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We give a self-contained exposition of the differential geometry of Grassmann algebras. We
also study elementary properties of these algebras from the point of view of Hochschild and cyclic
cohomologies.

0. Introduction

Anticommuting Grassmann variables have found applications in physics for more
than a decade, mainly in supersymmetric field theories, but also in superintegrable
systems, etc. The present paper is a self-contained exposition of the differential geome-
try of Grassmann algebras, written in the spirit of the graded Lie-Cartan pairs frame-
work [1], with the additional aim of studying the Berezin integral so as to prepare the
discussion of its role in cyclic cohomology along the lines of [2]. Apart from this, most
of the material that we discuss is either known to the experts or can be deduced from
known facts; we refer the reader to the classical papers [3], [4].

The first part contains five paragraphs: general definitions, the canonical filtration,
genérators and frames, generalized parities, and automorphisms, the content of which
can be summarized as follows:

General definitions: We define a Grassmann algebra %, in terms of generators and
relations. We establish the link between this definition and the definition via exterior
algebra of a given vector space. The main point here is that the corresponding
isomorphism is not canonical. Along with the Z/2-graded algebra %, we also introduce
&, —the ungraded version of %,, obtained from the latter by forgetting the Z/2-grading.

Canonical filtration: The powers of the ideal of nilpotents yield a canonical filtra-
tion. We define a canonical form t on the Grassmann algebra, associating with each
element of the algebra its “scalar” part (a complex number). We stress the fact that the
dual 4 of 4, is a one-dimensional left 4,-module (this property will be needed later
for treatment of the Berezin integral).
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Generators and frames: We discuss generating systems in the Grassmann algebra.
The important fact (stemming from the non-intrinsicality of the correspondence with
the exterior algebra) is that, starting with a given system of generators, we can build
others via a “change of basis”, but that a matrix describing such a change of basis may
have coefficients in the algebra %, itself rather than in the complex numbers.

Generalized parities: An ungraded Grassmann algebra with an even number of
generators has its even part determined by the algebra structure alone—it coincides
with its center. The concept of a generalized parity is introduced to discuss the freedom
of selecting an odd part. Ungraded Grassmann algebras have not found applications
till now—in principle they would allow an extension of the concept of supersymmetry.

Automorphisms: We discuss mainly automorphisms of ungraded Grassmann alge-
bras. The results of this paragraph are then used when discussing a general definition
of the Berezin integral.

In the second part we discuss the differential geometry of a Grassmann algebra in
the spirit of Lie-Cartan pairs. In particular we introduce the Lie superalgebra of
derivations L, of %,, and discuss its module properties. With the Lie-Cartan pair (L,,, %,)
we associate the module of &,-valued graded alternate forms A} = A% (L,,%,). We
then equip A¥ with a differential d, interior products i(¢), and Lie derivatives L( &),
¢ e L, and discuss the natural gradings and mutual relations of the latter. We also
give an explicit proof of the Poincaré lemma.

The third part deals with the concept of Berezin integral. The conventional definition
makes it explicitly dependent on the system of generators. After discussing properties
coming from this definition, we describe an intrinsic definition as a module generator
for the dual 4.

Elementary properties of Hochschild and cyclic cohomologies for Grassmann alge-
bras are described: in the fourth part we list cyclic cocycles of low order, as the first
step of a more complete study, to which we shall return at a later point.

1. Grassmann Algebras

[1.0] Definition. (i) A Z/2-graded vector space (real or complex) is a vector space E
together with a direct sum decomposition E = E° @ E! (called the grading of E) into
an even subspace E° and an odd subspace E'. We shall denote E° = E° U E! the set of
homogeneous elements and write dx for the grade of x € E° defined by dx = r mod 2
if x € E". The grading involution ¢ : E — E is defined® by &(x) = (1 — 20x)x, x € E°.

(i) A Z/2-graded (associative) algebra® over K (K = R or C) is a vector space®
A= A° @ A! with a bilinear product 4 x 4 — A fulfilling 4°4°, A'A! = A°, 4°4",
A1A° = AL,

(iii) A graded commutative (or supercommutative) algebra is a Z/2 graded algebra

* The grading of E can be defined by specifying ¢, or the representation p of Z/2 on E given by p(1 mod 2) = &.
® 1In the sequel algebra always means associative algebra.
¢ Equivalently: the grading involution of 4 is an automorphism.
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A= A°® A? over K such that
wu=(—1)*%up, uveA°. (1.1)

[1.1] Definition. Letne N,n> 0.

The Grassmann algebra %, is defined
(i) as the Z/2-graded algebra %, = 4° @ %! over K which admits odd generators
03, 03, ..., 03, satisfying the relations

0105 + 6§65 =0, ij=1,...,n, (1.2)

(ii) or alternatively as the graded commutative algebra of dimension 2" with n odd
generators.

The parity-free Grassmann algebra &, is obtained by omitting the words: “Z/2-
graded” and “odd” in definition (i). Thus &, is isomorphic to the algebra quotient of
the free algebra® F{6;i = 1,...,n} through the ideal generated by the left-hand side
of the relations (1.2); alternatively, 4, is isomorphic (as an algebra) to the exterior
algebra AE* over E*, E ~ K" (with %, obtained by equipping the latter with the Z/2
grading stemming from the parity of tensors®). A handy definition of AE* is obtained
as follows: consider E* as the dual of E = K", and take the direct sum

AE* = @ A, K), (1.3)

pe N

(A,(E, K) the set of K-valued (K is always R or C) alternate p-linear forms over E,
Ao(E, K) = K, A, (E, K) = E*), equipped with the wedge product.

(p + 9!

UAL= p’q'

Au®v), ue A (EK), ve Ay LK), (14)

where ® is the tensor product, and A the alternating idempotent, ie., for x, € E, i =
1,...,p + g, we have

(u ® v)(xl’ LR xp+q) = u(xh - ;xp)v(xp+1’ oo ’xp+q)’ (15)
and
1 g
(Au)(xb'"’xp)=_' Z (_l)u(xal""’xap) (16)
p! ael,
¢ F{6%i=1,...,n} consists of formal linear combinations of all “words” with “letters” 63, with words

multiplying through concatenation.
¢ Observe that the division ideal is generated by even tensors.
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(Z, the group of permutations of the first p integers). We recall that, under the product
(1.4), AE* is a unital algebra over K, N-graded in the sense

AEK)AA(EK)c A (EK), pgeN, .7
thus Z/2-graded for the even-odd grading

A%’ = @ A (EK)

peven
AE* = (AE*)° @ (AF*)?, with . . (1.8)
(AE*)! = @ AE,K)

podd

By what precedes, &, (resp. %,) is isomorphic to AE* as an algebra over K (resp. as a
Z/2-graded algebra over ), although all such isomorphisms are on equal footing. Calling
0, : AE* - ¥, one of these isomorphisms, we set

a®ec ¥’

ale @} (19)

{g,? = 6,{(AE*°} with n(a® + a') =a° —a', &} = 00{(A[E*)‘}{

(mis called the parity involution of %,). The product of %, is denoted by the usual product
notation:

ab=6,(anb), abed,. (1.10)

[1.2] Remark. With n > 1, and a p-multiindex a sequence I = i,i,...i, of positive
integers < n, we shall, given p elements n', 2, ..., #? of either AK"™, %,, or %, indexed
by indices i, < n, k = 1, ..., p, use for their product the following compact notation:

nimiz g =t withl=i,...i,. (1.11)

The p-multiindex I = i, ..., is called lexicographic whenever 1<i, <i, <... <i,<n.
We will denote by I, (resp, L,) the set of all p-multiindices (resp. of all lexicographic
p-multiindices I, where the length of I, |I| = p ranges from 1 to n).

With {e; = (6¥)};-1, ... the canonical basis of K" = E and {¢'},_, ., the dual basis
of E* = A, (E, ), we then have that the &', I € L, together with 1 = ¢, build a linear
basis of AE*, which thus has the dimension' 2". Accordingly, with

.....

0 =0pc'), i=1,...,n, (1.12)

the 62, I e L, yield, together with 1 = 6,(1), a linear basis of %, (or, for that matter,
of ).

! Note that dim{(AE*)® = dim(AE*)! = 2",
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Note that one has
el = +8,,64", L Jel,v{@}, UI+|J|=n, (1.13)

where J' is the lexicographic (n — |J|)-index containing all indices notifying in J (and
analogous facts for the 67).

The canonical filtration

The next definitions and proposition, which we phrase for ¢, in fact essentially
pertain to &,.

[1.3] Definitions and notation. (i) We denote by 4" the set of nilpotent elements of
A

N ={ae¥,; a*=0for some k € N} (1.14)
and set, for k > 1,
N* = linear closure of {a,...a,; a,, a;, ..., a, € N}. (1.15)

(i) ¢* denotes the dual (set of K-valued linear forms) of %,.
The polar of ¥ < ¥, resp. ® < ¥, is by definition

St ={peg ols=0}, (1.16)
resp.
O ={ae¥%,; p(a) = 0forall g € ®}. 117

(iii) For ¢ € 4 and a € ¥, we define @a, ap € ¥* as

(¢a)(x) = ¢(ax)

x€Y,, (1.18)
(ap)(x) = p(xa)
and define the parity of ¥ by transposition:
GXspo>ponecdr. (1.19)
(iv) We define 7 € 4* by setting®

Tly=0
(1.20)

M) =1

¥ We write 4" = 4, if we want to stress the reference to ¥,.
b As will follow from (1:23).
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(v) We denote by Z, the center of &,.

In the next proposition we introduce the intrinsic filtration of %,. We also study the
properties of the unique non-trivial “character” t of %,. 7 assigns to each element of
the Grassmann algebra its “scalar” part; in the context of supermanifolds it is often
called the “body map”.

[1.4] Proposition. (i) The A are a decreasing sequence of ideals of 9,:
GoN >N, DN >/ =0}, (1.21)

yielding a filtration (called the canonical filtration) in the sense that

NPN < NPH, pq=1; (1.22)
in fact we have'
N = @ AE K) = 0 (S™). (1.23)
p=k

Moreover each /' is a graded (i.e., n(N*) = N, with  defined in (1.9)) ideal.

(i1) 7 is determined by (B.20) as the unique character (non-vanishing multiplicative
linear form) of ,. We have &~ = 1.

(i) One has the dual direct decompositions

g =KI®N, (1.24)
g* = Kr @ {(1}* (1.25)

both as vector spaces and as 9,-bimodules. The corresponding expansions for a € 4, and
Qe G*are

a=1tal +a, ae N, (1.24a)
e=0o()t+¢o, oe{l}t (1.25a)

(iv) Anelement u € %, is invertible iff ©(u) # 0. Its inverse is then given by the formula
(where (1 + x) = u/t(u))

A+t =143 (“D* (=1 - xif xis odd). (1.26)
k=1

! Showing that 4! < 4 and that 4™ is one-dimensional.
i @ with the obvious %,-bimodule structure, ¥* with that defined by (1.18). Observe that 4" is a sub-
bimodule (an ideal) and that all polars of subsets stable under parity are sub-bimodules.
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(v) %* is simply generated (hence ~%,) as a right (or left) 4,-module, in fact ¢ € G}
generates GF iff ¢| 4n # 0.
(vi) One has %, = %° for n even and %, = 4° @ A™ for n odd.

Proof. (i) Onehas 4" = §,(A4), & being the set of nilpotent elements of AE*. Now

N = @ A,(E, K), since the (n + 1) power of each element of this set vanishes, whilst
p=>1 _ Ju .
all powers of 1 + x, x € .4, are non-vanishing. Since A" k= @ AL (E, K), we established

(1.23), from which the rest of (i) follows. pzk

(i) and (iii) (1.24) follows from (1.23) and justifies the definition (1.20) of 7, which in
turn implies (1.24a). For ¢ € 4* and 1 € K, ¢ — At then vanishes on 1 iff 1 = ¢(1),
whence the existence and uniqueness of the decomposition (1.25a), and hence (1.25).
We now show that 7 is the unique character of 4,: for a = (@)1 + a, b = 7(b)1 +
be%, a, be & we have

ab = t(@)t(b)1 + t(a)b + t(b)a + ab, (1.27)

whence t(ab) = t(a)t(b) by the uniqueness of (1.24a). Now let t’ € ¥, 7' # 0 be multi-
plicative, and let w e A, so that w¥ = 0 for some N > 1: 7/ (w)¥, and hence 7'(w),
vanishes, hence 1’ belongs to 4™+, hence equals At for some A € K: but 7/(12) = 7'(1) =
A? = A, whence A = 1 owing to 7’ # 0.

(iv) If ©(u) = 0, u is nilpotent by (1.24a), hence not invertible. And if t(w) # 0, u is
invertible, since this holds for u/7(u) owing to (1.26), which readily follows from the fact
that uP vanishes for p > n (and for p > 1 if x is odd).

(v) Let @ € 4} be non-vanishing on 4™ To prove the equality 9%, = %* it suffices
to show that (¢%,)* = {0}, i.e., to prove the implication

x€¥9,:9(x0f)=0 foralllel,=x=0. (1.28)

Let x € %,: expressing ¢(x0f) = 0 for multiindices I of successive lengths n, n —
1, ..., 1, it follows successively from (1.13) and ¢| ,» # 0 that xe A for k =1,
2,...,n,thus x = 0 from ¢(x1) = 0. Conversely, if ¢| ,» = 0, we have ¢(ax) = 0 for all
a € %,, and hence %, # 4.

(vi) Let z=2°+z'€ %, 2°€ %, z' € 4} since z° € &, we must have z! € Z,,
hence, for each a € 4!,

1 1

la=azl = —zla=z'a=0. (1.29)

Our result then follows from

[1.5] Lemma. Letze AE* E = K" be such that zx vanishes for each x e E*: it follows
that z € A (L, K).

Proof. Straightforward from (1.13).

We next investigate the generating systems of ¥,.
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Generators and frames

[1.6] Definitions and notation. (i) A generating system of /" is a subset n < &,
generating 4" as an algebra, i.e.,, such that the products of elements of # generate A
linearly.

We denote by G, the set of generating systems of A"

(ii) A frame of 4, (resp. frame of %,) is an n-uple {0°}i-y. ..
of 474 = A" ~ &}) fulfilling the anticommuting relations

. of elements of A (resp.

90’ + 66' =0 (1.30)
and such that

016%...0" £0. (1.31)

We denote by @,, resp. ©,, the sets of frames of &, resp. frames of 9.

(iii) We denote by Aut &, the group of automorphisms (=multiplicative linear
isomorphisms) of %,, and by Aut %, the group of automorphisms* (parity preserving
multiplicative linear isomorphisms) of %,.

[1.7] Remarks. (i) For odd 6"s the left-hand side, cf. (1.30), equals the anticom-
mutator {6, 8/} which vanishes by graded commutativity: hence (1.30) can be omitted
in the definition of the frames of ¥,. On the other hand the condition (1.31) expresses
conveniently the desired algebraic independence of frame generators.

(ii) Obviously ®, = @,. As it will be shown later, one has &, = G,.

(iti) Oy = {6%}i=;. ... , as defined in (1.12) is a frame of .#" known to belong to G,.

(iv) The generating systems of %, (or 4,) are obviously obtained by adjoining the
unit to the elements of G,.

The next two results describe a characterization of elements of G,, resp. ®, and ©,.

[1.8] Proposition. The generating systems of A~ have at least n elements.! Choosing a
particularng = {n}i=, ..., € G,, the following are equivalent forn = {n'},., _, < ¥
(i) ne G,
(i) {n' mod #"2},_,
(iii) one has™

. is a basis of /| N?;

.....

n'=ajnk + o (1.32)

for some o} € K withdet(a}) # 0, and a’e /%, i, k=1,...,n.

Proof. Let {n'},.; . n.€G, then’,I€l,, span 4" linearly, thus the n’ mod A2,
I €1, span A"/A4"? linearly; however, since ' € A#°% for |I| > 1, the latter consisting of
then'mod #72,i = 1,...,m:it follows that m > dim A"/ 4% = nand also that (i) = (ii).

k Identifying %, and @,, as algebras, Aut ¥, consists of the elements of Aut @, which commute with n.
! And possibly exactly n, as does 6,.
™ We sum over repeated indices.
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Proof of (i) < (jii). Since {n} mod A#"2),_,  ,is, by what precedes, another basis of
N[ A2, (iii) means that for some af € I with det(x}) # 0, we have

n' mod 4% = af(nk mod A4?), (1.33)

synonymous with (1.32).

Proof of (iii) = (i). Since, as shown by the last step, statement (iii) does not depend
upon the choice of 5, € G,,; it suffices to show that statement (iii) with the choice ng = 6,
(cf. (1.12)) implies (i). Now, let a} € I§, i, k = 1,..., n, be such that det(a) # 0: obviously
one has {n‘} € G, iff {ain*} € G,. Taking for (ai) the matrix inverse of (), we reduce
the proof to the case a} = J/. Let us thus show that {6} + a'},-, . ,€G,,ie,that

.....

E=0+ Y Ael, iek, (1.34)
Iel,
H>1

generate ¢, as an algebra. Utilizing (1.13), we can successively find sums of products
of ¢ yielding elements of the type

05+ Y ue' (1.35)
Iel,
Hi>p

for p = 2,3, ..., whence our result after n steps.

[1.9] Proposition. Let 8 = {6}};-,
The following are equivalent:
Q) fe®,
(ii) 0° = a(05);=1, ... n» for some o € Aut %,.
(iii) 6 = 4} and 0 € G,
(iv) One has

ne A

.....

0 = aiff + o (1.36)

for some af € K with det(«f) # 0, and ' e /3G, i, k=1,...,n.
One the other hand, one has the inclusion ®, c G,. And the following are equivalent:
(ia) 0 €6,
(iia) 0° = a(03)=y,... n» fOr some automorphism o of &,.
(iiia) One has 0 € G, and 6" fulfill (1.30).

Proof. We prove (ia) <> (iia) from which (i) <> (ii) readily follows. Let 6 € ©,, we
claim that the 6’, I € L, are linearly independent. Indeed assume the existence of a
relation

Z 1101 = 0, }hl € K. (1.37)
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Given J € L, multiplication from the right by 67 yields, owing to (1.13), 1,612-" = 0,
whence A; = 0 by (1.31). The 2" — 1 elements 6 are thus a basis of .#° showing that
one has 0 € G,. Setting «(6f) = 6", I € L, and a(1) = 1, then defines an automorphism
of %,, establishing (ia) = (iia). The converse is obvious, as well as (iia) = (iiia) and
(ii) = (iii). Check of (iii) = (i) (resp. (iiia) = (ia)): (1.30) follows from 6’ € ! (resp. is
assumed) whilst (1.31) follows from & € G,. Finally (iii}<>(iv) readily follows from
Proposition [1.8].

The next Lemma is a key result for the description of the frames and automorphisms
of 4,

[1.10] Lemma. Let 0= {6,};-, € ®, and consider the decomposition®

0.=0°+0!, i=1,..,n {g?:zf (1.38)
(i) 6' ={0}}i=y,....nis a frame of %,. In fact one has
9103...0: = 6,6,...0, (1.39)
stemming from
000 =600! +616°=0, i j=1,...,n, (1.40)
with the consequence
0.0, =0610}, ij=1,...,n, (1.41)

itself implying that tlle products of an even number of 0; generate 4° (hence that the even
part %2 pertains to 4,).
(i) Thereisau€ %} such that
00 = ub! (hence ;=1 + wo?), i=1,...,n. (1.42)
Proof. (i) We have
0.0, =676 + 626} + 6} 67 + 616}, (1.43)
0=1006+ 06, =266 + 676! + 6!60), (1.44)
whence (1.40) and (1.41), which in turn implies
6,0,...6,=6{06}...6}, keven, k<n. (1.45)

® We identify %, and &, as algebras.
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For n odd, n = 2p + 1, we have thus
0,0,...0,,, =010} ...0,,005,+, +03,)
=016]...03,03,., (1.46)

since A72P*! < @,,,,, we proved (1.39).
(i) For the proof we will need the straightforward®

[1.11] Sublemma. Let {6'},., ,€ 8,, use the multiindex notation (1.11) and let
K e L,: for a € %,, we have the equivalence

at* =0<a= Y A0  forsomel ekK. (1.47)
Ie
an#lQ

This sublemma shows from the second equation (1.40) for j = i the existence of u; € ¥},
i=1,...,n, such that

00 =pub, i=1,...n (1.48)
We prove (1.42) recursively: suppose that, for k < n, we have found u® € ! with
62 = u»e}, i=12..,k. (1.49)
Owing to (1.40) we have, for each i < k,
0= 0760,y + 6651y = ™6} 634y + 6] sy Oy
= (1" — 1y11)6! 6641 (1.50)
and thus, by sublemma [1.11], the existence of 4, v, € 4, with
u® — pyy = 40, + v 016}...6}. (1.51)
Thus our recurrence step is effected by taking
p*t = 4 ® 30161 ... 08 =y + ABL, . (1.52)

Generalized parities
[1.14] Definition. A generalized parity is a subspace &' of %, with the properties
4%=909, (1.53a)

° Observe that /0% = 0if I ~ K # (&, and that a set {1,} of distinct multiindices all fulfilling [, " K = &
yields linearly independent elements 879X, Note also the uniqueness of the sum on the right-hand side of
(1.55).
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4G g, GG . (1.53b)

We identify the subspace 4! with the corresponding involution # of &,:

: o]
. { id on 4 (1.54)

"=1-id on%}!’

[1.15] Proposition. Let ?,,1 , with associated involution %, be a generalized parity. Then
(i) fora=a®+a',b=b"+b'e€%, a’%b°c g’ al,b' € G}, we have

a®h® = a®b' + a'b® =0, (1.55)
ab = a'b' = —ba. (1.56)

Hence 9, is graded commutative for the grading 7.
(ii) The generalized parity can be characterized as:
(a) the subspaces a(&!) (or involutions & = & o w o 1) with o € Aut &};
(b) the linear spans of products of an odd number of 0' with 0 € 8,

Proof. (i) We have, from (1.53b),

405 ab = a®b° + a'b! + a®' + a'b°
(1.57)
! 5 a% + ba® = 2a°° + a®b! + alb®

with a°b° + a'b' € 4°, hence a®b' + a'b® € 4° "%} = {0}; and then a°° e ¥° N
g! = {0}.

(ii) The fact that each @ € ®, yields a generalized parity as in (b) was established in
[1.10] (i). Conversely, each generalized parity %! arises as in (b) from any of the § € 6,
which it contains. The characterization (b) of generalized parities then follows from
that of the type (a) via [1.9] (iia).

Automorphisms

[1.16] Definitions and notation. Besides the already defined groups Aut 4, c Aut &,,
we need the normal subgroup Int &, of internal automorphism of ,, obtained as o,
u € A where?

o,@) = + wa + ™. (1.58)

We shall denote by o(A4"°) the set of o, with p e .

[1.17] Proposition. (i) o(A"°%) is an abelian subgroup of Int %,: we have
0"‘0'": ='6‘4+u’ ’ i, ", € */V-l . (1.59)

P cf. [1.4] (iv). Note that for x € Aut &, one hasa o g, 0 a™* = g,
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(i) Each a € Aut &, is written uniquely as a product

x=0,0¢, d,ea(H#), opecAut¥,. (1.60)
We first prove
[1.18] Lemma. (i) Let u=p° + ute ¥, u® € 92, u' € 4}: we have

@ =a+(a—apd +p™, acd,

a ac¥’
=< " 1.61
{a —2ap'(? + W la, ac¥l’ (1.61)

in particular, for pe 4},

o,(a) = a + (ua — ap), ac¥,

0
- {;’1 + 200, Zzz . (1.61a)
(ii} Let p, p’ € A": we have the equivalences®
o, = id <>y € &, <> u preserves parity
(1.62)
o,=a,<W -l +ptes,,
in particular for u, u’ odd
6,=0,<>u—pe,. (1.62a)
Proof. (i) We have, for u € A" owing to (1.26) and u"*' =0,
o @=0—-wat —W ' '=01-pal +p+...+p")
=a+au+ap’+...+au"+au"t — pa — pap — ... — pap™' — pap”
=a+(ap—pa)(l +pu+...+u")=a+ (aup— pa)(1 — p)™*. (1.63)

For p odd we have p2 =0 and (1 + p)™! = 1 — u: (1.61) then becomes (1.61a).
(i) o, = id <> u € Z, is obvious from (1.61).
The equivalence 6, = g, <> (p' — u)(1 + p)~* € Z, then follows from

[+

w0

u_l = O —p) (141 s muenN, (1.64)

9 In fact we have the relation (1.64).
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in consequence of (1 + )1 + )™ =1 + (¢’ — w)(1 + @™ (multiply from the right
by (1 + u)). For u-u’ odd,

W-—ml+p'=@ -l -—p=p —p—pu (1.65)

belongs to Z,,iff u’ — p does. Let now g, be parity-preserving;one hasg,=noo,on™' =
O hence by (1.62) both (4 — mp)(1 + n)™ and (u — 7p)(1 + nw)™ must belong to

Z,. This also holds for
(E—m)[A+ ™+ A+ )] =4pr 0+ 497, (1.66)

causing ', and thus g, to lie in %, whence o, = id.

Proof of Proposition [1.17]. (i) From the definition (1.58), we have

6.0 (1.67)

uOu = O,

s
hence (1.59) follows from the second line (1.62), since we have, owing to u? = ' = 0,
A +p+p) =gyl —p—p)=pp' e %) c %,. (1.68)

(i) Let {6, = a(6f)}i,.. ... be the frame of &, obtained by applying a to the frame
0} of g, (cf. (1.12)). With 6} the odd part of 8, we know from [1.10] (ii) the existence
of u e 4% with

ei = (11 + 2/1)011 = 0"‘(0"1) (1.69)

(cf. (1.61a)). But {6}},_, . ,is, by [1.10] (i), a frame of ¥, which, according to [1.9] (ii)
is obtained as 0} = ¢(6f) with @ € Aut ¥,. We thus have a(6}) = g, o ¢(6}), whence
(1.60) since {63} € G,. The existence of another decomposition « = g, o @', u’ € ¥,
¢’ € Aut ¢, would imply

g;lo0, =0, , =@ o9 lelnté nAutd,, (1.70)

u

whence u = u’ and ¢ = ¢’ by (1.62).

2. Derivations. Differential Calculus.

[2.1] Definition. We denote by L, the set of derivations of ¥, (in the graded sense):
L, consists of the I-linear operators £ = £° + ¢! of ¥,, sums of an even derivation £°
(element of LO):

£0%? = @», peZ2
.1)
£%ab) = E%a)b + al’(b) a,be ¥,
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and an odd derivation ¢! (element of L!):

Ergr = grt, peZ2
. 2.2)
i(ab) = EMa)b + (—D)*al'(h) beY,,ac¥;

The next proposition states, for L,, known general facts of derivations of super-
commutative algebras (subsumed in the concept of “graded Lie Cartan pair” (cf.
Appendix C and [2])).

[2.1] Definition. With the graded commutator of derivations as the bracket,
[Enl=¢n— (=), Enel,, 23)
L, is a Lie superalgebra. Moreover the bilinear product aé given by
(a&)(b) = al(b), a,be¥, el (24)

belongs to L,, and gives rise to the properties

ateld % ge¥, tel, (2.5)
1©®=¢, Cel,, (2.6)
a(bé) = (ab)¢, a,be¥,, ¢el,, 2.7)
and
¢el;
[Ean] = (-1 %a[én] + E@n <ae¥. (2.8)
nel,

These properties characterize the pair (1,,%,) as so-called injective graded Lie—
Cartan pair.”
In addition, the pair (L, %,) possesses a number of features which we now describe.

[2.3] Proposition. The %,-module L, is a free module isomorphic to (9,)". Specifically,
given 0 € ®, specified by 0° = 0(c') = a o 0,(¢"), « € Aut %, (cf. (1.12) and [1.9] (iia)), the
definition

4 : -1 P =
W_HOI(ei) e t, i=1,...,n, 2.9)

with {e;} < E the dual base of {¢'}, and i(e,), the interior product

* And allow in particular to construct the graded commutative differential algebra (A4 (L,, %,), A,J,d); see
below [2.6].



Rev. Math. Phys. 1991.03:63-99. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF CHICAGO on 07/29/16. For personal use only.

78 R. COQUEREAUX, A. JADCZYK and D. KASTLER
e )A(X1se s Xpq) = A€, X150+ -5 X,)
A€ AE*, n>1, XiseersXn-y EE (2.10)

(with i(e;) = 0 on A°E* = K)

0
of L, building a module basis of the latter; owing to the duality

yields odd derivations —— 5

relations

;é_i(e*) =M, (2.11)

each £ € L, has the unique decomposition®

& =& )5_0' . (2.12)

d
Moreover the —; mutually anticommute:

60'
0 0 -
[5@,%]=0, l,]—l,2,...,n. (2.13)

Proof. The “annihilation operators” i{x), x € E, are known to be derivations of

0
A*(E) (of n-grade — 1, thus odd): one has thus prT ell,i=1,..., n Check of (2.11):
we have

ﬁ(e") = 00 i(e;) 0 6710(e*) = 0{i(e;)e"*}

= 0{5/1se} = oM1. (2.14)

The equalities between derivations (2.12), (2.13) need only be checked on a system of
generators: now we have, on the one hand,

{055 (0") = £(6")011 = £(6"), (2.15)

and further, since derivations vanish on the unit,

0
700 {691(0")} 60‘(5"“) = (2.16)

* Here and in what follows we sum over repeated indices.
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[2.4] Remark. The duality relations (2.12) can be interpreted as follows: with the 6°
as above and L* the dual® of the %,-module L,, we introduce the following" d6' € L*:

d9'($) = (—1)*86"),  Lely. (2.17)

0 )
The ErT and d@’,i = 1,..., n, are then the dual bases of the dual 4,-modules L, and L*

in the sense
i a i .
(d0") 505 = -84, i,k=1,...,n. (2.17a)

Note also that we have (in analogy with usual differential geometry):

da .
= ' . 2.1
da af),/\de, ae¥y, (2.18)

Indeed, using the first relation (C.6) of Appendix C and (1.82), we have

da i w98 ey o avamas ggic sy 99
(Wmie)(é)_( 1) ge—,.de(f)—( nHe ”dﬂ(é)ag,-

= (1) o = ()@, 2.19)

[2.5] Remark. Specifications of a frame 6 = {6} € ©, of 4, makes ¥, a “Fock space”
with “one particle space” in the linear span of the 8°. In this aspect, the derivations a—gi

appear as “annihilators”, whose corresponding “creators” are the product ¢ to the left
by the §'. One has the familiar anticommutation relations

o 8 8 @
O)E) + 6HO)=0, i,j=1,...,n, (2.20)
i a 6 iy _ si
(0.)(-6-@ + W) 0 =4/, 2:21)

respectively following from (2.13), the graded commutativity of %,, and the derivation

0
property of 30 (which in this particular case also yields a “partial integration” formula).

t Set of #,-linear forms over L,.
® d6'is the image of 6' under the differential of A*%,(L, 4,), see below.
¥ The wedge product is that of A*%,(L,,%,), cf. (C.6) in Appendix C.
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. 0
Proposition [2.3] assigns to the frame {6’} of 4, odd bases 300 of the free %,-module
L". The latter are in fact characterized amongst the odd bases of L, by the property
0
(2.13) (in analogy to what happens in usual differential geometry with the bases pw

coordinate systems). This property will follow from the Koszul formula and the
Poincaré Lemma, [2.8] and [2.9], below for the statement, and the proof which we
need to describe the equipment will be furnished by the Lie Cartan pair® (L,, %,).

[2.6] Definitions. We consider the space

Ay = A% (L. 9) (2.22)
algebraic direct sum
A¥ = k@\l Ak (2.23)
of the space
A=Ay L,.%)  (Al=9%,), 224

of 4,-valued, graded alternate k-%, linear forms over L, (the form 4 is graded alternate
if its value changes by a factor (— 1)%:%:+1 upon exchange of consecutive arguments
Enéel,i=1 .. k—1)

The total grading of 1 € Ak is the sum 04 = k + 8,4 of its order and its intrinsic
grading

k
aoi=al(él,...,€k)_zaék, é,el:, i=1,...,k. (2.25)
i=1

A, is equipped with the graded wedge product A defined as follows: for 1 € AZ;,
ue AT p, g e N we have

Anp=A,, 4@, (2.27)(26)

where ® is the graded tensor product

A® W1, Eprg) = (= DWMAUEy, .., LI parse -5 Epeg) (2.28)

and A, is the graded alternator defined by

ptq

Yoo i is the corresponding “particle number”—in our case the N-grading of the ¥, determined by the

frame 8.
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A =1 Y [o]. (2.29)

k! oEL,

Here X, denotes the group of permutations of the k first integers acting on k-linear
forms as follows: for &, ..., &, € L2, we have

(LoD (E15-- 5 G = 1(8, ) AEa1s- -5 Eon) (2.30)

with
‘Z:, (0))(3¢)
x(&,0) = x(o)-(— 1) . (2.31)

(Note that 4 is graded alternate iff A = A4, and that A* is the “graded exterior algebra”
over L}.)

We equip AY with a differential d, interior products i(¢), and Lie derivatives L(¢),
¢ € L, defined as follows: for A€ Af,and £, ¢, ..., £,,, € L, one has
(i) d =dy + d A with*

(doi)(él""’ép+l)= Z (—l)a‘jl([éi’éj]’ 61,"'381"---’éj"'-’€p+1)

igi<j<k
2.32)
i-1 ji-1
with gy =i+ j+ (08 +08) ¥ 06+ 0 Y 8¢,
k=1 k=i+1
and
ptl N
dAE..,épn) = ; (—1PE{Ay, . Che ey i)
: 2.33)
i-1
with §; =1 + i + 0¢; (0011 + Yy 5§k>
k=1
(i) L(&) = Lo(&) + d(&), with
(Lo(&)A} (b1 rE,) = (= 128+ f (= PRy, [EED e E,)
| (2.34)
with y, = 8¢ (aoz + 'Z )aék
k=1
and
{d(8)A}(&y,...,8)) = (—1PBE{AE,, ..., &) (2.35)

* The caret A indicates a missing argument; 8, Lo(¢) and i(¢) vanish on A%,
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(iii) finally
(O &y Gpa) = (= D)PTPVEUE L, 6 ) (2.36)

[2.7] Proposition. With the notation and definitions in [2.6] we have that (i)
(A¥.0, A,d) is a bigraded differential algebra: namely an associative complex algebra
with mutually commuting N- and Z/2 gradings, and a grade one, 0-odd differentiation
(i.e., d is a 0-odd derivation of N-grade one with vanishing square). Furthermore A* is
generated in grade zero (as a differential algebra), i.e., in each frame {0'} of %,,the A € A?
are representable as sums of products

A=A ,d0" A ... A dO> 237

(note that the graded wedge product of the d6' are symmetric owing to 06" = 1)

do' A dO’ = —do’ A 4o, ij=1,...,n.

(i) L(&) and i(&) are derivations of A* (w.r.t. 0) of d-grade ¢ and of respective
N-grades 0 and —1.

(ili) One has the following identities, where & n e L, and [,] denotes graded com-
mutators (w.r.t. 9).

[i(&),in)] = 0, (2.38)
[6(2),0(m)] = 6([¢,n), (2.39)
[d,i(5)] = L(&), (2.40)
Gi(), Lm)] = ([, n]). (2.41)

[2.8] Remark. We note the following expressions of the wedge product and of the
differential in low grade: we have, forae A?* = A and x € A} = g*:

[

ZO(L, A) = 4, AY(L,A
@A OO =10, {1 BT AL,
@1, @ € AL, A) (242)

(__ 1)60"‘((/)1 A (pz)(éu 62)=('— 1)60020@.%(51)%(62), {CD {2 el

—(—1)%a@tdoe g (£,)0,(¢4)

and
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oa=0
(2.43)
%a(81,8;) = —a([£4,¢2])
@ A a)(&y) = (=1)%1%¢,(a)
(2.44)

(@ A (&1, 85) = (= 1)%1%% (a(£,)) — (= 1) %ig, (a(€,))

.....

o¥n) = 6Mg,, Lk=1,..,n. (2.45)
The following are equivalent for elements
fi=f of %, Lk 1=12,..,n:
(i) one has
-] = fim, kl=1,...,n, (2.46)
(1)) one has

do' — L fio* A o, i=1,...,n. (2.47)

Proof. Letn,,n, € L, of respective grades dn,, dn,; 0, w, € A} of respective grades
0oy, Oy, (thus of respective total grades dw, = 1 + dyw,, dw, = 1 + d,w,). We
have according to (2.42), (2.43)

(—=1)%%1 (@1 A @2)(11,112) = (= 1), (1, ), (n2)
— (= 1)2nOm* o020, (n)w, (1) (248)
and, for w € A'(L,, %,) of intrinsic grade dyw,
do(n1,12) = (= )% {o(n,) — (= 1)+ 20n, {w(n,)} — o(ln1,12])- (249)
Application of these formulae to #; and w* yield (observing on; = 1, §yw* = 1)
(0" A @'Y (ngsnp) = 0505+ 856L, kLaf=1,...,n, (2.50)

(dwi)(r’w 11#) = _wi([nm "ﬁ])’ Lo, f=1,...,n. (2.51)
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For elements f; € 4, symmetric in their lower indices, (2.50) implies that we have

%ﬁ:l(wk A w')(rp,, ’1p) = j;zll’ i, a, ﬂ =1,...,n. (252)

Assume that (2.46) holds (implying symmetries of the £} in their lower indices since L,
is a Lie superalgebra) then (2.51) reads to (2.45)

do'(n,,mp) = —'(fn;) = ~fhofle, = —fip, (2.53)

yielding (2.47) by comparison with (2.52).
Conversely, if we assume (2.47), comparison of (2.51) with (2.50) yields

wi([#a’ .uﬂ]) = —f:ﬂ ’ (254)
whence, by the completeness relation of dual basis,
kﬂiwi([ﬂm 'lp]) = [, '1#] = faiﬂ'li . (2.55)

[2.10] Proposition (the Poincaré Lemma). The differential d is acyclic.

The proof follows from

[2.11] Lemma. With {6'},_, ,€®,let

.....

Y, = (6! )z(fo—) . (2.56)

Then Y, is an odd derivation of A¥. Moreover,

j 0 il 9
B=dY, + Yyd = (GA)L<671.> - (deAy(W) 2.57)

is an even derivation of A¥ of N-grade zero, commuting with d and invertible on all A2
with p > 1. In restriction to the latter, one thus gets the homotopy connection

dYy X' + Y X, 'd =1. (2.58)
Proof. The derivation property of d entails
do]) + (0))d=@o), j=1,...,n, (2.59)

whilst we have, by (2.40),

(o (oY, (@ .
d,<5@)_,(w)d_L(w>, j=1..n. (2.60)



Rev. Math. Phys. 1991.03:63-99. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF CHICAGO on 07/29/16. For personal use only.

DIFFERENTIAL AND INTEGRAL GEOMETRY OF GRASSMANN ALGEGRAS 85

Relation (2.57) then follows:

Jj = J j 4
dYy = —d(6] )l<69,>—[(0A)d (dH)A]l<60,>

N 8 F
=(0A)z[<661)d+L<601>:| (d@)z(am) 2.61)

Now X, commutes with d : dX, = X,d = dX,d: hence, in order to prove (2.58) we need
only to show the claimed inversibility. This will result from the fact that the second
term on the right-hand side of (2.57) is nothing but the N-grading of A}, whilst the first
is positive. Indeed, we have, on the one hand, for a p-form Aand £,,..., ¢, € L,

0
{ (ae) }(él, ép—l)_——(_l)li-f-aol,l( (éls p 1)) (2.62)

Hence, by (4.33) in [2], (2.17a) and (2.12),

0
{(do")l (ael)}'l(ély'--,ép)
1+‘Z‘ 9

p oA . .,
= (= 1y ,};(—l)acﬂ ng) L4075) = 156012 (s :)

oA+ T 05

P
(_1)1+601.=Zl(_1) k=t A’(ii’él’-"yéia---,gp)

= —pMEqrennr &), (2.63)

The first term on the right-hand side of (2.57) on the other hand consists of two
contributions corresponding to L = L, + d. We have for 4 as above, on the one hand,
by (3.6) in [2],

0
{ (50) }(51, G6p) = l)paOJ {A(&y,..,80)}, (2.64)
yielding for the d-contribution the Ng-graded of ¥, acting on the value of the form
iz = A 2.65
(65) 0_01 (&15-58) =0 aef ((STYAR (2.65)

and on the other hand, plugging into (3.5) of [2] the expression

o ] 0L o
[5@7’5]‘ 0% 07’ (266)
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the relations

{L()(éi))'l}(él"”’é") = (=1 i (_l)c?ol+§‘1 o,
'j i=1
(2.67)

oE(0%) @
l(él"”aéi-h%ﬁv-wip)

and, by (4.32) in [2],

(0 G0+ 3 0% dE(6") @
{(0:)L0<a—a)z}(él,...,c,)=—ﬁl = 01,1(51,...,c,._l,%gr)w,...,c,,)
J =

(6
= —A(éi,..., éag)f )Ci(f)"),...,fp>. (2.68)
The first operator on the right-hand side of (2.57) is thus the difference of N, acting on
the values — N acting on the arguments expressed in (2.12). This together with (2.65)
implies the claimed invertibility of X,. The situation is perhaps more transparent if
looked at via the forms of the type (2.37), noting that all operators at hand, Y,, resp.
X, and its two parts on the right-hand side of (2.57) are (an odd, resp. even) derivation
(as composition of a derivation of a graded commutative algebra by wedging times an
algebraic element). Property (2.65) then means vanishing on N-grade zero, and the
following straightforward expression in N-grade one:

(dﬂj)i(—a%> do* = —do*, u=1...,n. (2.63)
J

On the other hand, the first derivation on the right-hand side of (2.57) is easily checked
to vanish on the d6%, k = 1, ..., n, whilst reducing on %, to the d A part easily checked
to yield Ny We are now in a position to prove

[2.12] Propesition. Let &, i=1,...,n be an odd base of L,. The following are
equivalent:

~ 0
: i 0 i P
(i) thereisa 0 € © with &; 20"

(i) the &-mutually anticommute: [E',E] =0 fori,j=1,...,n.

Proof. Straightforward from [2.9] and [2.10].

3. The Berezin Integral

[3.1] Definition. Let 6 be a frame of %,, 8 € ®,. The corresponding Berezin integral
I, is the element of * given by

o 0 0
Io(a)=%%ﬁ"'wa, (3.1)
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. . 0
(the right-hand side is an element of K, since the derivations 35 k=1,...,nare of

grade — 1 for N-grading of 4, determined by 6 and since they vanish on K1). In fact
we have

[3.2] Lemma. Let a € &, be expressed as

a= )Y af’ (3.2

ret,
along the lexicographic base 6 of &,. We have

If@) =ay, .» (33
(coefficient of the “top element” 0*9*...0").

Proof. One has

o 8 0 ,z{OlftheﬁrstmdexofI;él, (3.4)

20" 36" 96" 6y (1) otherwise
where I\ J € L, denotes a relative complement for J € L,; further,if {1 2...p} nI = &,

a o 0 ,_{0iftheﬁrstindexof1¢p+1 (3.5)

30" 96" T 86" 67\ (p+1) Otherwise

whence our proof after n steps.

[3.3] Definitions and notation. (i) We denote by .%, the set of Berezin integral of g,
ne N:

F,={I;;0€86,}, (3.6)
by .#, the subset of the latter obtained with frames of ¥,:
S,={l;0€0,}. 3.7
(ii)) We denote by T, the set of generators of ?,;“ {as a ¥,-module, cf. {1.4] (ii)):
I={0e%" % =%0(r0%)} = {09 ol 4 #0}, (3.8)
and by I'? the set of the latter vanishing on the unit:
IR =T,n {1} (3.9

(i) We denote by IK* @ 4, the set of invertibles of ¥, (IK* = K\0, cf. [1.4] (iv).)
(iv) We make I, x T, into a groupoid with the convention
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(@1, 92)(@2, 03) <= 02 = 03, 1, 02, 03, 93 €T,
(3.10)

and if 50, (@1, 92)(92, 3) = (91, 93).

(v) We make I, x (K* @ .4,) into a groupoid with the convention
ey, T +vi)(@ 1 +v)e 0 (M +v) =03 01,026, vy, v €4, (311)
and if so,
(01,1 + v ) (@2, 1+ v2) = (0,1 + vy +v; +vyv,).

(vi) With ¢,, ¢, € T, we define §

1,02

€ K* @ .#, by requiring
P2 = @ 6¢1,¢2’ i'e" (Pz(x) = (pl(étpx,zpzx)' (312)

[3.4] Lemma. With the definition and notation in [2.3] we have
() T,oI?> %24
(i) the map

LLxI,20,0;,-0,,,, (3.13)
is a character of the groupoid T, x I, with values in IK* @ A, (in fact covering the latter).

We have

5@’1,02 ) 61?2,'?3 = 5‘!’1,0’3
@1, 92, 93T (.19
6¢z-¢1 = 64;1111’1
(iii) the map
((pl,(pZ) I ((p135¢p1,¢2) (315)

is an isomorphism I, x I, - T,, x (K* @ A4,) of groupoid mapping the subgroupoid
I? x T? onto the subgroupoid

{1+ 0el,vet, o(v)=0} (3.16)

of I, x (K* D .A4,).

Proof. (i) is obvious. (ii) Remember (cf. [1.4] (v)) that, for ¢ € I, the map x € ?,, -
@x € 4* is a linear isomorphism. Hence, for ¢,, @, € T, (3.12) uniquely determines
Op,,0, € & , with, for ¢;, ¢, p3€,,and xe &,,

(P3(X) = (Pz(écp;,q)gx) = (Pl(‘scp,,qzzéa)z,aa;x)’ (317)
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proving the first line of (3.14). The second line follows from the choice ¢, = ¢,,
combined with §,, , = 1.

The map (3.13) is onto the irreversible of &,, since, for one of the latter and ¢ € I,
one has obviously ¢a € I,: this entails the fact that (3.15) is an isomorphism: I, x T, —»
T, x (K* @ 4;). Finally, I? x I? is obviously a subgroupoid of T, x I,; and (¢, 4+ v),
¢ €I,,v € A,,is the image of the latter under the map (3.15)iff @ e I[,and (1 + v) € [,
ie, (1 +v) = @(v) =0.

The next result both identifies the general Berezin integrals with the generators of
&, vanishing on 1 for even n; and describe the change of variables between restricted
Berezin integrals—we combine these two results because they have a common root.

[3.4] Theorem. With the definitions and notation of [3.3] we have that
(1) ij =_rgp: PE N,
(ii) for 6,6 € ®,, n € N, we have the “Jacobian”

dr. 1. = Det [ﬁ] (denoted a—?D , (3-.18)
221 691 69

(in other terms, the rule

I; =1, (3.18a)

60|

where the determinant is well-defined owing to mutual commutation of the ﬁ_i)'

For the proof we use

[3.5] Lemma. Withf¢e @,,, 7 the corresponding generalized parity, and v € A, #-odd
or fi-even, defining (1 + v)0 € ©, as

A+v0)Y=0+w6, i=1,...n, (3.19)

we have, forpe N,2p + 1 <n,

I —28'...0%"*Y),  neven

I(1+A.01...02p¢1)9 = {Io n odd s (320)
and, forpe N,2p < n,
Lysa01 .. 020419 = Ip(1 — (n — 2p)A6* ... 6%p). (3.21)

Proof. It follows from the fact that (1 + v)0 € ©, is known for v odd (essentially
from (1.61a)) and for v even, from the relations



Rev. Math. Phys. 1991.03:63-99. Downloaded from www.worldscientific.com
by THE UNIVERSITY OF CHICAGO on 07/29/16. For personal use only.

90 R. COQUEREAUX, A. JADCZYK and D. KASTLER

[A+v)0, (1 +v01=1+W[0,01=0, ij=1..n
(3.22)

[T +v6 =1+ ]] 0 0.

Let 8 = (1 + v)8: we have (cf. footnote s)

i) & v/ . ¢
T i —_ -3 JT s 3.23
g = 1+ AW g+ ae'(e aef> ’ (62

hence, forv=A0'...0* k < n,fori>k,

a k201 k ai
=+ (= 10 0% 24
g =0+ (- 110704 (3.24)

and, for i < k, the caret indicating a missing argument,

d L . . D
= (1 4+ (=10 ... 05— + (—1)1a0t...6... 0% 60—
06 +=D )00'+( ) ( 00’)

d' G
=+ (- )00k —
(—1) pY]

=(1 +(—-1D*0"...6%) ,
1 +(=1) )35 ;

+ (—1)"1/101...9"...9*(2 9:'.?__)
J#i

d . . L
— —(=1)6... 0. 6" o — 3.25
a9’ =1 ,-=;+1 007 (3.25)

(we isolated the term j = i in the summation over j and took account of the fact that
the latter gives vanishing contributions for j < k, j # i). Rewriting (3.24) as

o _29 i>k, (3.24a)

1 — (=108 ...0%)— = —
( ( )k 0)601 aei’

we get for k even, k = 2p,

n 0 n 0 na-2p _ n 0 _ »
. H Tl,=(i n ) ﬁ)(n—w‘...oz )* 2“’—(j=!;[+1 W)(I —(n—2p)6'...0%),
(3.26)

whilst, for kodd, k =2p + 1,
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4 a k 1 2p+1
( I1 W)(n—(—nw...e )

"B i=2p+2
.‘l_[ i , neven, (3.27)
i=2p+2 n a

i=2p+2 00°

In the subsequent termwise multiplication of (3.26), resp. (3.27) by (3.25), where,
successively,i =k, ...,i=k — 1,...,i = 1, the second terms on the right-hand side of
the last line in (3.25) are ineffective, owing to (2.13). This establishes (3.21), resp. (3.20).

Proof of Theorem [3.4]. (i) Let p eI’y and let 6 e ®,,. We have, by [1.4] (iv),

¢ = Ia for someae K*® A, (3.28)

where (e.g., through the change 8* — t(a)™!6?, all other 6 unchanged) we can arrange
that ae 1 + A45,. Our proof then proceeds as follows: starting from (3.8) with such a
couple (6, a), we shall exhibit, successively for g = 1, ..., 2p, other couples (0, a) satisfy-
ing (3.8) with a e 1 + (P EX, E the linear span of {6'}i=1,...,2p. Once g = 2p — 1

j>q
we will have a = 1 from ¢(1) = 0, whence ¢ = L,.
We thus start from (3.28) with 6 € ©,, and

a=ﬂ+ili9imod<@E">, AeCyi=1,...,2k. (3.29)
i= >a
Owing to (2.20) we have
@ =Ia=1I,_,4)1 —10"a (3.30)
with
(1—4,6Ya= ‘ZZ’; 1,6 mod(@ Ef) . (331
i= iz

We removed the monomial 1, 6! without altering the other monomials of first order.
Removing the latter successively in the same fashion effects our step g = 2.

We now proceed by induction with respect to q: we assume that the situation (3.28)
has been obtained with 6 € @)2,, and

hey

a=1+)Y 4,0%mod < > Ef) , (3.32)

k=1 i>q

where the I, are multiindices of length g < 2p, and we show that the same situation
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prevails for g = 1 by successive removal of the monomials 6’ Owing to (3.20), (3.21)
we have, indeed, for u = 4, for p odd, resp. u = (2p — 2q)7*Ay,, for p even,

@ = Iya = Ly_yo(1 — p6")a (3.33)
with
p! .
A—uoa=1+ 3 A, 0% mod( &) E’>. (3.34)
k=2 j>gq+1

We removed the monomial 6':: doing the same successively for the I,, k =2, ..., p!
will achieve our recurrence step.

(ii) Consider the previous situation for ¢ = I;: we have (2.28) with a€ %°. The
previous reasoning will allow one to successively remove the (even) monomials of
a (now without having to assume n even, since we need only (3.21)). This procedure
yields a decomposition of the change of frame 6 — 8 in a succession of changes of the

type

60— 0(1 + A0*...6%7), ieK. (3.35)

Now owing to the property (cf. footnote s)

nk Ok i
@Je_ff’_, 0,0e6,, (3.36)
o9 06" 96* "

combined with multiplicativity of the determinant, it suffices to check (2.18) for changes
of frame of the type (2.35), or, in view of (2.21), to show that

i+ A0t 6%
Det[ae( + a‘;* 0 )]=11 +(n—2p)i0'...6%. (3.37)
Now we have
5, i<2p
0°(8 + 46" ...0%) d 81 + 401 ...6), W<k

Si1 + A61...0%7) + (—100t...0%...0°", k<2p<i,
(3.38)

showing that the Jacobian matrix is triangular, hence its determinant equals the
product of its diagonal elements, yielding (3.37).
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4. Non-Commutative Geometry of Grassmann Algebras

4.1. Hochschild cochains as multilinear forms

Let A be an associative Z/2-graded algebra. A Hochschild” cochain ® of degree n is
defined as a multilinear form ® (ay,4a4,...,a,) of order n + 1 on A. The space of
Hochschild cochains of degree n will be denoted ™.

4.2. The Hochschild coboundary operator and Hochschild cohomology
The Hochschild coboundary b : " — "*! is defined as

[b®@](ao, .- 8n Aprt) = Z‘b (— 1Y ®(ag, ..., 841, ., 8pe1)
i~

da, ¥ @
_(_ 1)n+1(_ 1) i=0

a;
®(a, . a0,4a,,---,a,),

where da; denotes the intrinsic grade (0 or 1) of the element a;. It is not difficult to show
that b> = 0. Defining Z" = {®/® € ¢" and b® = 0} and B" = [®/® € ¥" and y € €"*!
s.t. @ = by}, the Hochschild cohomology groups are*: H" = Z"/B".

4.3. Cyclicity operator and cyclic cohomology
The cyclicity operator 1 : " — €" is defined as

iaa

0a,, i
[A®](ay,a,,...,a,) = (—1)"(—1) =0 DBy G-y Apy)-

The multilinear form @ is called cyclic whenever A® = .

One shows [5] that if @ is cyclic, so is b®: this yields a subcomplex €* of €* built
out of cyclic cochains. Defining the space of cyclic cocycles as Z = {® € 47 and
b® = 0} and the space of cyclic coboundaries as B} = b(Z}™!), the cyclic cohomology
groups are the H} = Z}/B;.

4.4. The periodicity operator S

Let @ be a cyclic cocycle of order n(® € Z3}), following [5] the periodicity operator
S is defined as follows:

¥ Here we identify Hochschild cochains of degree n with values in the dual of the algebra 4 with multilinear
forms of order n + 1 on A.
? Here and below we describe the Z,-graded Hochschild and cyclic cohomologies.
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1
E‘E [Sq)](am Aiseeesyy an+lsan+2)

n+1
= ®(apa,a,,as,...,a,.+,) + Zz (D@05 -1 8jj11, a2, » Apr2)
=

iz2 L
+ z;) (=1 lﬂq)(ao’--waiai+1sai+2’---’a,;"’j+1’aj+2,---aan+2)]-
i=

S maps cyclic cocycles (resp. coboundaries) of order n into cyclic cocycles (resp.
coboundaries) of order n + 2 and consequently maps Hj into H;*2. The inductive limit
of cyclic cohomology groups under the operator S is called periodic cyclic cohomology
(H;e, = lim S”(Hﬁ)).

p— o

4.5. An example of a Grassmann algebra with two generators

Let %, the algebra generated by 1, g, b with a> = b?> = 0 and ab = —ba. In order to
illustrate the previous definitions, we will explicitly compute the Hochschild co-
homology and the cyclic cohomology of 4 up to degree 2.

p=0 As a vector space, 4 is of dimension 4 (base {1,a,b,ab}), therefore the
space of Hochschild cochains €° is just the dual ¥* of 4 and is generated by the dual
basis {@y, @a Py, P }- If @ € €%, then by € ¢* and the condition be = 0 means that
¢ has to vanish on graded commutators (since [bel(aq,a,)= @(ay,a;)—
(—1)%0%1p(a,a,)). This will be automatically satisfied for any ¢ since all graded
commutators vanish (by definition of 4). Therefore €° = Z°® = ¥*. It is also clear that
all coboundaries are trivial and that the cyclicity condition is trivially satisfied, there-
fore H® = H? = @*.

p=1 As a vector space, the space of Hoschshild cochains is of dimension
4 x 4 = 16. Let us directly compute what the cyclic cocycles are. Cyclicity condition
(pA = @) imposes the following constraints: ¢(1,1) = —¢(1,1), ¢(l,a) = —¢(a, 1),
@(1,b) = —o(b,1), o(l,ab) = —o(ab,1), ¢(a,b) = ¢(b,a), ¢(a,ab) = —o¢(ab,a),
@(ab,ab) = — p(ab,ab). This implies in particular that ¢(1,1) = ¢(ab,ab) = 0. Also
the Hochschild condition (bg = 0) implies ¢(1,ab) = 0 (indeed 0 = [be](1,a,b) =
¢(a,b) — ¢(1,ab) — p(b,a) = —@(l,ab)), also ¢(l,a) =0 (this comes from [bg]
(1,1,a) = 0). In the same way ¢(1,b) = 0. The space of cyclic cocycles is therefore
generated by the five following cocycles: @, 4, @y 5> Pap> Pa.ab> Pb.ap With

(p,,,,,(a, a) =1 and (pa,a(x’ y) =0 if(x’ y) # (a’ a)’
G, b)=1 and  @,(x,y) =0 if(x,y) # (b b),

©,5(a,b) = @ (b, a) = 1 and @.5(x,¥) = 0 in other cases,
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Qaap(@a,ab) =1 = —q, ,(ab,a) and Paas(x,¥) = 0 in other cases,
Opapib,ab) =1 = —q, 4(ab,b)  and ©p.ap(%,¥) = 0 in other cases.

Notice that the space of cyclic cocycles is itself Z,-graded and that ¢, ., @5, @, are
even whereas ¢, ,,, 9, are odd. Since the space of cyclic coboundaries is obviously
trivial, we have

Z}=H.=C*®C.

4.6. Tables of results for H%, (%y) and HZ (%)

For big values of N (the number of Grassman generators) and p, the list of algebraic
constraints imposed by the cyclicity and Hochschild conditions becomes rather large.
(More precisely, one gets: 2¥?*D) 287 conditions.) We will just give a few explicit
results (for N=1,2,3,4and p=0, 1, 2). The cases H}(%,) and H!(%,) have been
analyzed in detail in the previous paragraph. In order to present these results it is useful
to introduce the following notation. Let 8 = {6'},, (1,...,ny denote a frame of %y and
6! denote the corresponding lexicographic base (I is a multiindex running from 0 to
2%). Then we will denote by &; the dual basis of (%)*, i.., £,(8”7) = §] . Moreover, it is
clear that ¥ x %¥ x ... x ¥ (q factors) is spanned by ¢; , 1p, Where ey p 1
(07,672,...,07) = §{; ,’;...5{;.

Using this notation, we see for example that the two odd cocycles generating Z1(%,)
obtained at the end of Sec. 4.5 read respectively ¢, ., = &1,12 — €12, and @, 4, =

.....

€2,12 — €12,2-
Using this notation, we obtain the following results. Here (o, ;) denotes the dual

basis of (1, ), and we list a set of generators for Z¥(%y):

N=1
p=0 £o even
& odd
p=1 &1 even
p=2 £0,0.0 even

€0,0,1 + €0,1,0 + £1,0,0 odd

We already mentioned the fact that Z2(%,) is itself Z,-graded,; it is therefore natural
to write Zf = (ZF)* @ (Z%)". The parity (even, odd) was indicated in the above table.
It is easy to show that the above cyclic cocycles are not cyclic coboundaries and,
therefore, each one defines a non-trivial cyclic cohomology class. When a cyclic cocycle
happens to be also a cyclic coboundary (as it happens in the case N = 2, p = 2 below),
it is explicitly written:
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N =2  (Here, % is generated by {1,0',6%,0'6?}).

Generators of Z?

p=0 & even
gy odd
ZO = HO — CZ CZ
&, odd A 4 ®
€12 even
p=1 €11 even
€32 even
€12+ €21 even Z}=H!=C¥@C?
€1,12 — €121 odd
€,12 7 €122 odd
p=2 €0.0.0 = (2in)"1S(gp) even

€0,0,1 + €0,1,0 + €0,01 = bleo,1 — €1,0) = (im)7'S(ey) odd
€0,0.2 t €020 + €200 =blo2 —20) = Qim)7'S(e;) odd
€9,0,12 * €0,12,0 + €12,0,0= b(eo,lz — E13,0) = (21'”)_15(512) even

8112t €121+ 821 odd
€2,1 T €212+ &122 odd
811,12 T 812,11 — 1,121 even
£32,12 t €12,2,2 — €2,12,2 even
€111 odd
€2,2,2 odd
812,12 F 812,12 T €2,1,12 F €12,2,1 — 1,12.2 — 82,121 even

Z:=C*®C°® but B2=CHC? sothat H?=C*®C*.

Notice that ZJ can be identified with the dual of ¥ (this is true for any number of
generators) and that the hierarchy associated with each linear form of ¥ using the
periodicity operator S is essentially trivial at the cohomological level: the only non-
trivial hierarchy is obtained by using the action of S on the unit 1 of 4, and this shows
that the even cyclic cohomology of ¢ contains the cyclic cohomology of algebras of
complex numbers.

N=3 % is generated by {1, 6,62, 6% 0'6%,6%6%,60'6°,0'60°6°}. Here again Z) =
H) can be identified with %¥, so that dim Z? =23 =8 and is generated by
{eo = 1*,€1,€5,83,€12,23,E13, 6123 }- We will only give the generators of Z} . The space
of even cocycles is of dimension 9 and generated by

€1,1, 62,2, 83,3, €12 + 831,823+ €32, €31 + &1 3,
1,123 + €123,1 = €12,13 + €13,12,
€3,123 T €123,2 — €12,23 + €23,12>

€3,123 + €123,3 + €13,23 — £23,13 -
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The space of odd cocycles is of dimension 8 and is generated by
€1,12 7 €121
€113 + &13,1
€2,23 — €23,2
€2,12 7 €122
€313 + €133
€3,23 — €233
and by two other independent generators ¥ which have to be chosen in such a way that
W(6',6%6%) + ¥(0'6% 0%) — W(6'63,6%) = 0.

One can choose W =g, ;3 + Pey53 + Y63, With —a+f—y=0, for in-
stance (a, 8,7) = (1,2, 1) and (1, 1, 0), but there is no “privileged” choice. For N = 3 and
p = 1, one therefore finds Z} = H} = C° @ C&.

4.7. Cyclic cohomology of Grassmann algebras (General results)

The techniques illustrated in the previous paragraph allow one to compute explicitly
a set of generators for the cyclic cohomology of the Grassman algebra AC". However,
if we are not interested in obtaining such a set of generators, there is another method
studied in [6] which uses the known result for Z,-graded cyclic cohomology of AC
along with a Kiinneth formula. Before stating the general result, let us note that, if
V =Y V,is a Z-graded and Z,-graded vector space (V, = ¥V, @ V¥,”), one introduces
a Z,-graded Poincaré polynomial P(V)(t) = Y, [(dim V,*) + 6(dim ¥, )]¢", where 8 is

the generator of Z,. The complex Hf being Z,-graded, one finds, for the cyclic
cohomology of AC", that

HYAC)=H} ()@ V™,

where H¥(C) denotes the cyclic cohomology of the algebra of complex numbers (which
is periodic modulo 2) and where V* is a Z,-graded complex, whose Poincaré poly-
nomial is

PO =[27'1+ 8- -yV[A+11 -]
For instance, in the particular case of AC? we get

PV =1 +20)+(3+20)t+ (3 +40)* +(5+80)> +...
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and therefore
H}ACH)=C@CHC?,
H}(AC?) =C?*H C?,
HXACH)=C@C* & CH,
H}(ACYH) =C3@C8.
These results agree with our previous explicit calculations.
In the particular case of cyclic cocycles of degree one on %,, it is possible to express
a set of generators in terms of Berezin integration and graded derivations on the
algebra. For instance, in the case N = 2, setting
X =X,+ X,0"+ X,6% + X,0'6%,
Y=Y, + Y0+ Y,0% + Y,,0'0%,

one can write the cyclic cocycle ¢, , + ¢, 4,

12+ e)X,Y)=X,Y,+ X, ¥,

as
(61,2 + £2,1)(X, Y) = I(XDY),
where
0 d
_ g 9 2 O
D=-6 a01+(9 55

This property was noticed and used in [7] but has not been generalized yet to cyclic
cocycles of degrees higher than one.

As already mentioned in the introduction, we only touched here the problem of
non-commutative geometry (in the spirit of [5]) for graded commutative algebras.
Much more should be done: relations between cyclic cohomology and graded deriva-
tions of ¥,, relation between Hochschild cocycles and supersymmetric “De Rham
currents” on ¥%,, non-commutative connections on modules over ¥%,, generalization of
the above to more general examples of graded commutative algebras in relation with
the geometry of “supermanifolds”, etc. We shall return to this in a later publication.
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