The concepts of signature and nonde-
generacy of Hermitian 2-forms are introduced similarly to the case of real bilinear
? These are also the components, in the considered gauge, of the connection forms introduced

in the principal bundle approach (see [CC91I, CC91II] for a detailed comparison).
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forms. If h is nondegenerate then it yields the anti-isomorphisms h[: U→ UF,
h# := (h[)−1: UF → U, where h[(u) := h(u, ) = ha. bū

a.ζb, and the isomor-
phisms h̄[: U→ UF, h̄#: UF → U. The Hermitian conjugate of f ∈ End(U) ∼=
U⊗UF with respect to h is defined to be f† := h# ◦ fF ◦ h[ ∈ End(U), where
fF ∈ End(UF) is the transpose of f .

2. Units of Measurement

We briefly present the ideas which allow a general and rigorous formulation of
physical units [CJM95, JM92].

Observe that homogeneous units can be added and multiplied by real num-
bers; in some cases, however, no zero unit exists and only multiplication by
positive real numbers is allowed. Then we are lead to define a unit space as
a one-dimensional semivector space, i.e. as a semifield U associated with the
semiring R+ (the axioms are analogous to those of vector spaces, with the only
difference that U and R+ are additive semigroups and not groups). Moreover,
a unit space is said to be positive if the multiplication by numbers cannot be
extended to either R+ ∪ {0} or to R. Thus, a unit space is a vector space,
or a positive unit space, or a positive unit space extended by the zero ele-
ment.

Several concepts and results of standard linear and multilinear algebra can
be easily repeated for unit spaces. The main caution to be taken is to avoid
formulations which involve the zero element.

In particular, we can define the tensor product (over R+) of unit spaces;
the tensor product (over R+) of a unit space and a vector space naturally
becomes a vector space. Also, we can define the R+-dual U∗ of a unit space
U; then we obtain the natural identification U⊗U∗ ∼= R+. Furthermore, we can
define in a natural way the ‘root’ unit space U1/r of U, for any positive inte-
ger r.

In order to write formulas similar to the standard ones of physics, we use a
‘number-like’ notation for unit spaces. Namely, if V is a vector space and u ∈ U,
v ∈ V, then we write u v for u⊗ v; accordingly, we set U2 := U⊗U and the
like. Moreover, if U is a unit space which does not contain 0, then we write
U−1 = U∗ and denote by 1/u ∈ U−1 the dual element of u ∈ U.

We shall assume as fundamental unit spaces the oriented vector space T of
time units, the positive space L of lengths and the positive space M of masses.
Quantities possessing physical ‘dimensions’, like spacetime metric and electro-
magnetic field, will be described mathematically as ‘scaled’ fields, namely as
sections of tensor bundles tensorialized by unit spaces.

We shall attach to each particle a mass m and a charge q, where

m ∈ M, q ∈ Q := T∗⊗L3/2⊗M1/2.
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Moreover, we shall postulate two universal coupling constants,? namely the speed
of light and the Planck constant

c ∈ T∗⊗L, ~ ∈ T∗⊗L2⊗M.

PART II: SPINOR ALGEBRA

First we summarize some of the main facts about the Dirac algebra [Ch54, Cr90,
Gr78, HS84, St94]. Then we introduce complex spinor structures and spinor
structures at the algebraic level and study some of their main properties.

3. Clifford Algebra of Minkowski Space

We assume (V, g) to be a Minkowski space, namely V to be a four-dimensional
real vector space and g ∈ V∗⊗V∗ a Lorentz metric with signature (1, 3). The
Clifford algebra C(V, g), henceforth denoted simply by C, is the associative
algebra generated by V where the product of any u, v ∈ V is subjected to the
condition

u v + v u = 2 g(u, v)1

(this is equivalent to v v = g(v, v)1 ∀v ∈ V). The Clifford algebra fulfills
the following universal property: if A is an associative algebra with unity and
γ: V→ A is a Clifford map, namely a linear map such that

γ(v) γ(v) = g(v, v)1, v ∈ V,

then γ extends to a unique homomorphism γ̂: C → A. Namely, the image of
γ̂, together with the restriction of the algebra product of A, turns out to be an
algebra isomorphic to C.

It can be proved that C is isomorphic, as a vector space, to the vector space
underlying the exterior algebra ∧V. The isomorphism is characterized by the
identification

A(v1 . . . vp) ≡ v1 ∧ · · · ∧ vp,

where A stands for the antisymmetrisazion operator defined by

A(v1 . . . vp) =
1
p!

∑
π

ε(π) vπ(1) . . . vπ(p);

the sum is extended to all permutations of the set {1, . . . , p} and ε(π) denotes
the permutation’s sign. In other terms, we have two distinct algebras on the same
? We are not concerned with Newton’s gravitational constant since we deal only with given

background gravitational field.
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underlying vector space. Any element of C can be uniquely expressed as a sum
of terms, each of well-defined exterior degree. In particular

u v = u ∧ v + g(u, v), u, v ∈ V.

From this one sees that the Clifford algebra product does not preserve the exterior
algebra degree, but only its parity. Namely C is Z2-graded.

Also, let φ ∈ ∧rV, θ ∈ ∧sV, r 6 s. Then the Clifford product φ θ turns
out to be a sum of terms of exterior degree r+s, r+s−2, . . . , r−s, from φ ∧ θ
to (−1)r(r−1)/2 iφθ. In particular, for any chosen orientation of V consider the
unique g-unimodular positively oriented volume form η; then

v η = −η v = ∗v, v ∈ V,

η η = −1.
(3.1)

If γ: V→ A is a Clifford map, then γ̂, being an injective vector space morphism,
transfers onto its image also the exterior algebra structure. In particular, for
decomposable elements of exterior degree 2 we obtain

γu ∧ γv := γ̂(u ∧ v) = 1
2 [γu, γv] := 1

2 (γu γv − γv γu).

Also, note that γ̂ yields a homomorphism C[, ] → A[, ] of the commutator-induced
Lie algebras.

4. Fundamental Groups in the Clifford Algebra

Let C× be the group of all invertible elements of C. The adjoint action of C×

on C is defined by

Ad(Λ)(Φ) := ΛΦΛ−1, Λ ∈ C×, Φ ∈ C.

The Clifford group Cl ≡ Cl(V, g) is defined to be the group of all invertible
elements of C for which V ⊂ C is stable under the adjoint action. It turns
out [Cr90, Gr78] that Cl is (multiplicatively) generated by all v ∈ V such that
g(v, v) 6= 0. Namely any element of Cl is of the form θ = v1 v2 . . . vn, with
vj ∈ V, and its inverse is given by θ−1 = 1/ν(θ) vn . . . v2 v1 where ν(θ) :=
g(v1, v1) g(v2, v2) . . . g(vn, vn). We have the subgroup Cl↑ ⊂ Cl characterized by
ν(θ) > 0 (i.e. θ ∈ Cl↑ iff it has an even number of Clifford factors with negative
square) and the subgroup Cl+ ⊂ Cl constituted by all even-degree elements. We
also set Cl+↑ := Cl+ ∩ Cl↑.

We shall denote by Spin ⊂ Pin ⊂ Cl the Spin and Pin subgroups. Namely Pin
is the group (multiplicatively) generated by all v ∈ V such that g(v, v) = ±1,
and Spin := Pin+ is the subgroup of Pin constituted by all even-degree elements.
Then Cl = R+×Pin and Cl+ = R+×Spin. We set Pin↑ := Pin∩Cl↑ and Spin↑ :=
Spin ∩Cl↑ = Pin ∩Cl+↑. If θ = v1 v2 . . . vn ∈ Pin then θ−1 = ±vn . . . v2 v1, and
the plus sign holds if θ ∈ Pin↑.
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We shall denote by L(V) := O(V, g) the (full) Lorentz group and by L+(V) :=
SO(V, g) its special (i.e. orientation preserving) subgroup. Let v ∈ V be such
that g(v, v) 6= 0. Then one easily sees that Ad(v) is the negative of the reflec-
tion through the hyperplane perpendicular to v. From a well-known theorem
[Cr90, Gr78] it then follows that the adjoint action restricted to Cl is a group
epimorphism onto the Lorentz group. The restriction to Pin turns out to be a
two-to-one epimorphism Pin → L(V), while the restriction to Spin turns out to
be a two-to-one epimorphism Spin→ L+(V).

Furthermore, from the above recalled interpretation of Ad(v) as a reflection
one sees that Ad(v) preserves time-orientation iff g(v, v) > 0. It follows that Cl↑

is the subgroup of Cl which preserves time-orientation, and the same holds for
the other ‘up arrow’ subgroups. In particular, Spin↑ turns out to be the double
covering of the special orthochronous Lorentz group L+↑(V).

Clearly, all the above introduced groups are Lie groups. In general, we shall
denote by L(G) the Lie algebra of the Lie group G. We have (see [Cr90], Ch. 6)

L(C×) = C[, ],

L(Cl) = L(Cl+) = L(Cl↑) = L(Cl+↑)

= R⊕ ∧2V ⊂ C[, ],

L(Pin) = L(Spin) = L(Pin↑) = L(Spin↑)

= ∧2V ⊂ C[, ].

The double covering Pin → L(V) determines a Lie algebra isomorphism. If
λ ∈ L(Pin) and λ̃ ∈ L(L(V)) are corresponding elements and (eµ) is a basis of
V we have

λ = 1
4 λ̃

µ
ρ g

νρ eµ ∧ eν . (4.1)

5. Dirac Algebra

By W we shall denote a four-dimensional complex vector space. Let

γ: V→ End(W): v 7→ γv := γ(v)

be a Clifford map. Then Dγ := γ̂(C(V, g)) ⊂ End(W) is a real vector algebra
called the Dirac algebra generated by γ. We have C⊗Dγ := Dγ ⊕ iDγ =
End(W).

The Dirac algebra has the canonical element γη := γ̂(η). Since γ2
η = −1, we

have a splitting W = S ⊕ S′ into the direct sum of the (complex) eigenspaces
of iγη with eigenvalues ±1. We call this the chiral splitting, and S and S′ the
chiral subspaces of W.
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PROPOSITION 5.1. The Clifford map γ exchanges the chiral subspaces, i.e.
∀v ∈ V we have γv(S) = S′, γv(S′) = S. If g(v, v) 6= 0, then the restrictions of
γv to S and S′ are isomorphisms.

Proof. From (3.1) we have γvγη = −γηγv, hence γv(1− iγη) = (1 + iγη)γv
and γv(1 + iγη) = (1− iγη)γv . The second statement follows from γvγv(ψS) =
g(v, v)ψS . 2

From the above proposition, it follows immediately that the odd part of Dγ

exchanges the chiral subspaces, while the even part leaves them invariant.
If (eλ) is a basis of V, then one sets γλ := γ(eλ). In physics texts, one usually

takes an orthonormal and positively oriented basis, and sets γ5 := −iγ0γ1γ2γ3.
Then γ5 = −iγη.

The natural extension γ̂ of the Clifford map γ sends the subgroups of C×

introduced in Section 4 to subgroups of the general linear group Gl(W) of all
complex automorphsims of W. Moreover, each of these restrictions of γ̂ turns
out to be a group isomorphism. Hence, when no confusion arises, we may just
identify Pin ≡ γ̂(Pin), Spin ≡ γ̂(Spin) and so on.

Let G ⊂ C× be any of these subgroups. We have the natural ‘complexified’
extension Gc ⊂ Gl(W) constituted by all elements of G multiplied by a phase
factor, namely

Gc := U(1) ×̃ G := (U(1)×G)/∼ = (U(1)× G)/Z2,

where∼ is the equivalence relation (λ, θ) ∼ (λ′, θ′)⇔ λθ = λ′θ′. The last equal-
ity follows from considering the subgroup of U(1)× G generated by (−1,−1),
which is a normal subgroup isomorphic to Z2. Explicitly, we have?

Clc := U(1) ×̃ Cl := R+ × U(1) ×̃ Pin := R+ × Pinc,

Cl+ c := U(1) ×̃ Cl+ := R+ × U(1) ×̃ Spin := R+ × Spinc,

Cl↑ c := U(1) ×̃ Cl↑ := R+ × U(1) ×̃ Pin↑ := R+ × Pin↑ c,

Cl+↑ c := U(1) ×̃ Cl+↑ := R+ × U(1) ×̃ Spin↑ := R+ × Spin↑ c.

We have the Lie algebras

L(Clc) = L(Cl+ c) = L(Cl↑ c) = L(Cl+↑ c)

= C⊕ γ̂(∧2V) ⊂ End[, ](W),

L(Pinc) = L(Spinc) = L(Pin↑ c) = L(Spin↑ c)

= iR⊕ γ̂(∧2V) ⊂ End[, ](W), (5.1)

L(Pin) = L(Spin) = L(Pin↑) = L(Spin↑)

= γ̂(∧2V) ⊂ End[, ](W).

? Pinc and its complexified subgroups are also called ‘torogonal groups’ [Cr90].
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From the definitions, it follows that Clc is the group of all elements of Gl(W)
for which γ(V) is stable under the adjoint action. Then we introduce the map
ϕ: Clc → End(V) defined by

γ(ϕ(Λ)v) = Ad(Λ)(γ(v)) := Λγ(v)Λ−1, v ∈ V, Λ ∈ Clc.

Hence, ϕ is a group epimorphism Clc → L(V), as well as its restriction to Pinc.
The restrictions of ϕ to Cl+ c and Spinc turn out to be group epimorphisms onto
L+(V). Then we see that the subgroup L(V) ×γ Clc ⊂ L(V) × Clc constituted
by all elements of the form (ϕ(Λ),Λ) can be identified with Clc itself. Similarly
L+(V)×γ Cl+ c ∼= Cl+ c.

Note that γ can be seen as an element of V∗⊗End(W). Then the natural
action of (Λ̃,Λ) ∈ L(V)× Clc on γ is given by (Λ̃,Λ)∗(γ) = Λ−1 (γ ◦ Λ̃) Λ. In
particular, the action of (ϕ(Λ),Λ) ∼= Λ ∈ Clc on γ is given by

Λ∗(γ) = Λ−1 (γ ◦ ϕ(Λ)
)
Λ = Λ−1Λ γ Λ−1Λ = γ.

Namely, we obtain

PROPOSITION 5.2.
(a) The group of all automorphisms of (g, γ) is Clc.
(b) The group of all automorphisms of (g, η, γ) is Cl+ c.

Moreover, we have the time-orientation preserving subgroups Cl↑ c and Cl+↑ c.
The isomorphism (4.1) between the Lie algebras of Pin ≡ γ̂(Pin) and of L(V)

can be read as λ = 1
4 λ̃

µ
ρ g

νρ γµ ∧ γν . In physics texts, this is usually written as

λ = − i
4 λ̃

µν σµν , with σµν := i
2 [γµ, γν ] = iγµ ∧ γν .

Let Λ̃ ∈ L(V) be a Lorentz transformation. Then γ ◦ Λ̃ is a new Clifford map
which has the same image and yields the same chiral splitting as γ. Namely, we
have an equivalence relation between Clifford maps, where two Clifford maps are
regarded as equivalent iff they are related by a Lorentz transformation. Moreover,
(γ ◦ Λ̃)η = ±γη, where the plus sign holds iff Λ̃ ∈ L+(V).

We have the following characterization of the family of Clifford maps with
given canonical element.

PROPOSITION 5.3. Up to a Lorentz transformation, any Clifford map γ̃ having
canonical element γ̃η = γη is of the form

γ̃ = cos(z) γ + sin(z) γ γη, z ∈ C.

Proof. Since γ̃η = γη, γ̃ anticommutes with γη, so its expansion in terms of γ̂
contains only odd-degree terms. Namely, there exist two linear maps A,B: V→
C⊗V such that

γ̃ = γ ◦A+ (γ ◦B)γη.
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For each v ∈ V, we obtain

γ̃v γ̃v = (γAv γAv + γBv γBv) + (γAv γBv − γBv γAv) γη.

Since γ̃ is a Clifford map, the second term in the right-hand side has to be zero.
Hence, Av ∝ Bv ∀ v ∈ V. If A = 0, then obviously B has to be a Lorentz
transformation, so our statement is true with z = π/2. If A 6= 0 then A must be
injective for γ̃ to be injective. It follows B = bA with b ∈ C. We now have

g(v, v) = γ̃v γ̃v = (1 + b2)(γAv γAv) = (1 + b2) g(Av,Av).

Hence, b 6= ±i and
√

1 + b2 A = Λ̃, where Λ̃ is a Lorentz transformation. Letting
cos z = 1/

√
1 + b2 and sin z = b/

√
1 + b2, we obtain the stated expression. 2

Conversely, one easily sees that the expression of the above proposition for γ̃
yields a Clifford map for any z ∈ C.

6. Algebraic Complex Spinor Structures

An algebraic complex spinor structure on the Minkowski space (V, g) is defined
to be a complex two-dimensional vector space W together with a Clifford map
γ: V → End(W) and a Hermitian form k ∈ WF⊗WF fulfilling k(γvφ,ψ) =
k(φ, γvψ) for all v ∈ V and φ,ψ ∈ W. Then we also have k(γηφ,ψ) = k(φ, γηψ).
We shall denote by k[: W → WF the anti-isomorphism given by k[(φ) :=
k(φ, ), and set k# := (k[)−1: WF → W. A similar notation will be used for
other invertible 2-tensors.

Remark. In physics texts, usually, there is no explicit notation for k. Instead
one finds the notation ψ which is our k[(ψ).

PROPOSITION 6.1. Each chiral subspace is a maximal totally k-isotropic sub-
space.

Proof. We have k ◦ ((1+ iγη)× (1+ iγη)) = k ◦ ((1− iγη)× (1− iγη)) = 0,
so S and S′ are totally isotropic. Then the index of k (see [Cr90], prop. 1.2.10)
is dim S = 2. 2

PROPOSITION 6.2. The maps

S→ S′F: s 7→ k[(s)|S′ , S′ → SF: s′ 7→ k[(s′)|S,

are anti-isomorphisms.
Proof. Since S and S′F have the same dimension, we have to show that from

k[(s)|S′ = 0 it follows that s = 0. Let k(s, s′) = 0 for each s′ ∈ S′. Since
k(s, t) = 0 for each t ∈ S and W = S⊕S′, we have k(s, ψ) = 0 for each ψ ∈W.
Because k is nondegenerate, we have s = 0. 2
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PROPOSITION 6.3. Let U ⊂ S be a one-dimensional subspace. Then there exists
a unique one-dimensional subspace U′ ⊂ S′ such that k(U,U′) = 0.

Proof. Uniqueness: Let u ∈ U, u′ ∈ S′, k(u, u′) = 0. Then (see the above
proposition) there is no t′ ∈ S′ linearly independent from u′ such that k(u, t′),
so U′ is unique and is the space generated by u′.

Existence: Let u ∈ U and take any two linearly independent elements s′, t′ ∈
S′. Then u′ := k(u, t′) s′ − k(u, s′) t′ fulfills k(u, u′) = 0. 2

The subspaces U, U′ of the above proposition are said to be mutually k-conjugated.

PROPOSITION 6.4.

(a) The group of all automorphisms of (g, γ, k) is Pin↑ c.
(b) The group of all automorphisms of (g, η, γ, k) is Spin↑ c.

Proof. Let ϑ := µθ1 . . . θn ∈ Clc, with θj ∈ γ(V), µ ∈ C×. Then

k ◦ (ϑ× ϑ) = µ̄µ k ◦ ((θ1 . . . θn)× (θ1 . . . θn)) = ±µ̄µ k,

where the plus sign holds iff θ1 . . . θn ∈ Pin↑. 2

We see that there is a strict relation between k and time-orientation. We shall
clarify this point in Section 10.

We shall be involved with the following description of the family of all
complex spinor structures for given k and γη.

PROPOSITION 6.5. Up to a Lorentz transformation, any Clifford map γ̃ having
canonical element γ̃η = γη and such that (γ̃, k) determines an algebraic weak
spinor structure is of the form

γ̃ = ± cosh(y) γ + i sinh(y) γ γη, y ∈ R.

Proof. Inserting the expression for γ̃ given in Proposition 5.3 into the equation
k◦(γ̃×1) = k◦(1×γ̃), we obtain the condition sin (z̄ + z)/2 = 0, i.e. z = nπ+iy
with n ∈ N. For even n obtain the stated expression with the plus sign, while for
odd n we get an overall minus sign which, in the second term, can be included
in y. 2

Note that the Clifford maps fulfilling the hypotheses of Proposition 6.5 are divid-
ed into two disconnected classes, according to the sign of the first term in the
expression of γ̃.

PROPOSITION 6.6. Two Clifford maps γy and γy
′
, fulfilling the hypotheses of

Proposition 6.5, are in the same class iff for any timelike u ∈ V one has

γyuγ
y′
u + γy

′
u γ

y
u > 0.
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Proof. Let v ∈ V. We obtain γyvγ
y′
v +γy

′
v γ

y
v = ±2 cosh(y+y′) g(v, v), where

the plus sign holds iff γy and γy
′

are in the same class. 2

We then see that the two classes of Clifford maps can be put in one-to-one corre-
spondence with time orientations of V. Thus, we shall call them time-orientation
classes. In Section 10, we shall see that there is a distinguished way of choosing
this correspondence.

7. Special Bases

Let (ζ1, ζ2) be a basis of S. Then there exists a unique basis (ζ3, ζ4) of S′ such that
ζ4 is k-conjugated to ζ1, ζ3 is k-conjugated to ζ2, and k(ζ1, ζ3) = k(ζ2, ζ4) = −1.
In other terms,

(
k[(ζ1), k

[(ζ2)
)

is minus the antidual basis of (ζ3, ζ4). We call
(ζa), a = 1, . . . , 4, a k-normal basis of W (not orthonormal!), and we indicate
by (za) the dual basis. Then we have the coordinate expressions

k = −z̄1⊗ z3 − z̄3⊗ z1 − z̄2⊗ z4 − z̄4⊗ z2,

γη = i (ζ1⊗ z1 + ζ2⊗ z2 − ζ3⊗ z3 − ζ4⊗ z4).
(7.1)

We see that k turns out to have signature (2, 2).
Using a basis of W we can prove the existence of an algebraic complex spinor

structure. First, any basis determines a Hermitian 2-form k via the expression
(7.1). Now, chose an orthonormal basis (eλ) of V and consider the map γ: V→
End(W) given by

γ0 := γ(e0) := −ζ1⊗ z3 − ζ2⊗ z4 − ζ3⊗ z1 − ζ4⊗ z2,

γ1 := γ(e1) := −ζ1⊗ z4 − ζ2⊗ z3 + ζ3⊗ z2 + ζ4⊗ z1,

γ2 := γ(e2) := i(ζ1⊗ z4 − ζ2⊗ z3 − ζ3⊗ z2 + ζ4⊗ z1),

γ3 := γ(e3) := −ζ1⊗ z3 + ζ2⊗ z4 + ζ3⊗ z1 − ζ4⊗ z2,

(7.2)

namely the matrix expression of γ is

(γ0) =

(
0 −(σ0)

−(σ0) 0

)
, (γj) =

(
0 −(σj)

(σj) 0

)
, (7.3)

where (σλ) denotes the λth Pauli matrix. Then, it is easy to check that (k, γ)
constitute an algebraic complex spinor structure. The expression (7.2) or (7.3) is
called the Weyl representation, and (ζa) is called a Weyl basis. Since the Pin↑ c

group preserves the given algebraic complex spinor structure, any of its elements
sends (eλ) and (ζa) to new bases (e′λ) and (ζ ′a) in which (γ, k) is again expressed
by the Weyl representation.

LEMMA 7.1. Let (eλ) be a positively-oriented orthonormal basis of V, and let
(ζa), (ζ̃a) be k-normal bases of W. Let γ and γ̃ be the Clifford maps whose
expressions, in these bases, are given by (7.2). Then γ and γ̃ are in the same
time-orientation class (Propositions 6.5 and 6.6).
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Proof. Since Gl(2,C) is connected, there is a continuous curve, valued in the
space of all bases of V, joining (ζa) and (ζ̃a). This yields a continuous curve
joining γ and γ̃. Since the two time-orientation classes are disconnected, γ and
γ̃ are in the same class. 2

By a straightforward calculation one checks:

PROPOSITION 7.1. Any algebraic complex spinor structure can be expressed,
in suitable bases of V and W, by (7.1) and (7.2). More precisely, let (ζ̃a) be
any k-normal basis of W and (eλ) a positively-oriented orthonormal basis of V.
Then there is a unique y ∈ R such that the k-normal basis

ζ1 = e−y/2ζ̃1, ζ2 = e−y/2ζ̃2, ζ3 = ey/2ζ̃3, ζ4 = ey/2ζ̃4

is a Weyl basis associated with (eλ).

We can recover the familiar Dirac representation as follows. Since (γ0)
2 = 1,

γ0 determines a splitting of W into subspaces with eigenvalues ±1, projections
p±0 := 1

2(1± γ0). Applying these projections to the elements of a Weyl basis we
find a basis adapted to this splitting, called a Dirac basis:

ζ ′1 :=
√

2 p+
0 (ζ1) = −

√
2 p+

0 (ζ1) = 1√
2(ζ1 − ζ3),

ζ ′2 :=
√

2 p+
0 (ζ2) = −

√
2 p+

0 (ζ4) = 1√
2(ζ2 − ζ4),

ζ ′3 :=
√

2 p−0 (ζ1) =
√

2 p−0 (ζ3) = 1√
2(ζ1 + ζ3),

ζ ′4 :=
√

2 p−0 (ζ2) =
√

2 p−0 (ζ4) = 1√
2(ζ2 + ζ4).

In this basis the matrix expression of γ is

(γ0) =

(
(σ0) 0

0 −(σ0)

)
, (γj) =

(
0 −(σj)

(σj) 0

)
.

8. Algebraic Spinor Structures

In this section we consider a given algebraic complex spinor structure. A k-
conjugation is defined to be an antilinear map C: W→ W fulfilling

C2 = 1, (8.1)

k(Cψ,ψ) = 0, ∀ψ ∈ W, (8.2)

C ◦ γη = γη ◦ C. (8.3)

From (8.3), it follows C(S) = S′, C(S′) = S. Then, because of (8.2), C sends
any one-dimensional subspace of S or S′ into its k-conjugated subspace (Propo-
sition 6.3). Note also that, given (8.1), (8.2) is equivalent to k ◦ (C × C) = −k̄.

We obtain the following characterization of the family of all k-conjugations.
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LEMMA 8.1. Let C and C̃ be k-conjugations. Then

C̃ = e−it
(
coshx C + i sinhx C ◦ γη

)
with t, x ∈ R.

Proof. Write C = A+ B with

A := 1
2 C ◦ (1− iγη) = 1

2 (C + i Cγη),
B := 1

2 C ◦ (1 + iγη) = 1
2 (C − i Cγη)

(roughly speaking, A and B can be seen as the restrictions of C to S and S′,
respectively). Then BA|S = 1S, AB|S′ = 1S′ . Because of (8.2), A and Ã both

send any s ∈ S in the space conjugate to s. It follows that Ã = aA with a ∈ C×.
Similarly B̃ = bB with b ∈ C×. We have ÃB̃ = ab̄AB = 1S, hence ab̄ = 1.
Setting a = ex−it we obtain the stated result. 2

A charge conjugation is defined to be a k-conjugation fulfilling

C ◦ γv + γv ◦ C = 0, ∀v ∈ V.

An algebraic complex spinor structure together with a charge conjugation will
be called a (real) algebraic spinor structure. Using Lemma 8.1, by a straightfor-
ward calculation we obtain:

PROPOSITION 8.1. Let C be a charge conjugation and C̃ a k-conjugation.
Expressing C̃ through C as in Lemma 8.1 gives, for any v ∈ V,

C̃ ◦ γv ◦ C̃ = −(1 + 2 sinh2 x) γv + 2i sinhx coshxγvγη.

Hence, charge conjugation is unique up to a phase factor.

The expression of a charge conjugation in a Weyl basis turns out to be

C = e−it(−ζ1⊗ z̄4 + ζ2⊗ z̄3 + ζ3⊗ z̄2 − ζ4⊗ z̄1) (8.4)

with t ∈ [0, 2π).

PROPOSITION 8.2. The group of all automorphisms of (g, η, γ, k, C) is Spin↑ .
Proof. Let ϑ := eitθ1 . . . θn ∈ Pin↑ c, with θj ∈ γ(V) (Proposition 6.4). We

have θjC = −Cθj , then

ϑ∗(C) = ϑ−1 ◦ C ◦ ϑ = e−2it θn . . . θ1Cθ1 . . . θn = (−1)n e−2it C.

Hence, ϑ∗(C) = C if either n is even and t = mπ (so ϑ ∈ Spin), or n is odd
and t = (2m+ 1)π/2. 2

A given Weyl basis yields a spinor structure by letting t = 0 in Equation (8.4).
Conversely, given a spinor structure, any Weyl basis (ζ̃a) can be transformed
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to a C-normal Weyl basis (ζa) according to ζa = eit/2 ζ̃a. More generally, let
P ∈ Pin↑. Then Λ := eit/2 P ∈ Pin↑ c applied to the given Weyl basis yields a
C-normal Weyl basis. We obtain

C = −ζ1⊗ z̄4 + ζ2⊗ z̄3 + ζ3⊗ z̄2 − ζ4⊗ z̄1.

From (7.2), it follows detP = 1 ∀P ∈ Pin, hence t = −(i/2) log det Λ.
Using Proposition 6.5, we can see that γη, k and C determine γ up to a Lorentz

transformation. Namely:

PROPOSITION 8.3. Let C be a charge conjugation. Let γ̃: V → End(W) be a
Clifford map such that γ̃η = γη and together with k and C determines an alge-
braic spinor structure. Then γ̃ coincides with γ up to a Lorentz transformation.

Since C is an antilinear involution, its real eigenspaces with eigenvalues ±1
determine a splitting of W, with projections p±C = 1

2(1± C). Multiplication by i
and the action of γ(V) exchange these subspaces, so the action of iγ(V) leaves
them invariant. The algebra generated by iγ(V) can be seen as the Dirac algebra
of the Minkowski space iV, with signature (3, 1); its representation in W, called
the Majorana representation, is therefore the sum of two real representations.

Remark. Signs in the axioms and basic formulas involving the fundamen-
tal objects of a (either complex or real) spinor structure can be changed while
retaining essentially the same theory. So, for example, it is easily checked that
k′(φ,ψ) := k(γηφ,ψ) is again a Hermitian form with signature (2, 2), fulfilling
k′(γ(u)φ,ψ) = −k′(φ, γ(u)ψ). Moreover, to assign either k or k′ is equivalent.
Similarly C could be replaced with Cγη , which commutes with γv and whose
square is −1. Note also that (1, i, Cγη , iCγη) generates a representation of the
quaternion algebra.

9. Symplectic Forms and 2-Spinor Approach

By a chiral 2-form we shall mean a 2-form ε ∈ ∧2WF fulfilling

ε(γvφ,ψ) = ε(φ, γvψ).

Then we obtain

ε(γηφ,ψ) = ε(φ, γηψ).

PROPOSITION 9.1. A nonzero chiral 2-form is a symplectic form (i.e. it is non-
degenerate) and the chiral splitting turns out to be a symplectic splitting, namely
ε = εS + εS′ , where εS and εS′ can be viewed as symplectic forms on S and S′.

Moreover, let ε̃ be another chiral 2-form. Then ε̃ = b ε, b ∈ C.
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Proof. Write pS := 1
2(1− iγη). Then ε ◦ (pS × 1) = ε ◦ (1× pS). Since pS is

a projection, we obtain εS := ε ◦ (pS × pS) = ε ◦ (pS × 1), and similar for pS′ :=
1
2(1+ iγη). Thus, ε = εS + εS′ . Moreover, we have γ pS = pS′ γ, pS γ = γ pS′ ,
hence

εS ◦ (γ × 1) = εS′ ◦ (1× γ), εS′ ◦ (γ × 1) = εS ◦ (1× γ).
This implies that either ε = 0 or both εS and εS′ are nonzero. Now observe that
any ε̃ ∈ ∧2SF ⊕ ∧2S′F can be written as ε̃ = a εS + b εS′ with a, b ∈ C. We get

ε̃ ◦ (γ × 1) = a εS′ ◦ (1× γ) + b εS ◦ (1× γ).
Then ε̃ ◦ (γ × 1) = ε̃ ◦ (1× γ) iff a = b. 2

Hence, the the set of chiral 2-forms is a (complex) one-dimensional subspace
QF ⊂ ∧2WF (the existence of nonzero chiral forms follows from formula (9.1)
below). Its dual space Q can be identified with a one-dimensional subspace of
∧2W, i.e. the space of all ω ∈ ∧2W such that ω ◦ (γF

v ×1) = ω(1× γF
v ), v ∈ V,

where γF: V→ End(WF) is the dual (transpose) representation. The identifica-
tion is defined in such a way to recover the standard conventions [HT85, PR84]
about chiral symplectic forms. Namely, we write ωF ≡ ε iff 1

4 〈ε, ω〉 := 1
8 iωε =

1, where iωε is the standard exterior algebra contraction [Go69]. If ωF = ε, then
we set ε# := ω# = −(ε[)−1, where ω#(λ) := ω(λ, ), λ ∈ WF. We also write
εab := ωab, and obtain

εabε
ac = δcb , εabε

ab = δbb = 4, ε#(λ) = εabλaζb.

On a Weyl basis, the expressions of mutually dual elements ω ∈ Q and ε ∈ QF

are

ω = 2
b (ζ1 ∧ ζ2 + ζ3 ∧ ζ4) = 1

b (ζ1⊗ ζ2 − ζ2⊗ ζ1 + ζ3⊗ ζ4 − ζ4⊗ ζ3),

ε = 2 b (z1 ∧ z2 + z3 ∧ z4) = b (z1⊗ z2 − z2⊗ z1 + z3⊗ z4 − z4⊗ z3),

with b ∈ C×.
The Hermitian 2-form k yields a Hermitian 2-form k⊗ on the tensor algebra

⊗W. We define kQ to be 1
4 k⊗ restricted to Q, then kQ turns out to be a Hermitian

metric. The corresponding quadratic form k♦
Q has the coordinate expression

k♦
Q(ω) = 1

4 ka. b kc. d ω̄
a. c. ωbd.

Similarly, we have the inverse Hermitian metric on QF. In a Weyl basis, the
expressions of kQ-unimodular (or k-normalized) elements ω ∈ Q and ε ∈ QF

are

ω = eit
′
(ζ1⊗ ζ2 − ζ2⊗ ζ1 + ζ3⊗ ζ4 − ζ4⊗ ζ3),

ε = eit (z1⊗ z2 − z2⊗ z1 + z3⊗ z4 − z4⊗ z3)

with t′, t ∈ R. Note that, in the above formulas, ωF = ε iff t′ = −t. Then we
see that ω is k-normalized iff ωF is such.
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THEOREM 9.1. There is a one-to-one correspondence between charge conjuga-
tions and k-normalized chiral forms, given by

C = −iγη ◦ k# ◦ ε[, ε = i k ◦ (Cγη × 1).

Proof. Let ε be a k-normalized chiral form. From γv ◦ k# = k# ◦ γF
v and

ε[ ◦ γv = γF
v ◦ ε

[ it follows that γv commutes with k# ◦ ε[.
Set Cε := −iγη ◦ k# ◦ ε[. Taking into account the antilinearity of k[ we have

k[ ◦ Cε = i ε[ ◦ γη. Then we obtain

(Cε)2 = (−iγη) ◦ (iγη) ◦ k# ◦ ε[ ◦ k# ◦ ε[ = −k# ◦ ε[ ◦ k# ◦ ε[ = 1,

k(Cεψ,ψ) = 〈k[ ◦ Cε(ψ), ψ〉 = i 〈ε[ ◦ γη(ψ), ψ〉 = i ε(γηψ,ψ) = 0,

Cε ◦ γv = −iγη ◦ k# ◦ ε[ ◦ γv = −iγη ◦ γv ◦ k# ◦ ε[

= γv ◦ (iγη ◦ k# ◦ ε[) = −γv ◦ Cε.

Hence, Cε is a charge conjugation.
Conversely, let C be a charge conjugation and set εC := i k ◦ (Cγη × 1). We

have k# ◦ ε[C = −i Cγη . Then

εC(φ,ψ) = i k(Cγηφ,ψ) = −i k̄(φ, Cγηψ) = −i k(Cγηψ, φ) = −εC(ψ, φ),

εC(γvφ,ψ) = i k(Cγηγvφ,ψ) = i k(γvCγηφ,ψ)

= i k(Cγηφ, γvψ) = ε(φ, γvψ),

k# ◦ ε[C ◦ k
# ◦ ε[C = (−i Cγη) ◦ (−i Cγη) = −1.

Hence, εC is a k-normalized chiral form. 2

If ε and C are corresponding objects as in the above theorem, then one finds that
ε ◦ (C × C) = ε̄. Moreover, eitε corresponds to e−itC. A Weyl basis is C-normal
iff

ε = 2(z1 ∧ z2 + z3 ∧ z4) = z1⊗ z2 − z2⊗ z1 + z3⊗ z4 − z4⊗ z3, (9.1)

namely, εS = εAB z
A ∧ zB where εAB is exactly the antisymmetric Ricci matrix.

Next we present the basic ingredients for a comparison between 4-spinor and
2-spinor approaches to the Dirac equation [BTu87, HT85, PR84, PR88, Wa84];
essentially, the 2-spinor approach consists in identifying S′ with some space
associated with S. The most convenient choice turns out to be S′ ∼= SF, where
identification is via the map k[ (Proposition 6.2), but note that one can take
S′ ∼= S when a charge conjugation is chosen. A somewhat different approach is
given in [Tr94], where W ≡ S⊕ S.

Every chiral 2-form ε determines a bilinear form gε on the fibres of S⊗S,
defined, for decomposable elements, by

gε(x⊗ ȳ, u⊗ v̄) := 1
2 ε(x, u)ε̄(ȳ, v̄).
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Then gε restricted to the Hermitian real subbundle H (Section 1.4) turns out to
be a Lorentz metric; decomposable elements of S⊗S are gε-isotropic.

The identification S′ ∼= SF leads to considering the linear map

χε : S⊗S→ (S⊗S)⊕ (SF⊗SF) ⊂W⊗WF ≡ End(W)

: u⊗ v̄ 7→ u⊗ v̄ + ε̄[(v̄)⊗ ε[(u).
Then χε restricted to H turns out to be a Clifford map. Note now that gε and
χε do not change when ε is multiplied by a phase factor. Since the assigned
complex spinor structure determines the distinguished family of k-unimodular
chiral 2-forms, we actually have a distinguished Lorentz metric g′ := gε and a
distinguished Clifford map χ := χε.

The Pauli basis (σα) of H associated with a symplectic basis (ζA) of S is
defined by σα := σ AB.

α ζA⊗ ζ̄B. , where the (σ AB.

α )’s are the Pauli matrices. One
checks easily that (σα) is an orthonormal basis. Let (eα) be the orthonormal basis
of V given by γ(eα) = χ(σα). Then a direct calculation shows that the k-normal
basis (ζa) determined by (ζA), namely ζ3 := −z̄1 and ζ4 := −z̄2, is a Weyl basis
associated with (eα). We obtain

PROPOSITION 9.2. There exists a unique isometry τ : V→ H such that χ ◦ τ = γ.

Namely, we have σα = τ(eα).
The equivalence of 2-spinor and 4-spinor approaches then follows: assignment

of an algebraic complex spinor structure on (V, g) is equivalent to that of a two-
dimensional complex vector space S together with a Hermitian metric on ∧2S
and an isometry τ : V → H ⊂ S⊗S. The components of τ are the so-called
Infeld–van der Waerden symbols [PR84].

10. Observers and Hermitian Metrics

In physics texts, where spinors and the Dirac algebra are often treated in terms
of matrices, the operations of transposition and Hermitian conjugation are com-
monly used. In this section we see how those operations are not canonical, but
related to the choice of an observer.

By taking an adapted Weyl basis (Proposition 7.1), one proves:

PROPOSITION 10.1. Let u ∈ V be a unit timelike vector. Then h := k◦(γu×1) ∈
WF⊗WF, i.e. h(φ,ψ) := k(γuφ,ψ) = k(φ, γuψ), is a Hermitian metric, either
positive or negative definite.

The Hermitian metric h of the above proposition fulfills

h(S,S′) = 0,

h(γvφ,ψ) = −h(φ, γvψ) + 2g(u, v)h(φ, γuψ) =

= h(φ, γuγvγuψ)
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for all v ∈ V (the latter formula says that the Hermitian conjugate of γv with
respect to h is γ†v = γuγvγu). Moreover, for any charge conjugation C, we have

h ◦ (C × C) = h̄.

Clearly, all u belonging to a given half of the timelike cone yield a Hermitian
metric of the same signature. Hence, we obtain a distinguished time-orientation
of V, given by the requirement that future-pointing timelike unit vectors (called
‘observers’) yield a positive-definite Hermitian metric.

Given an observer, a Weyl basis such that γ(u) = γ0 (Section 7) turns out to
be orthonormal with respect to the induced h. The corresponding Dirac basis is
orthonormal with respect to both h and k. Then the eigenspaces of γu relative
to eigenvalues ±1 can be characterized by the restriction of k to coincide with
±h. Moreover, the Hermitian forms k and h are mutually normalized, namely
we have

k# ◦ h[ = h# ◦ k[ = γu, (10.1)

i.e. ka
. b ha. c = ha

. b ka. c = (γu)
b
c. Conversely, one can prove the following

characterization of the family of all observer-induced Hermitian metrics.

PROPOSITION 10.2. Let h be a (positive definite) k-normalized Hermitian met-
ric on W such that ∀v ∈ V one has γ†v ∈ γ(V). Then there is a unique observer
u such that h = k ◦ (γu × 1); this is given by formula (10.1).

Remark. Hermitian conjugation in standard physics texts, indicated by †,
is taken relatively to the Hermitian metric h associated with the element e0

of a given orthonormal basis. Ordinary transposition, indicated by T, corre-
sponds to taking complex space conjugation (not charge conjugation) togeth-
er with Hermitian conjugation relatively to h. Charge conjugation is usually
written (see [IZ80], p. 85) as ψc = ηcC ψ̄

T, where ηc is a phase factor. The
Dirac’s adjoint ψ̄ corresponds in our notation to k[(ψ), then ψ̄T corresponds to
h̄# ◦ k[(ψ) = γ̄0(ψ) = K ◦ γ0(ψ), where K: W → W denotes complex space
conjugation (Section 1.4). So we can write the above usual definition for charge
conjugation as C(ψ) ≡ ψc = ηcC ◦ K ◦ γ0(ψ), i.e. C = η̄c C ◦ γ0 ◦ K, a linear
map.

PART III: DIRAC EQUATION

11. Spinor Structures in General Relativity

Henceforth, we shall consider a spacetime (M, g), namely M is assumed to be
an oriented connected Hausdorff manifold and

g: M→ L2⊗T ∗M⊗
M
T ∗M
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a ‘scaled’ Lorentz metric (Section 2), of signature (1, 3). We also assume (M, g)
to be time-oriented. The metric connection on TM will be indicated by Γ.

A complex spinor structure on (M, g) is a smooth algebraic complex spinor
structure on the fibres. Namely we assume a complex vector bundle πW : W→ M
with four-dimensional fibres, a Clifford map γ: L∗⊗TM→ End(W) over M and
a scaled Hermitian 2-form k: M → L−3⊗WF⊗M WF, smoothly determining
an algebraic complex spinor structure on each fibre. The Clifford map γ can be
viewed as a scaled soldering form from TM to the bundle of endomorphisms
of W.

Note that the role which, in the algebraic setting, was of the Minkowski
space V, is now played by the vector bundle V := L∗⊗TM → M, on which
the spacetime scaled metric g can be viewed as a true Lorentz metric. Moreover,
since the Hermitian 2-form k is now scaled, k-normal frames (ζa) are frames of
L3/2⊗W, so when a section ψ: M → W is expressed as ψaζa, its components
ψa: M→ C⊗L−3/2. We write k = ka.bz̄

a. ⊗ zb with ka.b: M→ C.
The task of reformulating the statements about algebraic spinor structures in

the General Relativistic context presents no difficulty. In particular, note that
we have a chiral bundle splitting W = S ⊕M S′ and a Hermitian line bundle
Q ⊂ L3⊗ ∧2 W→ M.

In order to use the whole algebraic stuff we only need one further result.

PROPOSITION 11.1. Given a complex spinor structure on (M, g), there exists
a Weyl frame in a neighbourhood of any p ∈ M.

Moreover, let (eα) be a given orthonormal frame of L∗⊗TM in a neighbour-
hood of p. Then there exists a Weyl frame (ζa) associated with (eα).

Proof. In a neighbourhood of p ∈ M, we choose a frame of S and get the
induced k-normal frame (ζ̃a) of W. Moreover, we choose a positively oriented
orthonormal frame of L∗⊗TM. Pointwise we can use the same argument as in
the proof of Proposition 7.1. The function y: M→ R determined by the argument
is obviously smooth, hence the induced Weyl frame (ζa) is smooth. 2

In other terms, (L∗⊗TM)×M (L3/2⊗W) → M can be seen as a vector
bundle associated with the principal bundle of Weyl frames, whose structure
group is Pin+↑(1, 3). By analogy with the results on complex spinor structures
on Riemannian manifolds (e.g. see [BLM89], appendix D), one may expect the
existence of a complex spinor structure to require less strict topological conditions
than a spinor structure.

In the next sections we shall develop Dirac’s theory on a curved background,
assuming a complex spinor structure on M as the basic geometric setting. In
general, we shall not assume a global spinor structure (namely a global charge
conjugation).

A couple
(
(eα), (ζa)

)
of frames, respectively of L∗⊗TM and L3/2⊗W, such

that γ and k have constant expression (then also the components of the metric
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tensor g turn out to be constant), will be called a complex spinor gauge. The frame
(eα) will be called the classical gauge, and (ζa) the quantum gauge. Proposition
11.1 can be easily generalized to cover complex spinor gauges corresponding to
matrix representations of the Dirac algebra other than Weyl’s.

Accordingly, a section Λ: M→ Spin↑ c will be called a gauge transformation,
acting on the classical gauge as eα 7→ γ−1(Λ ◦ γα ◦ Λ−1).

From Proposition 11.1 we have:

COROLLARY 11.1. There exists a charge conjugation in a neighbourhood of
any p ∈ M.

12. Complex Spinor Connections

In this section we assume a given complex spinor structure on (M, g). By a
simple coordinate calculation we prove:

LEMMA 12.1. Let UI, UI′ be linear connections on W → M which yield the
same connection on End(W) ≡ W⊗MWF → M. Then UI′ − UI = α⊗ 1W, where
α: M→ C⊗T ∗M is a complex 1-form.

Note that the Clifford map γ can be seen as a tensor field

γ: M→ L⊗T ∗M⊗
M

W⊗
M

WF.

Then a covariant derivative of γ is naturally defined in terms of the metric
spacetime connection Γ and of a connection UI on W→ M.

PROPOSITION 12.1. Let UI be a linear connection on W→ M such that ∇γ =
0. Then the coordinate expression of UI, in the linear bundle charts induced by a
complex spinor gauge, is UI aλ b = αλ δ

a
b + 1

4Γρσλ (γρ ∧ γσ)ab, with αλ: M→ C.
Proof. Write

UIλ = UIλ1 + UI
ρ
λγρ + UI

ρσ
λ γρ ∧ γσ + ŬI

ρ
λγργη + ŬIλγη

with UIλ, UI
ρ
λ, UI

ρσ
λ , ŬI

ρ
λ, ŬIλ: M→ C, and UI

ρσ
λ is antisymmetric in the upper indices.

For any θ : M→ End(W) we have ∇λθ = ∂λθ + θUIλ − UIλθ.
Since γ̂ can be seen as the wedge extension of γ, we have ∇γ̂ = 0. Hence,

from ∇η = 0 it follows ∇γη = 0, namely 2(UI
ρ
λγηγρ + ŬI

ρ
λγρ) = 0 which implies

UI
ρ
λ = ŬI

ρ
λ = 0.

In a complex spinor gauge ∂λγ = 0, so the condition∇γ = 0 can be expressed
as ∇λ[UI]γβ = −Γ α

λβγα. Then we get Γ α
λβγα = UIλγβ − γβUIλ = 2ŬIλγηγβ +

2UI
ρσ
λ (gβσγρ − gβργσ). Hence, ŬIλ = 0 and Γ α

λβγα = 2UI
ρσ
λ (gβσγρ − gβργσ). The

latter relation yields UI
αρ
λ = 1

4Γ αρ
λ . No condition is to be imposed on UIλ, which

is renamed αλ. 2
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Namely, a connection UI such that ∇γ = 0 yields, on the domain of a gauge, a
complex 1-form α, which can be characterized as the difference between UI and
the trivial connection determined by the gauge.

On the domain of a given gauge, we indicate by UIλ: M → End(W) the
endomorphisms whose matrix expression is (UI aλ b), so the above expression for
UI can be written (see Section 1.3) UIλ = αλ+ 1

4Γρσλ γρ∧γσ. Note how UIλ dxλ can
be seen as a ‘connection form’ valued in the Lie algebra of the complex spinor
group (5.1), a fact clearly related to the principal bundle approach. We have

k ◦ (UIλ × 1) = −k ◦ (1× UIλ),

k ◦ (γλUIλ × 1) = −k ◦ (1× UIλγλ).
(12.1)

Given a gauge chart over an open domain X ⊂ M and a complex 1-form
α: X → C⊗TX, we obtain a connection on WX := π−1

W (X) → X by requiring
its expression in the chart to be that of Proposition 12.1.

PROPOSITION 12.2. Consider two gauge charts over domains X,X′ ⊂ M,
together with complex 1-forms α and α′. Then the two connections UI and UI′,
respectively determined on X and X′ by the expression of Proposition 12.1, coin-
cide on X ∩ X′ iff

α′ − α = − 1
4 d(log det Λ) = − i

2
dt,

where Λ: M→ Pinc is the gauge transformation and det Λ := e2it.
Proof. The condition that UI and UI′ coincide can be expressed in terms of the

induced endomorphisms UIλ and UI′λ as UI′λ = UIλ+Λ∂λΛ
′, where Λ′ := Λ−1, that

is

α′λ + 1
4Γ′λ

ρσγ′ργ
′
σ = αλ + 1

4Γρσλ γργσ + Λ∂λΛ
′.

Taking the trace of this equation we get the stated relation between α and α′. The
traceless part turns out to be satisfied, after some calculations, as a consequence
of

γ′ρ := Λ̃αργα = ΛγρΛ
′,

Γ′λ
ρσ = Λ̃′ραΛ̃′σβΓ

αβ
λ + gαβΛ̃′σβ∂λΛ̃

′ρ
α,

where Λ̃ := φ(Λ) is the Lorentz transformation induced by Λ (Section 5). 2

Now consider a gauge atlas of W together with a family of complex 1-forms,
one for each chart. We obtain a family of local connections on W. These yield
a global connection iff any two 1-forms of the family fulfill the condition of the
above lemma on the intersection (if not empty) of their domains. Conversely,
a connection such that ∇γ = 0 determines a family of local 1-forms with that
property; hence it yields a global real 1-form, which on the domain of each gauge
is given by α+ ᾱ: M→ T ∗M. This can be characterized as follows:
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PROPOSITION 12.3. Let UI be a linear connection on W→ M such that ∇γ =
0. We have

∇k = (α+ ᾱ)⊗ k.

A linear connection UI on W → M such that ∇γ = 0 and ∇k = 0 will be
called a complex spinor connection. Then UI determines, on the domain of each
gauge, an imaginary 1-form α (or equivalently a real 1-form a, α = ia).

PROPOSITION 12.4. Let UI be a complex spinor connection. The connection
determined by UI on the tensor algebra of W reduces to connections on the
Hermitian line bundles Q and QF. In particular, the covariant derivative of
a local k-normalized chiral form ε: M → QF and the corresponding charge
conjugation C have, on the domain of a given gauge, the expression

∇ε = i(2a+ dt)⊗ ε,
∇C = −i(2a+ dt)⊗C,

with t := 1/2i log det Λ, where Λ is a gauge transformation which makes the
considered gauge ε-symplectic.

Conversely:

THEOREM 12.1. Every Hermitian connection on Q → M determines a unique
complex spinor connection.

Proof. Consider a gauge atlas of (L∗⊗TM)×M (L3/2⊗W). On the domain
of each gauge consider the normal frame of QF induced by the gauge, namely the
k-normalized chiral form ε whose expression is given by (9.1). The Hermitian
connection on Q → M determines an imaginary 1-form ia by ∇λε = 2iaλ ε.
On the intersection of two gauges, the induced 1-forms are related by a′ −
a = − 1

2 dt = (i/4) d(log det Λ), where Λ is the related gauge transformation.
Now the coordinate formula of Proposition 12.1 determines a complex spinor
connection on the domain of each gauge. From Proposition 12.2, it follows that
the connections determined by any two gauge charts coincide on the intersection,
namely we have a global connection. 2

Note that any two gauge-related forms a and a′ fulfill da = da′, namely for any
complex spinor connection, the 2-form da: M → ∧2T ∗M is globally defined.
The curvature tensor (see also [GP82]) of a complex spinor connection UI turns
ot to be

R[UI] = 2i da⊗1 + 1
4 〈R[Γ], γ ∧ γ〉,

that is

R[UI]λµ = i(∂λaµ − ∂µaλ) + 1
4R[Γ]ρσλµ γρ ∧ γσ,
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where R[Γ] is the curvature tensor of the metric connection Γ. In terms of the
principal bundle approach to connections, R[UI]λµ are the components of the
curvature 2-form valued in the Lie algebra of the Spinc group.

PROPOSITION 12.5. A complex spinor connection UI together with a spinor
structure (charge conjugation C or, equivalently, k-normalized chiral form ε)
determine an imaginary 1-from ia. We have ∇ε = 2ia⊗ ε, ∇C = −2ia⊗C.

Conversely, given a spinor structure, any imaginary 1-from ia determines a
complex spinor connection. The complex spinor connection UIC determined by
−ia is called the charge conjugated connection of UI. It can be characterized
through its covariant derivative by

∇Cλ(Cψ) = C∇λψ ⇔ ∇Cλψ = C∇λ(Cψ) = ∇λψ + (C∇λC)ψ. (12.2)

Note that

∇Cθ = ∇θ, ∀θ: M→ End(W). (12.3)

For each complex spinor connection we introduce the nabla slash operator, acting
on sections ψ: M→ W, given by

/∇ψ := 〈g#γ,∇ψ〉 = gλµγλ∇µψ := γλ∇λψ.

13. Dirac Equation

We use the results of the previous sections to formulate the quantum relativistic
theory of one particle with mass m ∈ M and charge q ∈ Q = T∗⊗L3/2⊗M1/2

(Section 2), subjected to given electromagnetic and gravitational fields. We assume
(M, g) to be a spacetime, endowed with a complex spinor structure (Section 11)
and a complex spinor connection (Section 12). Moreover, we assume the parti-
cle’s quantum history to be a section ψ: M → W obeying the Dirac equation
i /∇ψ − (mc/~)ψ = 0.

It should be clear, from the discussion of Section 12, that we are going to
interpret the real 1-form a, determined locally by a complex spinor connection,
as electromagnetic 4-potential (see also [GP75, IW33]). More precisely, we set

a =
q

c~
A, A: M→ T⊗L−3/2⊗M−1/2⊗T ∗M.

Then the (local) coordinate expression of the Dirac equation is

igλµγ aλ b

(
∂µψ

b − i q
c~
Aµ ψ

b − 1
4Γρσµ (γρ ∧ γσ)bc ψc

)
− mc

~
ψa = 0.

By applying k[ to the Dirac equation, and taking into account the properties of
k, one finds the equivalent equation satisfied by k[ψ

i∇λ(k[ψ) ◦ γλ +
mc

~
(k[ψ) = 0. (13.1)
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By applying the operator i/∇+mc/~ to the Dirac equation, we obtain the general
relativistic form of the Klein–Gordon equation /∇2ψ + (m2c2/~2)ψ = 0. By
expanding the spinor Laplacian /∇2ψ, this equation can written as the following
(generalized) form of Lichnerowicz’s equation [BTu87, Cr90, Li64]

gλµ∇2
λµψ −

iq

2c~
〈F, γ ∧ γ〉ψ − 1

4 Rψ +
m2c2

~2 ψ = 0,

where F := 2 dA : M → T⊗L−3/2⊗M−1/2⊗ ∧2 T ∗M is the electromagnetic
field and R is the scalar curvature of the spacetime connection.

14. Lagrangian Formulation

We shall use known general results on Lagrangian field theories [Ga74, GS73,
MM83b, MV96, Tr67].

For brevity, we set ξ := dx0∧dx1∧dx2∧dx3. Then η =
√
|g| ξ, |g| := det(g).

The Dirac Lagrangian density is defined to be the 4-form L := `ξ: JW →
∧4T ∗M where `: JW→ R is given by

`[ψ] := ` ◦ jψ :=
[
i

2
(k(ψ, /∇ψ) − k(/∇ψ,ψ)) − mc

~
k(ψ,ψ)

]√
|g|

for any section ψ: M→ W (jψ denotes the first jet prolongation, see Section 1.2).
Its coordinate expression is

` = ka. b

[
i

2
z̄a

.
γλbc(z

c
λ − UI cλ dz

d)−

− i

2
γ̄λa

.

c. (z̄
c.

λ − ŪI c
.

λ d
. z̄d

.

)zb − mc

~
z̄a

.
zb
]
√
|g| .

The Euler–Lagrange operator associated with L is a fibred morphism?

E : JW→ ∧4T ∗M⊗
M

W∗,

where W∗ ⊂ WF ⊕WF is the real dual of W. E can be calculated by formally
treating za and z̄a

.
as independent real coordinates. Taking into account Equa-

tion (12.1) and the identity ∂λ(
√
|g| gλµγµ) =

√
|g| (UIλγλ − γλUIλ), which can

be derived by a coordinate calculation, we obtain

E ◦ jψ = η⊗
[
k[
(
i /∇ψ − mc

~
ψ

)
+ k̄[

(
i /∇ψ − mc

~
ψ

)]
.

Then the Dirac equation is the Euler–Lagrange equation of L, namely E ◦jψ = 0.
The Poincaré–Cartan form is a morphism

Θ: JW→ ∧4T ∗W.
? In a general field theory the Euler–Lagrange operator is second or higher order.
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Setting ξλ := ∂λ y ξ, we have the coordinate expression

Θ = L+
∂`

∂zaλ
(dza ∧ ξλ) +

∂`

∂z̄a
.

λ

(dz̄a
. ∧ ξλ)

= ka. b

[(
−iz̄a. (γλUIλ)

b
c z

c − mc

~
z̄a

.
zb
)
ξ +

+
i

2
γλbc (z̄a

.
dzc − zc dz̄a

.
) ∧ ξλ

]√
|g| .

We now recall very briefly the relation between the Poincaré–Cartan form and
conserved currents (Noether’s theorem).

A section ψ: M → W is said to be critical if E ◦ jψ = 0 (namely if ψ sat-
isfies the Dirac equation). A projectable vector field w: W → TW is called
a (infinitesimal) symmetry of Θ if (jψ)∗Lw′Θ = 0 for all critical sections,
where w′: JW → TJW is the natural jet prolongation of w (Section 1). Then
w y Θ: JW→ ∧3T ∗W is a current 3-form, namely it fulfills (jψ)∗d(w y Θ) = 0
for all critical sections.

In order to find a distinguished symmetry of Θ we consider the action of the
group U(1) on W, given by

R×W→ W: (t, ζ) 7→ e−itζ.

This action can be naturally prolonged to an action on the jet space JW. We
then have two one-parameter groups, which are generated, respectively, by the
vector fields w: W→ TW and w′: JW→ TJW, whose coordinate expressions
are

w = −iza ζa, w′ = −i(za ∂za + zaλ ∂z
λ
a ).

Moreover, w′ turns out to be the natural jet prolongation of w.
It is immediate to check that L and Θ are invariant with respect to the above

U(1)-action. This also implies Lw′L = Lw′Θ = 0, so w′ is an infinitesimal
symmetry. Since w is a vertical vector field, the current 3-form w y Θ is valued
in ∧3T ∗M. Its coordinate expression is

w y Θ =
√
|g| ka. bz̄

a.γλbc z
cξλ.

For all ψ, we consider the evaluation

J [ψ] := (jψ)∗(w y Θ) = k(ψ, γλψ)ηλ,

where ηλ := ∂λ y η =
√
|g| ξλ. The component of this current in the direction of

an observer u turns out to be

k(ψ, γuψ) = h(ψ,ψ): M→ L−3,
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where h is the Hermitian metric induced by u (Section 10). The fact that this
is a positive function allows the interpretation of J [ψ] as a probability cur-
rent.

Finally, note that contraction with the contravariant volume form yields the
scaled vector field

j[ψ] := ∗J [ψ]: M→ L−4⊗TM

called the vector current of ψ, with coordinate expression

j[ψ] = k(ψ, g#γψ) = k(ψ, γλψ) ∂λ.

Because of the Noether theorem, the divergence of j[ψ] vanishes for ψ critical.

15. Neutrino

We recall that the Clifford map γ and the 2-form k exchange the chiral subbundles
S and S′ (Propositions 5.1 and 6.2), namely

γv(S) = S′, γv(S′) = S,

k[(S) = S′F, k[(S′) = SF.

Moreover it is easy to see, from the coordinate expression, that the complex
spinor connection reduces to connections on S and S′. Namely, let ψ be the
quantum history of a particle of mass m, and consider its chiral decomposition
ψ = ψS + ψS′ . Then we have

∇λψS := ∇S
λψS : M→ S, ∇λψS′ := ∇S′

λ ψS′ : M→ S′.

Hence, the term iγλ∇λψ, in the Dirac equation for ψ, exchanges the chiral
components of ψ, while the mass term obviously leaves them invariant. This
situation is reversed when we consider the equivalent Equation (13.1), namely
the Dirac equation composed with k[, which we write as

ik[γλ(∇λψ) +
mc

~
(k[ψ) = 0.

Here the first term splits into the direct sum of the chiral components, while the
mass term mixes them. Actually in a Weyl frame we have

(k[ ◦ γ0) =

(
−(σ̄0) 0

0 −(σ̄0)

)
, (k[ ◦ γj) =

(
−(σ̄j) 0

0 (σ̄j)

)
.

It is now clear that for m = 0 the Dirac equation splits into the sum of decoupled
components, one for each chiral subbundle. These components turn out to be the
equations for the neutrino and the anti-neutrino.

We can recover the usual formulation of the Weyl equation by applying γ0 to
the Dirac equation, thus obtaining ∇0ψ + γ0γj ∇jψ = 0.
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Recall that the observer u ≡ e0 locally determines (Section 10) a Hermitian
metric h, which restricts to Hermitian metrics on S and S′. Through h, the Pauli
frames (Section 9) of SF⊗SF and S′F⊗S′F yield a frame (σ̂α) of the h-
Hermitian subbundle of End(S), and a frame (σ̂′α) of the h-Hermitian subbundle
of End(S′). We have

σ̂α = σ A
αBζA⊗ zB, σ̂′α = σ A′

αB′ζA′ ⊗ zA
′
,

where (σ A
αB) are the Pauli matrices, 1 6 A,B 6 2, 3 6 A′, B′ 6 4. We obtain

γ0γj = −σ̂j ⊕ σ̂′j , iγ0γjγη = σ̂j ⊕ σ̂′j .

Hence, the massless Dirac equation can be written in the form of two decoupled
equations

(∇0 − gjkσ̂j∇S
k)ψS = 0, (∇0 + gjkσ̂′j∇S′

k )ψS′ = 0.

16. Some Operators on Sections

A general geometric theory of Hilbert bundles and quantum operators for 1
2 -spin

particles was presented in [CJM95] for the case when the background is assumed
to be a curved Galileian spacetime. That setting was based essentially on the
assumptions of absolute time and of a distinguished fibred Hermitian metric h,
so it is not readily translatable to the present context: Einstein spacetime and a
family of Hermitian metrics, one for each observer (Section 10). In this section
we shall introduce some important operators on quantum histories, and see a
few properties of theirs whose discussion does not need the Hilbert structure.
A general theory of Hilbert bundles and quantum operators on Einstein spacetime
is deferred to future work.

Given a (local) charge conjugation C, the section Cψ represents the antiparticle
of ψ. It fulfills the Dirac equation for a particle with opposite charge, namely

iγλ(∇λ(Cψ) + (C∇λC)(Cψ)) − mc

~
(Cψ) = 0,

or (see (12.2))

iγλ(∇Cλ(Cψ)) − mc

~
(Cψ) = 0.

More generally, consider the group bundle G → M generated by Pinc and
local charge conjugations, and let X : M → G be a local section. The quantum
history Xψ fulfills the equation

(X iγλX−1)∇Xλ (Xψ) − mc

~
(Xψ) = 0, (16.1)
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where ∇Xλ (Xψ) := X∇λψ, that is

∇Xλ ψ = ∇λψ + (X∇λX−1)ψ = ∇λψ − (∇λX )X−1ψ.

Equivalently, Equation (16.1) can be written

(X iγλX−1)∇λ(Xψ) − mc

~
(Xψ) = −(X iγλ∇λX−1) (Xψ).

For a given observer u, we consider the related parity and time inversion
operators

P := γu: M→ W⊗
M

WF, T := γηγuC: M→ W⊗
M

WF.

We obtain

P2 = 1, T 2 = −1,

PT = T P = −γηC,
PC = CP = γuC,
CT = −T C = γuγη,

(CT )2 = −(PC)2 = −(PT )2 = 1,

PCT = γη.

For ψ obeying the Dirac equation, using Equation (16.1) we can write the equa-
tion obeyed by Pψ, T ψ, PCψ and so on. Choosing γ0 = γu, the operators γλ

transform according to

PγλP−1 = T γλT −1 = 2δλ0 γ
0 − γλ,

PT γλ(PT )−1 = γλ,

PCγλ(PC)−1 = CT γλ(CT )−1 = −2δλ0 γ
0 + γλ,

PCT γλ(PCT )−1 = −γλ.

Recalling (12.3), we obtain

i(2δλ0 γ
0 − γλ)∇λ(Pψ) − mc

~
(Pψ) = i(2δλ0 γ

0 − γλ)(∇λγ0)γ0 (Pψ),

i(−2δλ0 γ
0 + γλ)∇λ(T ψ)− mc

~
(T ψ)

= i(−2δλ0 γ
0 + γλ)γη∇λ(γ0C)γ0γηC (T ψ),

iγλ∇λ(PT ψ)−mc
~

(PT ψ) = iγλ(∇λC)C(PT ψ),

i(2δλ0 γ
0 − γλ)∇λ(PCψ) − mc

~
(PCψ)

= i(2δλ0 γ
0 − γλ)∇λ(γ0C)Cγ0 (PCψ),
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i(−2δλ0 γ
0 + γλ)∇λ(CT ψ) − mc

~
(CT ψ)

= i(−2δλ0 γ
0 + γλ)∇λ(γ0)γ0 (CT ψ),

iγλ∇λ(PCT ψ) +
mc

~
(PCT ψ) = 0.

Finally, we introduce spin operators. Let again u be an observer; let v be a
vector field such that g(u, v) = 0. The operator

Sv := i
2 γuγvγη

is called the spin operator in the v-direction. For any orthonormal frame (eλ)
we have the spin operators (see also Section 15)

Sj := i
2 γ0γjγη = (1

2 σ̂j)⊕ (1
2 σ̂
′
j).
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