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Abstract

We show that a complex vector bundle § — M, where M is a 4-dimensional real manifold
and the fibres of S are 2-dimensional, yields in a natural way all structures which are
needed in order to formulate a (classical) theory of Einstein-Cartan-Maxwell-Dirac fields.
Namely, all needed bundles and their fibre structures follow from functorial constructions
with no further assumptions. Any considered object which is not a functorial construction
is taken to be a field. This is true even for coupling constants, which arise as constant
sections of real line bundles derived form S.

In the above said context we also discuss to what extend one can give a formulation
which is not singular in the case of a degenerate vierbein.
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2 2 TWO-SPINOR ALGEBRA

1 Preliminaries

We assume that the reader is familiar with the basic notions concerning linear connections on
real and complex vector bundles.

If X is any set and f : X — C then we denote by f the conjugate map, f(z) := f(z).

If V is a finite-dimensional complex vector space then we shall denote by VF and V*
its complex and real dual spaces, respectively. Moreover we shall denote by V¥ the antidual
space (i.e. the space of all antilinear maps V' — C), and by V := (VF)F the conjugate space
(then VF = VF). We have the (conjugation) anti-isomorphisms VF = VF and Vv = V.

Let (¢;) be a basis of V, a = 1,...,n, and (2%) the dual basis of VF. Then we have the
conjugate bases (Ca) = ((,) of V and (z%) == (2%) of VF. If v = v, and XA = A,2% then
7= 0%y and XA = A2 with % =%, Ay = A, - _

The (real) differential of a function f: V — R is a 1-form df : V — V*cVFeVF. In
coordinates we write df = aza dz® + af .dz%, namely we formally consider z* and 2z as real
independent coordinates.

Conjugation can be naturally extended to tensor products of the above spaces with any
number of factors. If 7 is a tensor then 7 has dotted indices in the place of non-dotted indices
of 7, and vice-versa.

A tensor w € V ®V is said to be Hermitian if w = w™, where © denotes trasposition. In
coordinates this means "% = w®. We have the real decomposition VQV = HV @i HV
into Hermitian and anti-Hermitian subspaces.

If V is 1-dimensional then V 2 V2@ V1/2 where V/2 is its square root space, which
is unique up to an isomorphism. Similarly one defines VP for p € N, hence also VP for
p,q € N. If we set V! := VT, the power of a 1-dimensional complex vector space is naturally
defined for all rational exponents.

Note that, again if V is 1-dimensional, the Hermitian subspace HV C V®V is a 1-
dimensional real oriented vector space, and V = C® (HV)/2 (in the real case, roots of
positive semi-spaces are naturally defined for any selected orientation).

2 Two-spinor algebra

2.1 Two-spinor space

Throughout this section S will stand for a 2-dimensional complex vector space, called the
space of 2-spinors (see also [PR84, PR88, W84, HT85]). We have the real splitting

S®S=HgiH,

where H := H(S) C S® S is the Hermitian subspace.

We set A% := A2S. We identify A=2 := A?F with A2ST through the rule' w(sAs') :=
tw(s,s"), Vw € A2SF, 5,8’ € S, where sAs' := 3(sQs'—s'®s).

If w # 0 then it has a unique ‘inverse’ or ‘dual’ element w™! = wF such that w(w™') = 1.
We indicate by ” : § — ST the linear map given by (w’(s),t) := w(s, t), and by w# : ST — §
the linear map given by (i, w#(\)) := w1 (), u). Note that w# = —(w")~"

The Hermitian subspace of A2® A? is a real vector space with a distinguished orientation;
its positive semi-space will be indicated by L?, thus A2® A2 = C® L% Moreover we have
the square root semi-space L, characterized by L? 2 L® L.

In general, if r is a rational number then we define A™ := (A?)"/2, hence A" ® A" = CQ L.
In particular we obtain (r = 1) the square root A of A2.

!This contraction, defined in such a way to respect the usual conventions in two-spinor literature, corresponds
to half standard tensor algebra contraction and 1/4 standard exterior algebra contraction.
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2.2 Bases
Let (C4) be a basis of S. We have the the following induced bases:
e The basis (o) := 0,*F(4 ® () of H, where the (c,4%)’s are the Pauli matrices.

e The dual basis (s* := s*, .2 ®2%) of H* C ST ® ST, where (s, ) is half the trans-

AB AB

posed A-th Pauli matrix.
e The basis (6) := 0,%,(4 ® 2%) of End(S) 2 § ® ST, where (6,) := (0)).
e The basis € := €452 A 28 of A2,
e The dual basis € := =1 = 2B, A (5 of A2,
e The basis |e|" := (e ®€)"/2 of L", with dual basis |¢|" = [¢~!|.
We shall also consider the mutually dual bases

(T = ﬁa)\) , (th = V235",

whose matrices are, respectively, Pauli matrices divided by v/2 and transposed Pauli matrices
divided by V2. We have

(5‘)\ o 5’;¢ = (77)4“/ +14 EOAM,,)(SWJ@',, = 2)\“,,5'0”(5',, = El\l[’&p s
where
Maw 1= Oxuby + 6yA05, + 6,03 — 26360,

is a totally symmetric symbol. Note that under exchange of two nearby indices X, trans-
forms into its complex conjugate. By convention, in the symbols 7y, , €xpp and Xy, , indices
are raised and lowered via 4, and 8. Some further useful formulas:

M M = 2(85 — 86 6)

Eonuw €M = 2(85 + 85 )

T DM =460 .

2.3 Conformal Lorentz structure

We are going to show that each element of L=2 can be viewed as a Lorentz metric on H.
This means that there is a natural conformal Lorentz structure on H.
The basis expressions of an element ¢ € L™! and its inverse ¢* := ¢! € L are given by

¢ = ¢|6| s ¢_1 = ¢_1 |E|_1 3

with ¢ € Rt. We now observe that ¢? can be seen as a bilinear form ge on S ® S, which for
decomposable tensors is given by

9o(p®q,r ®35) = ¢* e(p,r)E(q, 5) -

Then gy restricted to H turns out to be a Lorentz metric, actually we have the orthonormal
bases

(¢_1 T)\) s (¢ t)\) .
We have the coordinate expression

9o (u,v) = ¢y, uvH
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with v = u* 7, and the like, and
__ .~ AB_ oD = _1 3 y = — 945050
77)\M =Ty Tll‘ EacERBD — iaAABO'MCDEACEB‘D‘— 26)\6M_6)‘ll‘ ,
nAu — t)\AB' tlllCD.EACt:BD -9 S)\AB' SHCD.EACEBD — 258\5{; _ 5>\M .

The Lorentz metric g4 also determines, up to sign, a volume form 74 on H, with coordinate
expression
Mg =4 ¢ enpp ANt A AP = 2O A AL .

Observe also that g4 yields the map
95: 508 =+ S"®S" :peG— ¢*'(p) @2 () ,

whose restriction to H is just the isomorphism H — H* induced by the non-degenerate
Lorentz metric. Moreover an element of S ® S can be viewed as a linear map S¥ — S, while
an element of ST ® ST can be viewed as a linear map S — ST. So we are led to consider the
map

16 :=V2(1+(g))"): S®5 — (S®5) o (5" ©S") CEnd(S® 5",
which on decomposable elements reads
16027 = V2 (p®7+ & (2) @' (D)) -

Then y4 restricted to H turns out to be a Clifford map

vY¢ : H = End(W) ,
where we set W := S @ S¥. We have the basis expression

Yo = V2 (1a + @) @1 = V2 (0 + 24°nu5") @ 5
We also consider the ‘contravariant’ Clifford map
,Yzé =Yg © gq;1 : H* —» End(W) ,
with basis expression
v =V2( M + ) e

Given 9y =u+a € W := 8§ @ S¥ then its ‘Dirac adjoint’ isp =a+a€ ST ¢ § = WF.

It can be seen [CJ96] that given an ‘observer’, namely an element w € H such that
gp(w,w) = 1, then the quadratic map 1 — (1, v5(w)1p) is either positive or negative definite.
Thus H has a natural time orientation: we call future-pointing those unit timelike elements
which yield a positive quadratic map. For any basis of S, the induced element 7y turns out
to be future-oriented.

An element w € A2 is called ¢p-normalized if w® & = ¢, so that w = defe, t € R, and
w™l = ¢ le ¢!, Consider the antilinear map C, : W — W given by

Co(M+ a) i=w#(a) =@’ (M) =17 (¢~ e¥ () — p2°(T)) -
Then C, o C, = 1w, so C, is an anti-isomorphism.? We call C,, the charge conjugation
associated with w. Then we recover the usual fact that charge conjugation is unique up to an
overall phase factor (for fixed ¢).

2Since w# o w® = —1, if we took C, (M + a) := w¥(a) + @’ (M) then we would get C, 0 Cyy = —1yy .
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2.4 Lorentz structure

The fact that on H there is a natural conformal Lorentz structure, where the conformal factor
belongs to the unit space~L_2, can be reformulated as saying that there is a natural Lorentz
structure § on the space H := L™' @ H, namely

G(d1 ®v1, Py ®v2) = (1 ® Po)(v1,v2) := g4, 09, (V1,V2) ,

(since ¢, ® ¢, € L2). Note also that A2 = L~'® A2 and its square root A :== L™'/2@ A
are Hermitian 1-dimensional spaces.

Moreover we set U := L~ /2® 8, so that H is the Hermitian subspace of U @ U.

A basis ({4 := |e|'/2® ¢4) of U turns out to be normalized, namely 2 ¢; A {y is normalized
with respect to the above said Hermitian structure of A2. A general normalized element
w € A™” has the expression w = €'t || "L ®¢, ¢ € R. Its inverse is w~! = e~it [¢| @ 7.

We introduce the basis (7)) of H := L~'® H and its dual basis () of H* = LQ H*
given by

= plel®@on=lelon , P =v2 @8t =l Toth.

These turn out to be orthonormal bases, namely

G=mut et Fl="Hed.
The volume form 7 on H determined (up to sign) by § has the coordinate expression
=t erwpt  NTFAT AP =HOANTAZALD .

Since an element of L' @ §® § = U ® U can be seen as a linear map UT — U, while an
element of L ® ST ® ST = UY @ U can be seen as a linear map U — UT, we have a natural
Clifford map

§:=v2(1+@)) : H - End(W)

where? 5
W:=UoU'=(L '8 e ((L'?e8").

Its basis expression is
F=V2(E A+ mud") 0P = V2 (1 + el 2@t @1
We also consider the ‘contravariant’ Clifford map
F# =70 g% : H* — End(W) ,
with basis expression
A = V2 F + Y@ H = V2 (0 e 1+ P) @7
Giveny =u+a € W := U @ UF then its ‘Dirac adjoint’ isp =a+ueUT U = WF.
Similarly to §2.3 we find a distinguished time-orientation of H. ~
A normalized element w € A~2 yields the antilinear map C, : W — W given by
Co(M+a) :=w? (@) —@" (M) =17 (le| @e? (@) — |e| " @& (N)) .

We have C,, ©C,, = 14, . Then C,, is the charge conjugation associated with w.

3More generally we can take W := L™ ® (U @ UY), with r any rational number.
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2.5 Bases transformations

In order to exploit the gauge symmetries of our formulation we deal with bases transformations
induced by a general base transformation of S§. The set of all bases of S is group-affine with
‘derived’ group GI(2,C), namely if we fix a basis ((4) then any other basis is given by

Ca=Ki¢s, (KJ)€Gl2,0).
Then we write the induced bases transformations. We obtain
e =detKle,
/] = Idet K|~ e,
7 = (0" KS R Sopy)
7 = Idet K|~ (0,07 K§ KE's) T
Thus, indicating by Kx the transformation matrix induced on the space X we have
Kp2 =detK ,
Ky = |det K| ,
K2 = |det K| ' det K = exp(iarg det K) ,
(Ke)y = o KS K] s",
K} = (Kg)i = |det K| (Kn)} ,

Ky = |detK|"Y? K .

Since GI(2,C) is connected we see that Ky and K preserve orientation, namely we have a
way of selecting ‘positive’ orientations on H and H': those orientations for which the ‘Pauli
bases’ (o)) and (7)) induced by any basis of S are positively oriented.

3 Two-spinor connections

We consider a 4-dimensional manifold M and a complex vector bundle § — M with 2-
dimensional fibres. Linear fibred coordinates are indicated by (z%,2*). According to the
constructions of the previous section, we now have several vector bundles over M, with smooth
natural structures. Moreover we have the semi-vector bundles L", with r rational. But observe
that, for given r, according to the bundle topology we may have no A™ = (A2)"/2, or we may
have one or more (not isomorphic) such bundles. Though these will not be essential to our
treatment, note that we obtain a unique A" by a suitable restriction of the base manifold.

We shall consider a complex-linear connection B on § — M, whose coefficients B, :
M — C will be also denoted by

B, :=Bloy, , (3.1)

with B) : M — C.
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3.1 Two-spinor connections and Lorentz structure

We shall be involved with the connections on A? and L induced by B. In particular we have
Ve=2(G, +1A,)dz" Q¢ ,
Vie| =2G,dz* @ e .
with G, , A, : M — R given by

Aa = 4LZ'(BaAA - BaA:q') = QLZ(Bg - ]_32) 3
Ga = i(BaAA + BaAA') = %(Bg + Bg)

Moreover,
Vo= (dlogd+2G)® ¢ .

By straightforward calculation, recalling (3.1) and the definition of the coefficients 3,
(82.2), one finds
Proposition 3.1 Let B be a complez-linear connection on S — M. The coefficients Bl of
the connection induced on S ® S, in the basis (Ty), are given by

BaMA = 2(B; EVMA +B; EVM)\) .

Its coefficients being real, this connection is reducible to H.

Next we consider the connection I' induced on H := L~'® H. Its coefficients in the basis
(7») turn out to be 5
LM =Bf —2G, &, .
Again by straightforward calculation one finds that I is metric, that is V[[']§ = 0 (hence the
coefficients I ', are antisymmetric).
Proposition 3.2 We have
B/o = (Ga +i4a)d% + T, 50,5 .

So, B is completely determined by I' and by the connection induced on A2 (locally, A);
the latter, in turn, splits into its real part G (connec~tion on L) and its immaginary part A
(locally, the connection on the Hermitian line bundle A; later on, this term will be interpreted
as the electromagnetic potential).

The formula of proposition 3.1 can be expressed, by separating the ‘timelike’ index 0 from
‘spacelike’ indices (indicated by latin letters p, ¢, r,..), as

Go= 3B = L(BL+BY) ,
= 0, RO . 5
I‘aTq = (Ba + Ba)dg - Z(Bg - Bg)Equ s
I‘(/I,MO =By + Bg )
f‘aoq = (Bg + Bg)(qu ’
with By = B4, 8%/, namely By = G, +iA,, BL = ;T 2, 507
Similarly, proposition 3.2 can be expressed as
BaAB = (Ga + iAa) 6AB + (i ETS;D f‘a,Ts + %f‘apo) JPAB °
A further equivalent expression of the above formulas can be written in 4-spinor formalism
[CJ96] as 5
Fau)\ = gl“/ BaAB (71/ A 'Y)\)BA s
and ~
BaAB = (Ga + iAa) 6AB + ira)\“(')/)\ A 'YM)AB s
with 4, B =1,..,4.
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3.2 Two-spinor connections and gauge transformations

We are interested in seeing how the coefficients of the involved connections change under a
gauge transformation, namely a linear transformation of the fibre coordinates.
Let ¢, = K% (5. We obtain

B = (KTE Ky B, — (K3 0Ky
G =Gy — O, log|det K| ,

Al = A, — O argdet K ,

D'y = (K KLTY, — (K1)} 0K

3.3 Two-spinor curvature

If X —» M is any one of the bundles derived from S, then we indicate by Rx : M —
A2T*M ® End(X) the curvature tensor of the connection induced by B on it. First, we can
eagily calculate:

Ry =-2dGQ®1g ,
Rp2» = —2(dG +idA)®@ 1,2
Ry, = -2idA® 1%, ,

where 1x : M — End(X) denotes the identity endomorphism of X over M.
Next we see how the curvature tensor of a two-spinor connection B can be expressed in
terms of the curvature tensors of the connections induced on H, L and A? (see also [GP82)).

Similarly to (3.1), we indicate by P, := (Rs) s » (RH),, and RY, == (Rg) ", the
components of the curvature tensors of B, By and I := B 7 in the frames ({4), (o) and (%),
respectively. Moreover we set

A . DA A
Py's =Fg0x'g -

Then we obtain
(Ru)y\ = 2(Pp ) + PR 21
Rau)\ =P abu)\ —2(dG)a 6"/\ )
Py =—(dG +idA)gy 6% + s R, %00, .

Again we can re-express our results in terms of ‘timelike’ index from ‘spacelike’ indices.
In particular

PabAB = _(dG +1 dA)ab 6AB + (i Ersp Rast + % Rabpo) JPAB :
Moreover we have the equivalent 4-spinor expressions
R = 9" Pos (1w AN

and
Py = —(dG +idA) ey 0%, + LR (va Avu)™y

with 4,B=1,...,4.
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3.4 Unit space of lengths

An important simplification arises when the curvature tensor of the connection induced on L
vanishes, i.e. dG = 0. In that case we can ‘gauge away’ the conformal part of the connection,
namely we can take local bundle charts such that G = 0, namely local frames ({,) of S such
that V]e| = 0 (§2.2). Moreover we now have the distinguished set of constant local fields
M — L, so that we can regard the bundle L, at least locally, as a vector space, which we
identify with the unit space of lengths [CJ96, CIM95].

In other terms, the conformal structure of H can be now reduced to constant conformal
factors by taking only those fields ¢ : M — L~ such that V¢ = 0.

4 Soldering form (vierbein)

4.1 Algebraic properties

We consider a linear morphism 8 : TM — H, i.e. a section
0. M ->T"MQH
(all tensor products are over M). Its coordinate expression is
0 =0)7\®dz® ,

with ) : M — R. Note that we can write  : L* @ TM — H, so that we can view
as a ‘scaled’ soldering form, or vierbein. In general we wish to allow for the case when 8 is
degenerate, namely not an isomorphism.
From 6 we obtain the following objects
g=0"G: M - L’°QT*"MQT*M ,
n=01=7yA0: M - L'® N"T*M |,

v:=%00:TM — L® End(W) ,
with W = U@U" := (L~ /?x8)®(L'/?  8F). We have the following coordinate expressions:
9 ="y ) oy le| 2@ dz® @ da® |
n= % Expvp 07 04 6% 65 €]~ @ dz® A dzb A dz€ A da =
= 11 Exup €PN 005 02 07 |e| @ € =
= det(6) |e| ' ®¢ ,
v=V20) [e|t @ (1) + myut*) ® dz?

where ¢ := dz® A dz!' A dz? A d2®.

If and only if @ is non-degenerate, the above objects turn out to be a conformal Lorentz
metric, the corresponding (up to sign, unique) conformal volume form and a conformal Clifford
map.

The frame (7)) of H together with 8 yields the four 1-forms

0 == 0*t* = 0) dz® .
Iff 6 is non-degenerate these constitute a frame of T* M, the dual frame of
0y :=6""(1)) =650, ,

with 69 := (§71)2 .
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4.2 Vierbein and connection

Consider a two-spinor connection B and the induced connection I' on H. Let moreover 8 be

a non-degenerate vierbein and I' a linear connection on TM. We denote by I' 2, and T a)‘u the

coefficients of ' in the frames (d,) and (), respectively, and by f‘a)‘u the coefficients of T in

the frame (7). Then the condition V8 = 0 can be expressed in coordinates by either of the
two equivalent formulas:

faAM +2G, 5*M = P(}M , (4.1)
8aby — (T, +2Ga8%,) 08 +T 562 =0.
Then we obtain:

Proposition 4.1 Let B be a two-spinor connection and 6 a non-degenerate vierbein. Then
there exists a unique connection I' on TM — M such that V[ ®I']6 = 0.
Moreover we have V[['|g = 0.

We recall that the Frolicher-Nijenhuis bracket of By seen as a tangent-valued 1-form

By:H—->T"M®TH
H

and of §: M — T*M ® H seen as a tangent-valued 1-form
0:H—-T"MQVH
H

is a tangent-valued 2-form [M91]
[Ba ,0]: H — /\2T*M§VH :

with coordinate expression
[Br .0, = 0a05 — 8,0, — B, 04 + By, 0% =
= 0,00 — 00y — T, 08 + T, 0¢ —2G,0; +2G, 0, .
Moreover, note that [Bgr, 8] can be seen as a section
[Ber,0]: M = A°T*M @ H .

Proposition 4.2 The torsion of the connection ' of proposition 4.1 is given by

TIy60=[Bu,9,
or, in coordinates, T[] = T, £ dz° A dz¢ ® 0, with

A A
abc bz = [BH ’H]ab .

By the way we note that B’y := By + 6 is a ‘polynomial’ connection [MM91] of degree 1.
Conversely, any polynomial connection of degree 1 on H this splits canonically in the linear
part By and a vierbein . Moreover, By is a gauge connection of the conformal Poincaré
group.

If dG = 0 (§3.4), so that the conformal structure of H can be reduced to constant con-
formal factors, then also the conformal structure of TM induced by a non-degenerate 4 is
accordingly reduced to constant conformal factors (following [CIM95, CJ96] we call this a
‘scaled’ Lorentz structure). From V[I']g = 0 (proposition 4.1), we have that I" is now a metric
connection in the usual sense. Gauging away the field G corresponds to taking frames of H
and TM with constant scalar products gy, = ¢? M, V@ = 0. Furthermore, besides I' we
also have on T'M the metric torsionless connection induced by g. The difference between
these two connections is just the torsion of I'; which now reads

%00 =T ,0],5 = 8a0p — 00y — T, 00 + T, 01 .
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5 Fields and field equations
5.1 The fields

We are going to formulate a Lagrangian theory of Einstein-Cartan-Maxwell-Dirac fields ac-
cording to our two-spinor approach. The metric will be essentially represented by a vierbein
0, which can be seen as a kind of ‘square root’ of g; the spacetime connection is represented by
the traceless part of the two-spinor connection B, while the electromagnetic potential is repre-
sented by the connection A induced, possibly locally, on A (see also [CJ96, GP75, IW33]). The
relation between the spacetime connection and the metric will result from the field equations
as in the standard ‘metric-affine’ approach [FK83, GH96, HCMN95, R83]). The equation for
the field G will be dG = 0, so that the observations of §3.4 and at the end of §4.2 apply: the
Lorentz structure induced by @ is scaled by a global (constant) conformal factor. Moreover we
shall not consider non-constant ‘dilaton’ fields (see for example [HCMN95]). More simply, but
equivalently in the present context, we could just restrict us to considering spin connections
such that the curvature tensor vanishes on L.
The Dirac spinor field is represented by a section

Yp=u+a: MW =L3?@UeU" =L ?9S)a (L 'q8").

Because of the factor L™3/? we have (i,9) : M — L~3; this will yield correct units of
measurement for various objects, in particular for current and probability density [CJ96].
Summarizing, the fields will be 8, B and ¥ = u + o, represented in components by

A A A —A =
Haa Gaa Aaa Faua u o, U, Gn, O04.

We shall take the usual Lagrangians for Einstein, Maxwell and Dirac fields and write down
‘adapted’ versions in terms of our fields. Morever we shall have a Lagrangian for the field G.
Altogether we obtain a ‘total’ Lagrangian

L=LG+Ly+ Lom+Lp: JE = N'T*M |

where E — M is the bundle whose sections are the whole of our fields, and JF is its first-jet
prolongation [MM83]. We shall also write £ = ££ with ¢ := dz® A da! A dz? A dz® and

L=l + L+ Llem+ip: JER.

For each term in the Lagrangian we shall write down the corresponding contribution to
the Euler-Lagrange operator. This is a map [MM83]

E=Ec+Eg+Eem+Ep:JE - NT*M R E*

where E* is the real dual of E.

We shall try to formulate an approach independent of the non-degeneracy of 8, thus
obtaining a more general theory (see also [J84]). This however will be accomplished only
partially, due to an obstruction in the electromagnetic part.

5.2 The field G
The Lagrangian for the field GG is assumed to be

Lg=dGANdG .

The corresponding contribution to the FEuler-Lagrange operator is simply dG. We shall see
that, among the other terms in the total Lagrangian, G appears only in the Dirac part;
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however the corresponding contribution to £ vanishes, so that the equation for G turns out
to be exactly dG = 0. As it was already said in §3.4, this implies the existence of constant
sections of L. One may expect that coupling constants arise naturally as constant sections of
L™ (r rational). Actually we shall have mass m € L~! and the gravitational coupling constant
k€ L2

However, note that we could generalise this setting by allowing some coupling of G with
the other fields. In that case we would be forced to consider non-constant dilaton and coupling
factors [HCMN95].

5.3 Gravitational Lagrangian

In standard General Relativity the Lagrangian of the gravitational field is assumed to be
the scalar curvature times the volume form. In the general case when 6 is not necessarily a
soldering form, scalar curvature cannot be defined, but we can write down a 4-form £, from
0 and the curvature tensor I of I'. Moreover L will turn out to equal the usual gravitational
Lagrangian in the non-degenerate case.

The construction is as follows. First we raise via § one index of R, thus obtaining the field

R* .M - N’T*"M® N2 H .
Then we set _
Ly:=kTTUGHRFAONG) : M — A'T*M
where k : M — L2, with local expression k& = & |¢|?, is the gravitational coupling factor
(actually a constant, §5.2). We obtain the coordinate expression

Lo = 567 exup Ry 07 65 da® A dab A dzt A da?

namely
1 ,.-1 bed Ap o
Ly =5 K Exuwpe™ Ry 0.0, .

We calculate the 6- and I'-components of £, obtaining

(Eg)y = 8;:”@ =k Exuvp g Rab)\u 0y
[4
0 0 0
E)P = Aty — O el =
( g) o 8Faa,3 g ceg 8(8braag) g

= k7t el ey, (20,0 050200 + (1P T, + 3T
The antisymmetry of (£ g)“aﬂ in the indices « and 8 is apparent from

(Eg)ay = (€)% oy = 171 €™ e [2 Ou0; 03 05 0% + (8 Ly, = 5 Fb”a)] :

Using g5, €27 = 2(636;,‘ — 6,),‘6,’}) we find
(Eg)%ps =26 e ey, (0402 05 — T, 0705 =
= 2L gabed Eapup 1505 05 -

So the I'-component of the Euler-Lagrange operator gives, in the non-degenerate case, the
torsion of the connection I' induced by  and T on TM.

Next we show that the f-component of £, gives, in the non-degenerate case, the Ricci
tensor. Actually let 4 be an isomorphism, and take any given point pg € M. We can find
base coordinates (%) such that 65(po) = 64, so that at po we have

(gl =267 o 5 &) R =8k By

where E is the Einstein tensor, E,, = R,/, — 571°’ R, 73 oy -
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5.4 Dirac Lagrangian

The usual Dirac Lagrangian on curved spacetime [IZ80, CJ96] is
Lo = [§((, V) — (T, 9)) = ™ ()],
where ¥ = 7*V, . In our two-spinor formalism
Yp=u+aeW=L3?@UxT"),
p=a+aec LU xU)=L3eWF,
namely if ' = v+ 3 € W then
(W, 4") = (&,v) +(8,7) .

In translating this into our setting the main problem is v* and ¥, if we wish to allow for
a possibly degenerate vierbein. But note that we have (§2.4)

Vi = A* Vi M > HIT MW |

so that

D, V¢) : M > L3QHQT*M =L@ HQT*M .

Hence o
(%, V) NOAOAG) : M — CO N T*M .

Moreover let m : M — L~! be a constant section. Then
ﬁ(m(z/_l,z/z)ﬁ/\ﬁ/\ﬁ/\ﬁ) ‘M — AT*M .
Collecting everything, we obtain the Lagrangian Lp : M — A*T* M given by
Lo =i [(§ (5. ¥4) — (Vb)) —m (6,4) 6) NOAOAG] .

Note how we replaced the combination mc/~ with m only, which is essentially the usual
setting ~ = ¢ = 1. Actually, in the present context, the particle’s mass and the Planck
constant appear only in this combination.

In 2-gpinor notation we have

Lo =7 [(ﬁ (Vu® i —u® Vu + §#(a® Va — Va® a))
—m ({o, @) + (@ u)) 0) AOAOAD]
with coordinate expression
fn = e exp [(J5 (Vo @ — 4 V@™ + e9487% (@0 Voo — Vabic )ty
—m (@t + o T”) ) 050205 -
Next we compute the Euler-Lagrange operator £p . The %-component is

oty . 9 Oty L 0 oy
= gar % gui g~ %% ggr e =

—gabed gy (\/51 Vout t, - — maB-Hfz‘)H,’f 62 04 + By ,

(ED)B’
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where

By = Jpe ™ erp X, ut (363 0u8) + FT.0(E778A + 2782 04)62 05 -

The a-component is

O 0 O, 0 Ok
da, F b 96" B, 4

= e ey p (\/iz T APV goy — mut 02‘) 6, 0, 04 + B4,

(Ep)* — 0,0

8053’ 8C_¥A,a

where
BA = ﬁeabcd Expvp TXAB.CVB' (3 ’17)‘X 80,0{; - i "7)% Faﬂv(zﬂvwzwmx + Eﬂvwzﬂ'mx) 0#) 03 05 )

The I'-component is

9lp i bed 3 A A —B
or? - ﬁ e Exuvp [(Eﬂwzw X Eﬂwzw x)tXAB‘uA u” +
a7y

+ 1 (£ X - B78,X) Vg aD‘] 00" 6 .
The #-component is

(Ep); = g% = &% ey p [(3 ﬁ (Vou? @% —ut Voa? +e94E°F (ap Voo — Vet ap )1,
c

—dm (o ut + apu?) 02‘)0{)‘ 03] .

The A-component is

. 0fp
(€p)" = A,

— bed A =B CA =D'B" - A Iz p_
= V2 exump (u u° +e“"E aCaD-)t g0y 000 =

— V9 Eabcd Erurp (t)\AB'uA I_I,B. n nAu TMCD’ & aD.) 0;)‘ Hcy 03 =
= V2w, (W0 + 1V (@@ a)s) 0} 07 0 =
= Euwp D7 0, 6¢ 0 -

Finally, as anticipated, the G-component of £p vanishes identically:

dlp

=0.
0G,,

5.5 Electromagnetic Lagrangian

Unfortunately we are not able to write, in terms of our fields, a Lagrangian density which
is not singular in the degenerate case and yields something resembling the usual Maxwell
equations in the non-degenerate case. Then we simply translate the usual electromagnetic
Lagrangian in our formalism:

Lem = (g7 @ g7, FQF)n = g°° ¢" Fop Foqn =

=M 0" (07X 07 (0715 (071)7 Fap Fea det(9) €,
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with F := 2dA. This Lagrangian is already dimensionless, namely it is valued in A*T* M,
and contributes to the A- and #-components of the Euler-Lagrange operator.
For semplicity we use the shorthand

gabed .— v pue (g=1)a (0—1)2 6=4H¢ (G_I)g det(0) ,
0
x_9_

éabcd
< ax 7

éadek = 8k0

so that
gem = L'agb ch éabcd .

The A-component of Eqy, is

0 of
m ¢ = —OpFpqg— o X — =
(Ee ) 8b cd ch 8Aa7b 8b0q 0(}16 8Aa7b

-9 [(éabcdb _ ébacdb)ch + (éabcd _ ébacd)achd] —

= (d % F)peg £,

0 0lem

where xF' is the Hodge-dual of F’, that is, in coordinates,
(xF)p;j = 0% Fop ecanj -

The #-component of ¢y, is

O v
(Eem)y = Fap Fra 50" .
€ a 806

5.6 Gauge symmetry

Having gauged away the conformal (dilaton) symmetry, the fundamental bundle in our ap-
proach is U — M. Since any frame of S yields a normalized frame of U (§2.4), we have
on U the distinguished family of normalized frames. These constitute a principal bundle
9 — M, whose structure group is constituted by matrices of the form |det K |_1/ 2 (K), with
(K) € GI(2,C). Namely the structure group is constituted by all complex 2 x 2 matrices
having the module of the determinant equal to 1. This group is

SI(2,C) = U1)% 8I(2,C) := (U(1) x 81(2,0)) /~ =
= (U(1) x 81(2,C)) /2 ,

where ~ is the equivalence relation (z, X) ~ (z/, X') & X = 2/ X' and Z, is identified with
the normal subgroup of U(1) x Sl(2, C) generated by (—1,—1). Equivalently, we can say that
the structure of U is preserved by the group

SI(U) = SI(S) := U(1)x SI(S) .

Let moreover §; — M be the principal bundle of all positively oriented (§2.3) and
future-oriented (§2.5) orthonormal frames of H — M, with structure group the special or-
thochronous Lorentz group L*'. The map which associates with a normalized frame of U the
corresponding ‘Pauli’ frame of Hisa principal bundle epimorphisim.

Then we see that the group of automorphisms of the theory is SI(S) = SI(U).

The relation to the 4-spinor approach [CJ96] is readily found. If K € SI(S) then K&K €
End(W). Actually it turns out that K&K € Spin®’ (W), the time-orientation preserving
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component of the ‘complexified’ [BLM89] spin group Spin (W) := U(1)x Spin (W), where
Spin (W) C End(W) is defined as usual in terms of the Dirac map 4. Moreover one finds
that the map

SI(S) — Spin' W): K— KoK

is a group isomorphism.

5.7 Field equations

We briefly discuss the field equations £[f] = 0, where £ = £+ Eem +€p and f: M — E
denotes the whole of our fields.
The #-component gives the Einstein equation

(5g)§ = _(gem + ED)i 3

where, as we saw, the left-hand side is essentially, in the non-degenerate case, the Einstein
tensor, while the right-hand side can be viewed as the sum of the energy-momentum tensors of
the electromagnetic field and of the spinor field, respectively. In general, the electromagnetic
term is singular in the degenerate case, while the other two terms are not singular.

The I'-component gives the equation for torsion

(E)% = —(En)% -

From this we see that the spinor field is a source for torsion, and that in this context we
cannot formulate a torsion-free theory. Note also that this equation is non-singular in the
degenerate case.

The A-component gives the second Maxwell equation

% (d x FYpeq + Toed)] =0,

where
Tbed == \/56)\“,,,, ((u ® ﬂ))‘ + 77)\/6(0_‘ ® a)ﬂ)ellf 6, 03 = Expvp '9[_"?)\'9[} 0{; 6, 05

is the current. This can be written in the usual form (we are in the non-degenerate case)
OF := —xdx F = ¢y"e) .

The 1)-component, namely the @ and @-components, are (£p), = 0 and (£€p)® = 0 (while
the 1)-component gives the conjugate equation). These give a modified (non-linear) form of
the Dirac equation. The modification is constituted by the terms By and B#. In fact we can
express Opf7 algebraically in terms of I' and ¢ via the torsion equation, and replace for this
derivative in By and B#. This kind of torsion-related non-linearity is known to arise in the
context of Einstein-Cartan-Dirac fields [HCMN95, GH96]. Its possible physical meaning is an
argument of discussion.
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