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Weakly Projective Representations,
Quaternions, and Monopoles

G.G. Emch * and A.Z. Jadczyk *1

ABSTRACT. It is shown that the quaternionic Hilbert space formulation of
quantum mechanics allows a quantization, based on a generalized system of
imprimitivity, that leads to a less singular description of the motion of a quan-
tum particle in the field of a magnetic monopole. The corresponding Hamilton
operator is linked to the theory of projective representations in the weakened
form proposed by Adler.
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1. INTRODUCTION

In the present paper several ideas are brought together. While symmetries are
one of the most powerful tools in theoretical physics, there are few, if any, exact
symmetries in Nature. Hans Ekstein [1] addressed this problem by introducing the
concept of “presymmetry”— a pre-dynamical symmetry, that is being broken by
dynamics and yet is evidenced in the algebra structure. Adler [2] introduced the
concept of a “weak projective representation "(WPR) and analyzed it within the
framework of quaternionic quantum mechanics (see also [3, 4] for the epistemologi-
cal controversy which arose around this concept). In a recent note Adler and Emch
[5] revisited the basic concepts of strong and weak projective representations from
the point of view of Wigner’s theorem [6] and the axiomatic formulation of quater-
nionic quantum mechanics extensively analyzed in [7]. Almost concommitantly,
following the original ideas of Ekstein [1], the concept of a generalized imprimi-
tivity system (GIS) was introduced. Specifically, in [8] the Stone — von Neumann
theorem was enhanced so as to apply also to GIS’s, and in [9], as an illustration, a
GIS corresponding to a charged quantum particle in the field of Dirac’s magnetic
monopole was explicitly constructed.

To weave these threads together, we note that the generalized systems of im-
primitivity involve operator-valued multipliers as do the weakly projective repre-
sentations; we show that WPR’s indeed arise naturally from GIS’s and that they
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correspond to symmetries that are only partially broken, with a remaining presym-
metry (in the sense of Ekstein) holding only for an Abelian subalgebra of the algebra
of all observables. Our discussion of these concepts and their relations is supported
by a specific model: the quantum evolution of a charged particle in the field of a
magnetic monopole. The half-spin properties [10] - by the very nature of the Clif-
ford algebra [11] of (E%; —1, -1, —1) — naturally involve the structure of the field H
of the real quaternions [11]; see also [12] and references in both of these texts. This
was part of our motivation for treating the problem here in terms of quaternionic
Hilbert spaces.

In order not to distract from the main purposes of the paper, we collect in an
Appendix some of the basic mathematical facts and notation pertaining to quater-
nionic quantum mechanics.

2. THE MOTIVATING MODEL

Our model describes quantum kinematics and dynamics of a charged particle
in the field of a magnetic monopole. The model is realized in a space of square
integrable sections of a Hermitian quaternionic line bundle over R*\ {0}. The basic
properties and notations relative to the field of quaternions H and the quaternionic
Hilbert space Hy = L2(R?, d®z; H) are reviewed in the Appendix. From a measure-
theoretical point of view the Hilbert spaces £2(R®, d*z; H) and L£2(R3\ {0}, d3x; H)
are naturally isomorphic and we will not make any distinction between them un-
til section 4, where the differential geometric aspects of the construction will be
discussed.

The position operators are defined, as usual, by [X; ¥)(z) = i ¥(x); we denote
by {E(A)|A C R3} their spectral family (see Appendix). Our model is spherically
symmetric, with the rotation generators M; given by M; = €570k — %éi , where
€i;k is the totally antisymmetric tensor with €;;; = 1 for ij k any cyclic permutation
of the indices 123 — so that, e.g. €;ka;bx = (a ¥ b); — e1,ez,e3 are the three
standard quaternion imaginary units, and é; is defined in (A.10).

For every 0 # x € R® let j(x) be the imaginary unit quaternion

e-x

2.1 j(x) = ——

1) ]

The linear operator J = 7, defined by:

(22) (JY)(x) = j(x)(x)

is unitary and anti-hermitian, ie.: J*J = I = JJ* and J* = —J; and thus

J2? = —I . Moreover J is invariant under rotations and commutes with the position
operators. :

For every direction u € §? = {u € R* | ||uf| = 1}, the anti-hermitian operator
le [uxx
(2.3) Vea=u0+ 5z —-m5—

: 2 |xI?

generates a one-parameter unitary group {Uu(s) | s € R} which satisfies, for all
s € R and all Borel subsets A C R® :

(2.4) Uu(s) E(A)Uy(—s) = E(A — su);
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or, infinitesimally:

(25) [Vi, LC]'] = (51']'
Thus V, generates translations in the direction u of the position variables. More-
over, we have [M;, V;] = —¢;;5 Vi , so that V transforms as a vector under rotations.

The unitary evolution defined by
3
_ _ 1 oo 2 _ 32
(2.6) U(t) = exp(—JHt) where H = Im V< and V*= ;(Vl)

gives the evolution equations for the position operator X , namely :

~ 1

(2.7) Xi=——JV;
m
and
.. 1 . .

(2.8) X; = %Gijk(Xj Bk+B]' Xk)
with
(29) Bal(x) = 3 o w(x)

' ' 2 x| ’ ,
which correspond to the motion of a charged particle in the field of a magnetic
monopole. ‘

The translation generators do not commute:
1 z*

1 X == € ——
(2 0) [V“ V]] 263kl|x”3

which will be seen to imply that the unitary operators {U(a) | a € R3} defined by
U(su) = Uy(s) for all s € R and u € S?, i.e. for all su € R?, are only a WPR of
the translation group in the sense of Adler.

Note also, for future usage, that the following “splitting”relations are satisfied:

(2.11) 0=[X;,J]=[Vu,J] = [H,J].

3. DETAILS OF THE CONSTRUCTION
The canonical quantization is given by the system of imprimitivity where

(3.1) V(a)E(A)V(-a) = E(A—a) with [V(a)y](x) =y(x—-a) ,

where {V'(a) | a € R} is a continuous unitary representation with generators 0; .
These generators correspond to covariant derivatives of the flat connection. In the
presence of an external magnetic field: a vector potential enters into the connec-
tion form; covariant derivatives cease to commute; parallel transport becomes path
dependent; translational symmetry is partially broken; and an operator-valued
multiplier corresponding to an integral curvature enters into the group composition
formula. One of the principal aims of the present paper is to draw attention to the
clarifying role played by the quaternions; we skip therefore any further heuristic
motivation of the construction.
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We define, for every a € R® and for all x € R® not colinear with a :

2 2
(3.2) w(a;X)=i( b rax o ay l’f”_‘ﬂ_)

V2 [1xlllx + all Il ix + al
and let W (a) denote — see (A.11) — the bounded linear operator 1 (a; ), that is:
(3.3) (W(a)y)(x) = w(a;x)P(x) ae

SchHoLiuMm 3.1.
1.
w(a;x)w(a;x)* =1 a.e.,
and thus W(a) are unitary operators. They commute with the position ob-
servables.
2. w(a;x) satisfy the cocycle relations
w(ta,x + sa) w(sa, x) w(sa,x) = w((s + t)a,x), a.e..

3. With U(a) defined for every a € R?® by U(a) = V(a)W(a), and with Uu(s)
defined for each u € S? and s € R by Uy(s) = U(su), {Uu(s)|s € R} is a
continuous unitary group representation of R whereas {U(a)la € R3} will
only be a weak projective representation - see below.

4. For every direction u, the infinitesimal generator of Uy(t) is the operator
Vu defined in (2.3).

5. U(a) satisfy the imprimitivity relations (2.4); and thus, for all a,b € R3 :
U(a)U(b) =U(a+b)M(a,b)

with
(M(a, b)) (x) = m(a, b; x)¥(x)
and
m(a, b;x) = w(a+ b;x)*w(a;x + b)w(b;x) € H.
REMARKS.

a: M(a,b) commutes with E(A) for all Borel subsets A C R3.
b: In Adler’s notation (1]

M(a,b) :/dsx |x > m(a,b;x) < x|

c: With ®(a, b;x) denoting the fluz of the monopole magnetic field through the
flat triangular surface spanned by the vertices (x,x+a,x+a+b) :

m(a,b;x) = exp(J®(a, b;x)) .

d: The cocycle formula for M(a,b) expressing the associativity of the oper-
ator product (U(a)U(b))U(c) = U(a)(U(b)U(c)) can be interpreted here
as stating that the flux through the closed tetrahedron spanned by the edges
(x,x +a,x+a+b,x+a+b+c) is an integer multiple of 2 which s
indeed satisfied by the magnetic field of the monopole - see (2.9).
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4. DISCUSSION

The magnetic monopole model presented here in a quaternionic Hilbert space
Hu, admits a commuting antiunitary involution J and thus can be reduced to
a complez Hilbert space model in H,. The phenomenon of a "weak projective
representation”, in the sense implied by Adler, here for the translation group, shows
up in both the quaternionic space and in the complex reduction. This is because the
"twisted translations” U(a) commute with J. A differential geometric interpretation
of the construction is helpful in order to understand at a deeper level what is
really going on here. The Hilbert space Hy = L%(R®, d%z;H) can be considered
as a Hilbert space of square integrable sections of a trivial Hermitian complex
line bundle F' over R*\{0}. Removing the origin results in no measure-theoretical
consequences; this removal however does have differential geometric sequels. Our
operators Vy, define a Hermitian connection in F. The curvature two—form 2, with
values in the Lie algebra su(2), is given by the formula

1 zkzm .
(4.1) Q= —ieijkw dz* Ada .

The fact that the operator J defined by (2.1-2.2) commutes with V,, can be
interpreted as stating that the map x — j(x) is a parallel section of the bundle
of quaternionic right-linear endomorphisms of F. The formula (A.12) defining H,,
describes, de facto, a construction of a Hermitian complex subbundle E, of F
which reduces the connection V. The complex Hilbert space H,, consists of square—
integrable sections of the bundle F,,. Because J is invariant under rotation, it follows
that the rotation group acts covariantly on F,, and unitarily on H,, and is a two-
valued representation of SO(3) corresponding to spin one-half. At first sight, it
appeared somewhat surprising to have spin one-half in a Hilbert space of complex,
one-component, functions; [10]. To tame this peculiarity, note that the bundle F,,
is non—trivial; [11], [12] and the original literature cited there. This bundle admits
no continuous, nowhere zero, sections — it carries a spin one-half ”kink”. To see
that the bundle is nontrivial we compute the simplest topological invariant, that
is its first Chern class. In our case it is the integral of the curvature two—form &,
with now:

1 x* : :
(4.2) K== €ijk Wdz’ Adz?
over the sphere S? - the result is 27 which proves that the bundle is non-trivial.

While V,, (and thus H) have a simple explicit form, as globally defined differ-
ential operators on a dense domain of differentiable functions in the quaternionic
Hu , which is built out of sections of a trivial vector bundle over R? \ {0} - their
restriction to the complex H,, cannot be so written; this is due to the fact that M.,
is defined in terms of sections of a non-trivial subbundle over R®\ {0} . If we were
to force an explicit expression for the covariant derivative in the reduced bundle,
a string-like singularity would have to appear — a one-point singularity on each
sphere of the constant radius 0 < r € R.

Hence there is, in this model, a definite advantage to working with the quater-
nionic Hilbert space Hy. To bring this special mathematical feature to light was the
first purpose of this paper.
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Working with singularity—free formulation does not depend by itself on the
quaternionic structure — we could use as well a C?—bundle; nevertheless, the full
gauge freedom of the theory is manifest only from within a quaternionic perspective.

Let us, finally, comment upon the relations between the present work and the
GIS (generalized system of imprimitivity) studied in [8, 9]. To define a GIS we
need an action of a group G on a space X . In the most regular case, G is a Lie
group acting differentiably on a manifold X. A GIS is then defined by the relations:

(4.3) U(g)E(A)U(g9)" = E(Ag)

(4.4) U(a)U(h) = U(gh)M(g, )

(4.5) M(g,h) = / dE(z) m(g, hiz) |
X

where g :— U(g) is a continuous map from G into unitary operators acting on
the Hilbert space H, and m(g, h;z) commute with the spectral measure. In the
example discussed in the present paper X is the three-dimensional Euclidean space
E?, G is its translation group, and m(g, h; ) are quaternion—valued. It is seen
that a GIS always gives rise to a WPR in the sense of Adler. It is however to
be remarked that the very concept of a GIS (and also of WPR) is not bound to
the field over which the Hilbert space is constructed: The concept applies to real,
complex or quaternionic Hilbert spaces as well.

The idea of a ”"presymmetry” — that is of a symmetry group which is partially
broken by the dynamics, but yet still corresponds to a full symmetry group on
an Abelian subalgebra — is quite naturally supported by the GIS framework; in
contrast, the a priori mathematically more general concept of WPR leaves open
the choice of the sub—algebra necessary to the physical interpretation of the group
of (pre-)symmetries. The formulation in terms of GIS seems therefore to help
resolve physically the unresolved choice latent in the WPR formulation. Drawing
attention to this physical interpretation was the second aim of this paper.

A. Appendix: Quaternionic notations

The field H of the (real) quaternions is obtained upon equiping the 4-di-
mensional real vector space

3
(A1) H={g=Y g, |a* € R}

p=0
with the non—commutative multiplication it inherits from
(A.2) eqg=qe, VqgeH;ee; =—bije0+e56er, t,7,k=1,23.

H is equiped with the involution

3 3
(A.3) q= Z ate, — ¢* = Z a*e;, with e, =e, and e =—e;
p u
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Note that SU(2,C) is isomorphic to {g € H | ¢*q = ep }, with the isomorphism
given by the identification

(10 (0 =i (0 -1 (=i 0
=0 1) 7\ o) 21 o) =\ o i
l.e.

(A.4) eo =1 and ex = —ioy
where the oy are the three Pauli matrices. For any such quaternion, the map
(A.5) o, g€EH— w'quweH

is an automorphism of H, and it is essential that every automorphism of H can in
fact be implemented in this manner. In particular, if w is an imaginary unit, i.e.

(A.6) W= —w and Ww'w=e,,
then
(A7) aylgl=q iff geC,={ue,+vw]|uveR}

Note that C,, inherits from H, the structure of the field C of the complex numbers.

We will henceforth use the notations 1 = e,, and e = (e, ez,e3), and for
zeR, z.e= Z?=1 z'e; . Note that ¢*q = ||¢||® defines the quaternion norm, and
that (z-e)*(z - e) = ||z = 3}, (z7)?. |

i=1

The Hilbert space Hy = £L*(R?, d®z; H) is the space of “functions” v : R3 — H,
square—integrable with respect to Lebesgue measure d®z . Its vector space structure
is defined with multiplication by scalars written from the right:

(A.8) [Yal(z) = ¥(z) q,

and the scalar product is given by:

(A9) () = / &z p(z)" Y(z)
R3

It is linear in its second factor, and skew adjoint; hence (¢q1,v%q2) = ¢} (¢,%) g2

The linear operators A : Hy — Hy are denoted with left action, so that
A(Yq) = (A¢)q = Ayyq. The adjoint is defined, as usual, by (p, A*)) = (A, )
YV, e Hy.

Let E' be the spectral family [E(A)y](z) = ¥(z)xa(x) where A runs over all
Borel subsets of R?, and x4 is the indicator function of A .

We denote by é; the linear anti-hermitian on Hy defined by left quaternion
multiplication

(A.10) (&)v(z) = eith(x) .

More generally, for each bounded measurable function f : R® — H let f denote
the bounded linear operator on Hy defined by

(A.11) (fo)(@) = fz)v(z) ae.

The (real) commutant of E consists then exactly of the operators of the form f.
For any unitary and anti-hermitian operator J and any fixed imaginary unit
w, let

(A.12) Ho={veHu|Jy=9uw}
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Note that H,, inherits from Hj the structure of a complex Hilbert space over the
copy C,, —see (A.7) — of the field of complex numbers. Specifically, ¢, v € H,., and
z € C, imply ¢+ € Ho, (p,¥) € C,, and ¢z € H,, . Furthermore, for every

¥ € My, and every imaginary unit @ such that ¥w = —w @, there exists a unique
pair
(A.13) Y1, € H, suchthat ¢ =91 +1v2@
specifically
1 1 -
(A.14) ¢1=§(¢—J¢w) and 1/12=—§(¢+J’¢w)w

Note that as vectors in Hp, ¥ and v, are mutually orthogonal. Therefore the
“gplitting” (or “dimension—doubling”)

(A.15) b € Hyg (wl

%) € H, D Hy

is a bijective isometry.
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