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We consider the G-invariant Kaluza-Klein scheme on M x G/H leading to the N(H)/H
gauge group and demonstrate its consistency. The full-scale ansatz with G X N(H)/H gauge
bosons from M X G /H compactification is argued to be, in general, inconsistent.

1. Introduction

The present paper is a continuation and, in a sense, also a closure of a series of
papers [1-5] in which we investigated the geometrical meaning of *“dimensional
reduction” - a procedure for obtaining an effective four-dimensional multifield
theory from a multidimensional uni- (or “few”) field theory. In this series of papers,
we have given geometrical foundations to a whole family of theories of the
Kaluza-Klein type under the assumption that the internal spaces are orbits of a
certain global isometry group G, thus being homogeneous spaces of the type G/H.
In the simplest model of this type, one considers just one field in a multidimensional
universe — the metric tensor, with lagrangian (R — 2A )J;}. This simple Kaluza-Klein
theory was investigated in detail in ref. [2], and it will be sufficient for our purposes
to restrict our attention mainly to this model also in the present paper*. The
message coming from the results of ref. [2] can be summarized as follows: consider
spontaneous compactification on M X S where the ground state has (internal)
symmetry group G’ acting transitively on S, and let G be a subgroup of G’ such
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that S= G/H (i.e. G is transitive on S). Then, taking into account all G-invariant
modes, and only those, of the metric in the (m + s5)-dimensional universe E =M X
(G/H). M being m-dimensional space-time, one obtains an effective m-dimensional
theory containing a metric tensor of M, a Yang-Mills flield with gauge group
N(H)/H, N(H) being the normalizer of H in G, and, also, a certain multiplet of
scalar fields whose composition and colour content depend on G and on H. Now, in
ref. [6] it has been shown, using general arguments, that a G-invariant ansatz should
always be consistent provided that one takes into account all G-invariant modes.
The discussion of the consistency problem given in refs. [6] and [7] (see also ref. [§]
for a review of recent results) seems to indicate also that the most popular ansatz
(see, for example, refs. [9-12]) involving Killing vectors, which is explicitly not
G-invariant, should be considered as guilty of inconsistency unless proved innocent
for a specific model*.

In the present paper, we tackle this consistency problem with the following
results:

(1) We show by explicit calculations that dimensional reduction (from M X G /H
to M), based on the G-invariant ansatz for the metric tensor [2], and thus giving rise
to Yang-Mills fields with gauge group N(H)/H. leads indced to the effective
m-dimensional lagrangian and field equations which are fully consistent with the
original (m + s)-dimensional (s = dim(G /H)) theory.

(i1) On the other hand, following certain geometrical considerations of ref. [13],
we consider another ansatz, also of a geometrical nature but more general than the
first one, which gives rise to an effective m-dimensional theory with gauge group
N(H)/H X G (i.e. the maximal one allowed by the geometry of G-action). Here we
argue that the resulting m-dimensional theory is. in general, inconsistent with the
original one.

We wish to close this introductory section with a few comments:

(1) A Kaluza-Klein scheme is called “consistent” if (a) it admits a compactifying
ground state solution; (b) if every solution of the resulting m-dimensional [lield
equations can also be interpreted as a solution of the original (m + s)-dimensional
theory **.

(2) A scheme which is inconsistent need not necessarily be all wrong; however,
such an inconsistency suggests that “something” goes wrong with the truncation
scheme.

(3) A scheme which is consistent must still be shown to be energetically stable
before being accepted as a candidate for a realistic theory. We do not mean that an
inconsistent ansatz is physically meaningless and we do not intend to discuss here
the possible physical relevance of such an ansatz.

* The several known cases of a consistent non-G-invariant ansatz are discussed in ref. [8].
** Notice that (a) is implied by (b); we are grateful to M. Duff for discussions of the consistency
problem.




R. Coquereaux, A. Jadczyk / Kaluza-Klein 619
2. Explicit form of the G-invariant ansatz

We first warn the reader that in the following, all our considerations will be local;
global properties, bundle structure and all that were already discussed in ref. [2].
Also, we want to make the form of our exposure correspond to its content; therefore
we will use the most appropriate local “jargon”. With that in mind, let us consider
the Einstein-Hilbert lagrangian for g, (A, B=1,2....,d=m+ 5) with a cosmo-
logical constant (R — 2A)\/§ in d=m+ s dimensions. We consider this model
being fully aware of all its non-realistic features, and we consider it explicitly just
for the reason that it is the simplest model (or rather class of models) which exhibits
consistent dimensional reduction; at the same time, it suits us best as an illustration
of methods and results of G-invariant dimensional reduction.

The model admits a spontaneous compactification on E=M X (G/H) with M
being, for instance, a de Sitter space and G/H a homogeneous Einstein space. Here
G can be any compact subgroup of the isometry group of the vacuum (ground state
metric), acting transitively on the internal space. To get an effective m-dimensional
theory describing the dynamics of zero modes of g5, it was proposed in ref. [2] to
take into account all G-invariant configurations g,,(x, y) on E=M X G/H, and
only those. Explicitly. this ansatz of ref. [2] can be described as follows:

Sulx.y)=g,.(x), (2.1)
Gualx.¥) =0, (2.2)
guﬁ(x’y):A.};x(a)A(;f(a)h‘yﬁ(x)' (2.3)

The rest will consist exclusively of the necessary elucidations of the above formulae.
(i) The metric g,,(x, y) is written in the basis consisting of vectors e, (p=
I,....m)and K, (a=1,..., s =dim(G/H)) where
d
axH

e (x,y)= —As(x, y)K, (p). (2.4)

and K, (y) is a basis of the Killing vectors of G/H. More precisely, let K,
(i=1,..., n = dim G) be the Killing vectors of the G-action on G/H [usually they
are written as K,(y)= K/ (y)d/dy™), where y"” are coordinates on G/H]. These
vector fields satisfy simple commutation relations

[K.. K| =ChK,. (2.5)

but they form an overcomplete system on G/H, and one has to remove (n —s) of
them. To this end, one splits the Lie algebra of G into

Lie(G) = Lie(H) +.7°,
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where . is a reductive complement (i.e. h.h ' c% for h& H) of Lie(H) in
Lie(G) and, corresponding to this decomposition, one also splits a basis 7, in Lie(G)
into (7,, T,), T, being a basis in Lie(H) and T, a basis in .. Then K, — the Killing
vectorsicorrespz)nding to T, — form a basis for vector fields on G/H in a neighbour-
hood of the origin of G/H.

(i1) The matrix A%(a) entering the expression (2.3) is defined as follows. Let
A'(a) be the matrix of the adjoint representation of G:

aTa '=A(a)T,. (2.6)

Then Af(a) is the submatrix of A, corresponding to i =a, j=f.
(iif) The matrix 4 ,,(x) of scalar fields which defines g,,(x, v) is subjected to the
linear constraint of Ad(H)-invariance:

AL(U)A?f(U)hya(X):ha/f(x) (2~7)

for all « € H. Infinitesimally this is expressed by the vanishing of the following Lie
derivatives:

°?gh/,y(x)EC(_fﬁhay(x)+Cg‘syhm(x):0. (2.8)

How to solve these constraints and how to count the independent degrees of
freedom has been discussed in ref. [2].

(iv) The group element a € G which appears in (2.3) is any representative of the
coset y = Ha*. That the r.h.s. of (2.3) does not depend on the choice of such a
representative is automatically guaranteed by the constraints (2.7).

(v) The quantity A3(x, y) in (2.4) is defined by

A (x,y) = A%(a) 4;(x). (2.9)

where Ai‘(x) are the Yang-Mills potentials. The meaning of the index 4 is explained
as follows:

The subspace . of Lie(G) is further decomposed into &= ¥4+.%, where X
consists of all Ad(H) singlets in ., and & is a reductive complement of " in .%°
(e. [, L)C and [A, L] C.ZL). The basis T, in ¥ is then further split into
T,€X and T,€.¥. X is now a Lie subalgebra of Lie(G) - in fact it is the Lie
algebra of the effective gauge group which is N(H)/H. The Yang-Mills potential A,
has values in . We warn the reader that N(H)= {¢ € G: aHa ' = H} — the
normalizer of H in G is not the same as the centralizer.

(vi) The basis (e,, K,,) which has been used for writing down the metric (2.1)-(2.3)
is one which is most convenient for calculations. In this basis the vectors e, are

* In this paper we use “G/H" to denote right cosct space.
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orthogonal to K. but this is not in general an orthonormal basis; neither ¢, nor K,
are assumed to be orthogonal between themselves. Usualiy one writes the Kaluza-
Klein ansatz in the basis (d,, K,,) or even (d,, d,). The change of basis is easily
accomplished with the formula (2.4). Thus, for example, in the basis (d,, K,), the
r.h.s. of (2.1) would be

Zun (X) + hp(x) AZ(x) AL(x)
while that of (2.2) would read
Ai(a)hgp(x) A7 (x).

(vit) The price paid for the simple form of (2.1)—(2.3) is in the more complicated
form of the commutators. In order to do any calculations (in particular, to compute
the Christoffel symbols and the curvature tensor), one needs the commutators of the
basis. Here they are given by

[e,.e,](x.»)=—A%(a) Fi(x) K (»).

[eu, K‘,] =0,
[Ka‘ K/;](Y) :fayﬁ(a)Ky()’)~
where P,f:, is the field strength of Aﬁ
Fi=9,4%— 3,47+ CiAL AL
and the structure functions fY,(a) are given by

fpla)=Ch+ CuzﬂAaz(a) LY(a),
where Lj(a) is the inverse matrix of A%(a). Here, as everywhere in this paper. the
relation between y € G/H and a € G is given by y = y,a, where y,= H = [e] is the
origin of G /H. Everywhere, care is taken so that the formulae we use do not depend
on the choice of a.

3. Consistency of the G-invariant ansatz

The formulae of the previous section allow us to compute the Christoffel symbols,
curvature, Ricci and Einstein tensors of g ,,(x, y) for y in a neighbourhood of the
origin of G/H - too far from the origin, the K, can fail to be linearly independent.
But, in fact, it is enough to perform these calculations for y = y,, y, being the origin
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of G/H. This is due to the G-invariance of the metric which implies

Gaplx.y)= A(/"(a" I)A%(“_bl)ﬁ(‘n()ﬁ Vo) (3.1)

where y = y,a. and A%(a)=(8}. A%(a)). Analogous formulae hold also for the
curvature, Ricci and FEinstein tensors. In particular, the scalar curvature R 1is
constant along y and depends on x only. The results of the calculation of
R, ,(x, y,) and R(x) read*

R, =R, — \FLF%Y = Sh**®D,h, D,hys—iD,h,, (3.2)
R,a=1D,F,, +  hoEy = SCLRDh s, (3.3)
Ra/ﬁ p\G/H) + 3F, F, o+ %thD}Lhay s
— 4h,D,h oy — 1D, Db o (3.4)
R=R+R(G/H) - LF, .F,, ;= h**h"D,h D hgs

_%hﬂhM_DﬂhH’ (3.5)
where

Raﬁ(G/H) Cy& aCyﬁ B ZCay BCBy 8 CAY‘SCBS,}/

—3C2 G —3CEC =3 Cou g+ Cop0) Cls, (3.6)

y-ad Y

R(G/H) = haBRaﬁ(G/H) = ica[i vCaB Yy Cﬂﬁqvcﬂ%ﬁ
- Q.G — Ci.Chy . (3.7)

The summations over the repeated indices on the same level, as well as all raisings
and lowerings of indices are always carried out using g,, and £, or their inverses,
for example C,5  =h, .Clo. The D’s are the covariant derivatives employing
Yang-Mills potentials and when necessary, also the Christoffel symbols of M (as in
the first term of (3.3) and the last term of (3.4)); so, for example,
D;Lhn[f 3 h (Caahy/)’ + C&Y[‘Ihrxy) .

We also used the notation 4, to denote h*”D,h 4. Finally, the Fy, entering (3.3) and
(3.4) are non-zero only for a = 4. From now on, we will assume that the group G is
unimodular, then the last term of (3.6) and (3.7) vanishes (C = 0).

* Everywhere in this paper we follow the conventions of ref. [14].
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The field equations resulting from the lagrangian (R~ 2/\)\/§ are
Egp+AGn=Typ.

where £,, =R ,,— V;izg“,. and T, describes the contribution of matter fields. In
the simple model we consider 7,, =0, and so the field equations become

N 2A

Rpufz + d_ 2gp.;" (38])
pa =0, (3.8ii)

. 2A

R =+ zlw—zgﬂ/,, (3.8iii)

i.e. they describe an Einstein space with Einstein constant 2A/(d —2), d=m +s.
Because of the aforementioned simple “propagation law” (3.1), it is enough to
satisfy the field equations (3.8) only at y = y,, where the Lh.s. is given by (3.2)-(3.4)
and the r.h.s. by (2.1)~(2.3), with y =y, and a=e.

To check the consistency of the ansatz, we have to compare the equations (3.8),
which are now equations for g, (x), Aﬁ(x) and h,,(x), with the ones obtained
from the m-dimensional actions which results from averaging the original lagrangian
over the internal coordinates. Modulo a constant proportionality factor (related to
the standard volume of G /H), this m-dimensional action is

Apu = f(iz —2A) g 2h/ 2 déx, (3.9)

where g and h denote the determinants of g,, and 4, respectively. This action
should now be varied with respect to g,,(x), A;(x) and h,4(x) in order to obtain a
set of m-dimensional equations for these fields. Here it is essential to take into
account the constraints (2.8) by adding to (3.9) the Lagrange multiplier term
[Ny Z,hF7d*x. Using (3.5) and (2.8), one gets. by an explicit calculation, the
following set of field equations:

R, —1(R-2A)g,, =0, (3.10)

wy

R,.=0. (3.11)

pa

A

g0 Ry = LR 2A )+ L(CE Gy + CRLCH)] + NGy + M, Cl = 0. (3.12)

¥ oy

LhPr=0. (3.13)

While eq. (3.10) are evidently the same as (3.8i), egs. (3.11) and (3.12) need further
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discussion. Consider first eq. (3.12). It is seen that by choosing the Lagrange
multipliers to be

8 _ _1,1/2p1/208
Au:{ Jg h C

y - (3.14)
Eq. (3.12) becomes (3.8iii). Now, one knows that the Lagrange multipliers are
uniquely determined by the constraints. On the other hand, the constraints (2.7) are
compatible with (3.8iii); indeed, it is easy to see that i{aﬁ as given by (3.4) satisfies
(2.7) if h,p does. This justifies (3.14) and proves that (3.12) + (3.13) is the same as
(3.8). Eq. (3.11) remains to be considered. It has exactly the form of (3.8i1), except
that (3.8ii) asserts that R, =0 for all a, while (3.11) gives this conclusion only for
a = a (we remind the reader that the index a runs over all basis vectors of G/H
while 4 runs only over those which span the Lie algebra of N(H)/H). Since
F,, =0 for a#a, it remains to show that X, = CJsh*D,h 5=0 for a +a. One
can prove this as follows. First, using the Jacobi identity and the constraint
equations (2.8), one can show that X% with p fixed, is a vector which is Ad(H)-
invariant, and then use the fact that all Ad(H) singlets of . are in X"

This ends the proof of the consistency of the G-invariant Kaluza-Klein scheme.
Observe that what is essential in this statement is that every solution which is an
extremum of the effective m-dimensional action is an extremum of the original
d-dimensional action. The inverse statement, that is, that every constrained solution
of the original field equations is a solution of the m-dimensional ones, follows
directly from the fact that the effective m-dimensional action is defined as an
integral of the original one over the internal variables.

Remark. One should not interpret g, (x) (3.8) as an m-dimensional gravita-
tional field. As is well known, one has first to perform a conformal rescaling of the
fields g,,(x) and h 4(x) by introducing new fields, g,, =h'g,,, Ea,; =h'h 5, where
h=deth,; and r=1/(m—2). In terms of these new fields, the effective action
becomes

Aavcr[gp.v’Aﬁ°Ea,B] = /gl/z"?[g’ A,}_I],
where .Z[g. A, h] is now:

Z[g, A h]=R+R(G/H) — LF,, ,F,, 4= sh**h"°D,h s D, hgs

pr.atpv,a

S B
—1/(d=2) —
*aa—g e g g7).

with d=dim(M X G/H) = m + 5. Notice that the last term becomes an ordinary
total derivative upon multiplication by g'/2.
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4. Inconsistency of the “full-scale” ansatz

We have proved consistency of the G-invariant ansatz on E=M X (G/H). The
effective m-dimensional theory which is consistent with the original theory in
d=m+ s dimensions (s =dim(G/H)) incorporates gauge fields with the group
N(H)/H. Now, there is a widespread belief that the effective gauge group from
G/H compactification should be G. It is our wish to show two things in this
section:

(i) that there really exists an “ansatz” — we shall call it a *full-scale
ansatz” — which (a) has a well-defined geometrical meaning, (b) gives the effective
gauge group N(H)/H X G;

(ii) that this “full-scale” ansatz is, unfortunately, in general, inconsistent.

The second conclusion applies in particular to the case of E=M X G. The full-scale
ansatz now predicts the gauge group G; X Gy with Gy = Gr=G. G corresponds
here to N(H)/H, while G corresponds to G. This ansatz is, in general, incon-
sistent: the source of inconsistency is the part of the metric which corresponds to
the most popular (non-G-invariant) ansatz (see refs. [9-12]) and which gives rise to
the gauge fields of Gg.

A very general geometrical construction giving the full-scale ansatz has been given
elsewhere [13]. This construction is applicable to all cases where internal spaces have
transitive isometry groups. Here, for reasons of simplicity, we will restrict our
discussion to the case of P =M X G being a principal bundle. The following recipe
then gives the full-scale ansatz:

(1) Artificially enlarge P to P=P x G.

(2) Now G X G acts on P by

(x,a,b)(c,d)=(x,ac,d 'b). (4.1)
(3) In particular, G%% c G X G acts on P by
(x,a,b)(c,c)=(x,ac,c”'b). (4.2)

(4) Therefore P/G%% is isomorphic to P; indeed, this isomorphism is given by
(x, a, b)y—(x, ab).

(5) Consider all metrics on P which are Kaluza-Klein projections fromP=Px G
to P (in the sense discussed in sect. 2) of G X G invariant metrics on P (taken as
M X (G X G)).

Notice that the remaining G action on P defined by (x, a)(b) = (x, ab) comes from
the following G action on P=M X G X G:

(x,a,b)(c)=(x,a,bc). (4.3)

This last action is not killed during the projection P — P = P/G %%, whereas the
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action of GX G on P introduced in (4.1) no longer exists at the level of P.
G X G-invariant metrics on P (for the action (4.1)) are in particular G **-invariant
and therefore do project on P on metrics which have no remaining invariance in
general. Those very particular metrics of P which are (G X G) X G-invariant (for the
actions (4.1) and (4.3)) or, at least. G%¢ X G-invariant, project onto G-invariant
metrics on P. From the point of view of set theory, we have taken the product by G
and then taken the quotient by G — we are again on P. But from the point of view
of the field content, we have produced a large class of metrics on P which contains
all G-invariant metrics, but also contains much more. This is the full-scale ansatz. It
gives rise to gauge fields of G| X Gy, as mentioned above. It should be noticed that
the scalar curvature of a given G X G-invariant metric on P (for the action (4.1)) is
only a function of x €M and can be “dimensionally reduced” directly to M by
using the general technique of sect. 2 (the so-called G-invariant ansatz). However,
the scalar curvature of the projected metric on P has no reason to be independent of
a € G, since it will not be G-invariant in general. One can now perform calculations
of the scalar curvature associated with this more general, non-G-invariant ansatz.
Hence, instead of (2.4), one has

e (x.p)= —Ag(x, y)e (y) = Bi(x)e,(y). (4.4)

Ix+
We denote by F, and Gl[f the field strengths of gauge fields 4, and B, respectively.
This time we also have at our disposal not (5 - n(n + 1)) but (§ - (2n(2n + 1)) scalar
fields (n = dimG). The piece of scalar curvature which interests us now has the
form

A

R=R(M) = lg(x.a)(Ea(x.a)+ GL)Ei(x.a)+GE)+ -+, (4.5)

v

where F(x, a) depends on a as in, for example, (2.9), and g,,4(x, @) is a function
of scalar fields and «. For consistency, the solutions of equations of motion
obtained from the lagrangian

X[A#,Bu,y"",h“ﬁ,...] =f[i%(x,a)—2A]dvolG
G

should also be solutions of the set of equations (in P), RMN: QA/(d=2)gyn-
This last set of equations is a-dependent in general, whereas the first is not. With a
special choice of scalar fields, one can make the dependence of g, on a reasonable:

g(!/f(x’ (1) = A}:x(a)‘/yji(a)hyﬁ(x) -

But even with that choice, it is impossible to make the piece of R that contains the
fields £ and G to be a-independent unless h,5(x) = ¢(x)k .4, k5 being the Killing




R. Coquercaux. A. Jadezvk / Kaluza-Klein 627

metric of G [here we assume G simple and use the relation [A%(a)A? (a)dvol; =
(8/“"8‘w/dim G)vol(G)]. But this will be generally incompatible with the field equa-
tion containing R .

In the case where we start with a space E=M X G /H. there exist (at least) two
kinds of non-invariant Kaluza-Klein scenarios, both of them leading to an effective
gauge theory incorporating a G-valued Yang-Mills field, both of them unfortunately
inconsistent in general. These two scenarios have, however, a well-defined geometri-
cal meaning that we sketch here.

First scenario. We enlarge artificially E into E=M x G X G/H (to make these
considerations global, one should distinguish two subcases: if G acts globally on E,
we build E = E X G, whereas if G does not act globally, we build E=PXxG/H
where P = M X G is the principal bundle associated to E). In either case, we have a
well-defined G X G action on E, the little group of which is H X {e}; according to
the general technique of sect. 2, we can build G X G-invariant metrics on E and the
effective Yang-Mills field emerging from this invariant ansatz will be N /H where N
is the normalizer of H=H X {e} into G X G, ie. N/H = N/H X G. Equations
obtained from direct dimensional reduction on M will, of course, be consistent with
equations in E. The above metrics on E are also G%*-invariant and therefore go to
the quotient E /G % = E; the obtained metrics on E have usually no invariance left,
and this describes the first kind of non-invariant ansatz on M X G/H. Of course,
there is no hope for this ansatz to be more “consistent” than the one already
discussed in the special case where H = {e}.

Second scenario. We start with a G-invariant metric on P=M X G for the
action (x, a)b = (x, ab). Such a metric is a fortiori invariant under a subgroup H of
G and goes to the quotient E=P/H. However, G invariance is lost after this
operation and we run into the same kind of inconsistency problem as before. Notice
that when P is not trivial (when it is not a product), G does not generally even act
on E at all. The above two scenarios can be discussed globally (bundle structure,
etc.), cf. refs. [13] and [15].

The attentive reader will have noticed that we did not attempt to prove that the
most popular ansatz (the one leading to gauge group G when performing Kaluza-
Klein dimensional reduction on G/H) is always inconsistent: miracles are possible
depending on specific models (r.h.s. of field equations). However, as stated in the
introduction, it should be considered as guilty of inconsistency, unless proved
innocent for a specific model.

On the other hand, the G-invariant ansatz introduced in ref. [2] and leading to the
effective gauge group N /H was shown to be consistent (in this paper we considered
the simple case of a lagrangian (R — 2A)\[g7 in order for the ground space — an
Einstein space — to be a solution of field equations, but the result is expected to be
generally valid — compare the arguments given in ref. [6]).

The above facts seem to be now recognized under the name “consistent trunca-
tion in Kaluza-Klein theory” [6,7].
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Note added

In ref. [2]. the factor ! in (3.5.7) should be } (as in the CERN preprint). Also, the
term “isotropy” on p. 97 six lines from the bottom should be replaced by ad H.
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