
CERN-TH.4332/85 
November 1985 

ON THE EFFECTIVE GAUGE GROUP FROM G/H 

SPONTANEOUS COMPACTIFICATION 

A. Jadczyk*) 

CERN - Geneva 

ABSTRACT 

We discuss two schemes of dimensional 

reduction: a G-invariant and a non-G

invariant one. The first gives rise 

to a consistent' truncation with 

N(H)/H gauge bosons, while the second 

leads to the effective gauge group 

Geffl~C N(H)/H Aut G. 

*)Permanent address: lnst. Theor. 
Phys., University of Wroclaw, 
Cybulski ego 36, 50-205 Wroclaw, 
Poland. 

Lectures given at the 

First Torino Meeting on 

Superunification and Extra Dimensions 

September 22-28, 1985 

CERN-TH.4332/85 



- I -

1. Introduction 

The idea of spontaneous compactification is both simple and attrac

tive. One starts here with a field theory in d=m+s dimensions. Let {F} de

note the set of primitive fields of the theory. Usually {F} contains a metric 

tensor or vielbein field, but there are known interesting models in 

which these fields are composite. After contemplating the Lagrangian and 

field equations for {F}, and after convincing oneself that the' set {F} is 

reasonably complete (in particular one has to take care of the anomalies), 

one looks for a "compactifying ground-state solution" {F }.{F lis expected 
o 0 

to be a highly symmetric solution of the field equations and it should be 

stable in an appropriate sense. The symmetry of {F } need not (and in many 
o 

cases will not) be the highest possible one - provided that the stability of 

{F } is assured. If {F } gives rise to a splitting of the m+s dimensional 
o 0 

world - we shall denote it by E - into a product E=MxS of m and s dimen-

sions, with S compact, then one says that a spontaneous compactification is 

taking place. Such a phenomenon may, for instance, easily occur in theories 

containing in their "menu" antisymmetric tensor fields which acquire non-zero 

vacuum expectation values. For example, if FAB •.. C is such a field, and if 

dF=O, then one has a natural definition of the internal directions XA as 

those satisfying x~AB ... C=O. The details of the mechanism of spontaneous 

compactification may, however, be model-dependent to a great extent. There

fore if we want to draw some model-independent conclusions, the natural thing 

to look at is the symmetry group of the ground state. We shall assume that 

this group splits in a natural way into a product GE=GMxG S of "spacetime" 

symmetry group GM and "internal" symmetry group GS' Several comments are to 

be made at this point. First, we have taken "spacetime" into the quotation 

marks. Reason for this is the following: one should not be prejudiced and 

think that a spontaneous compactification occurs necessarily in one step. 

To the contrary, a realistic scenario may proceed in several steps. For ins-

tance, if we think of pure Einstein gravity as the primitive field, then 

the first compactification will produce (via the Kaluza-Klein mechanism) 

Yang-Mills fields, while the second compactification may occur around a non

trivial Einstein-Yang-Mills background to produce chiral fermions and spon

taneous symmetry breaking via the Higgs potential resulting from the Yang

Mills part of the effective "after-first-step" Lagrangian. One can also 

think of three or more consecutive steps(M. Duff [1] considers a possibili

ty of such a more-than-one-step scenario for the field theory limit of 

strings). What is important to notice here is that each step taken separate-
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ly can satisfy the aRpropriate criterium of stability without the final re

sult being a stable compactificati6n. 

Next remark concerns the group GS' It is convenient to assume that GS is 

a compact Lie group. On the other hand some non-compact groups may we1l oc-

cur here. There is no reason for GS to be simple either Therefore, 

when. in the following we shall consider mainly the case of GS compact and/or 

simple, it will be only for the sake of convenience. Since in the fo1lowing 

GM will not be discussed we shall denote GS simply by G. And when we will 

talk of G being the "isometry group of the vacuum", what we will rea1ly mean 

is that "G is some natural part of the symmetry group of {F } 11 
o 

Another remark: we say lIisometry group", but what if {F } has no isometries 
o 

at all ?What if S - the internal space and/or M - the spacetime, is a compli-

cated manifold which is not a homogeneous space and which.has no Killing 

vectors? The answer to this question is not a straightforward one. First 

remark is that, as we will see, there are interesting manifolds which are not 

homogeneous spaces but which are "born out" of homogeneous spaces - they are 

"Kaluza-Klein projections" of homogeneous spaces. These manifolds are the 

double cosets (or parts of double cosets). They carry a finite - parameter 

family of natural metrics inherited from their homogeneous parents, although 

they need not to have Killing vectors. (It is also remarkable that, appa

rently, some of these double-coset manifolds may carry naturally exotic dif

ferentiable structures). Therefore, even if S has no isometries, it may hap

pen that there is a still higher dimensional theory, in some E containing E, 

in which the usual Kaluza-Klein mechanism involving isometries works, and 

such that E is obtained by a projection from E. We will discuss some of the 

relevant geometrical constructions later on. 

Second remark is that if S has no group acting on it, and if there is no way 

of using some trick (like that of embedding E into E where some G can act), 

then it becomes really a problem. And this because after spontaneous compac

tification it is necessary to perform "truncation" and "dimensional reduc

tionll, and the only known way of doing that seems to be via "harmonic expan

sion". But there is no harmonic expansion if. there is no group action! This 

brings us to the next important concepts: harmonic expansion, truncation and 

dimensional reduction. 

Suppose {F } is given, is stable, and the d=rn+s dimensional world 
o 

splits into MxS. Let also G be the isometry group of {F } ,with S acting 
o 

transitively on S. The next thing to do is to analyse the fluctuations F +oF o 
around F • However, most of these fluctuations will completely destroy 

o 
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the product structure MxS - they will hopelessly mix the "internal" with the 

"external". If we want to have an effective description of phenomena from 

the point of view of the m-dimensional base manifold M, then we have to use: 

harmonic expansion, dimensional reduction and. eventually, some or other 

truncation. The first step - harmonic expansion- has as its aim to select 

a basis in the space of all fluctuations of, a basis of such that every of 
n 

can be expre·ssed as a series of= c of , and every of can be interpreted as n n n 
a finite-component field on M. The number of components of of will, in gene-

n 
ral, increase with n and will be related to the consecutive dimensions of 

irreducible representations of G. If this process of harmonic expansion is 

induced by geometry, then there is a good chance that it will not destroy 

the gauge invariance of the theory. Such a geometrical scheme of harmonic 

expansion has been proposed in Ref. [2]. 

The next step, if possible, consists of truncation of the infinite tower 

of fields so as to get a theory on M with only a finite number of fields. 

Here one may wish.to truncate the theory in such a way that masses of the 

Planck order do not appear in the effective m-dimensional theory and the 

truncated theory deals with the massless modes done. The important point 

which should be observed here is that neither the procedure of harmonic 

expansion nor that of truncation is,in generaZ, unique. This fact is neither 

"good" nor "bad" - it is a reality one has to live with. A simple recipe for 

truncation can be given: let G be a subgroup of the isometry group of S, 

and suppose G is transitive on S. Then consider only those of's which are 

G-invariant - this defines a truncation scheme. We get an effective theory 

on M with only finite number of fields and no Planck masses in the effective 

mass spectrum. A source of non-uniqueness is clearly seen: there may be more 

than one choice of G, and the smaller G is, the richer is the spectrum of 

the effective m-dimensional theory. A well known example comes from 11-di~ 

mensional supergravil:y compactified on S=8 7 - the.seven-sphere. If we take 

for G the group SO(8) then the SO(B)-invariant ansatz gives no gauge fieZds 

at aU. On the other hand the group U(2; 1H) is a subgroup of SO(8) which is 

also transitive on s7, and the U(2; 1H )-invariant· ansatz produces gauge bo

sons of SU(2). Of course, this second ansatz is more natural for the "squashed" 

ground state rather than the "round" one; nevertheless there are no 

good reasons why it should not be applied in the latter case too. Here it is 

important to stress that the G-invariant ansatz is, as a rule, consistent. 

Before discussing briefly this problem. of the consistency let us first 

try to make more precise what is meant by the term "ansatz". Once a stable 
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ground state solution {F} of the classical field equation in m+s dimen
o 

sions has been selected, and once 'a spontaneous compactif:Lcatim E +MxS indu-

ced by {F } has taken place, then we, have still to decide 'on the form of 
o 

the fluctuations 8F-s which will define the effective quantum theory in m 

dimensions. Usually one selects some finite set of fields {f.} on M and con
~ 

siders of's as built out of the 8f.-s. In the following we will not split F 
'~ 

into f and of but, instead, we will describe how are the field configu-a 
rations F in E built out of the field configurations f in M. This is cal-

led "ansatz", and one should not confuse this "ansatz" with a method of fin

ding topologically interesting solutions of the field equations. Here we are 

not that much interested in soZutions but rather in restricting the space of 

fieZd configurations (which defines a domain of the functional integral). 

For instance, what we call "G-invariant ansatz" is defined as follows: as

suming G is a symmetry group of the ground state {F } , we consider only 
a 

these field configurations {F} in E which are G-invariant (~-singlets). One 

then finds that every such F can be expressed in terms of a certain number 

of fields f on M. Solving out these constraints of G-invariance in terms of 

f's gives then the explicit form of the ansatz. Now, consider the problem of 

a "consistency" of a given ansatz. Suppose that we have given an explicit 

expression for F[f], where {f} are fields on M. It is then an easy matter 

to put F[~] into the action AE=JMxSL[F[f]] , to integrate it over S, and to 

obtain in this wayan "effective action". AM for the fields {f} on M. How

ever, there is no guarantee whatsoever that the field theory on M obtained in 

this way will be consistent with the original one. The requirement of con

sistenay is similar to that of stabiZity. A truncation obtained by an ansatz 

F[f] is called aonsistent if the extrema {fo} of the effective action ~ de

termine extrema F[f ] of the original action. Or, even simpler, if every so-
o 

lution of the reduced theory is a solution of the original one (see [3-4]). 

There are many ansatze which are inconsistent. The G-invariant ansatz, which 

will be discussed in more details later, can be shown to be consistent [3,5]. 

On the other hand the most popular non-G-invariant ansatz inVOlving Killing 

vectors is, in general, inconsistent. However, it is to be noticed that an 

ansatz which is inconsistent with one set of fields may well become consis

tent with another. This situation apparently happens with the "Killing-vec

tors-ansatz" used in 11 dimensional supergravity (see the discussion in [3]). 
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2. The G-invariant ansatz 

We will now discuss the geometrical "milieu" of the G-invariant an

satz. The fact that we will strictly adhere to the pure geometrical aspects 

will make much of the discussion model-independent. The drawback of using 

geometrical methods in the particular case which interests us,but as well 

in any other case, is that the results depend on satisfying the assumptions, 

and the assumptions may happen to be too restrictive to accomodate some in

teresting models. After discussing the G-invariant scheme we will later on 

weaken our assumptions. But it must be understood that even these weaker as

sumptions are arbitrarily imposed - they seem to constitute a natural 

description of today'smodels, but tomorrow ..• But even if this is going 

to happen the "tool" of the G-invariant scheme will remain to be useful. 

Observe that transformation properties and dynamics of gauge fields 

are most naturally expressed in geometrical terms when gauge fields are 

represented by connections on principal fibre bundles. Therefore if in a the

ory of a Kaluza-Klein type one believes that the dimensional reduction scheme 

.leads to gauge fields with a certain gauge group G, then the natural ques

tion to ask is: "where is the principal bundle on which the gauge field is 

supposed to live?". Answering this question is not a problem if one starts 

with assuming that the universe is a principal bundle to begin with •.. How

ever such a position seems to be not quite what one wants; and indeed there 

exists a more natural and more general framework. This is the framework of 

G-invariant dimensional reduction. This framework is conceptually simple and 

it has a nice geometrical interpretation. It is well adopted for harmonic 

expansion and for reduction of all kinds of geometrical objects and matter 

fields. Last but not least, it lead.s as a rule to a consistent truncation of 

massive modes. The method has many advantages but, at the same time, it is 

certainly. not the key to all the enigmas of the Universe. It should be consi

dered rather as a powerful and convenient mathematical tool, which it is 

good to have at hand when it is needed. After describing first this tool of 

G-invariant dimensional reduction, we will next consider a more general set

ting,covering it, and we will see how this universal ,tool can be applied to pro

duce another scheme of dimensional reduction which is more subtle than the 

G-invariant one. 

Let us begin with the following remark: our tool will work and will 

do its job whenever there is a group acting on some manifold. It need not be 

in the context of dimensional reduction, for instance one can look for solu-
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tions of some field equations having certain symmetry, or one can think of 

the infinite dimensional group of (x-dependent) gauge transformations or 

diffeomerphisms acting on an infinite dimensional manifold· of field confi

gurations. •. It is therefore for convenience' and in order to have some conc

rete picture in mind that, while describing this tool, we will use a termi

nology which is adapted to the problems of dimensional reduction in Kaluza

Klein theories. 

Let therefore G be a group acting on a manifold E. To make things 

regular and easy we will assume that G is a compact Lie group which acts 

smoothly from the right on ad-dimensional smooth manifold E. Given yEE we 

denote by G . the stabilizer of y. The manifold E decomposes now into several y . 
strata according to the type of the stabilizer. We choose one of these strata 

and call it E in the following. All the stabilizers G , yEE are now conjuga-
y 

ted to a standard one, say H. We now define M to be the space of orbits: 

M=E/G, so that locally E=Mx(H'G) (we write H'C and not G/H since we have 

chosen right action of G). Thinking of some dynamical theory with gauge 

fields as an output it is now natural to ask: "what principal fibre bundle 

over M can be seen in the structure we have?". The answer reads: the only 

potentially non-trivial principal fibre bundle over M which can be Iconstruc

ted out of the ingredients we have put into the game is a principal·bundle 

P with structure group N(H)/H, N(H) being the normalizer of H in G. P is 

constructed as a subset ofE 

P {yE E G 
Y 

H} 

The point to be stressed is thatno non-trivial fiber bundle with structure 

group G can be seen emerging. This was the surprising result of [6] , where 

we have found N(H)/H as the effective gauge group, instead of the expected G. 

It was also shown that' what is geometrically allowed and natural is also 

dynamically available ,i.e. one really gets an N(H)/H gauge field and its Lag

rangian from dimensional reduction of G-invaria:nt·metric and Einstein-Hilbert 

action on E. 

The effective gauge group from G-invariant dimensional reduction is 

therefore Geff=N(H)/H. In many cases this groupN(H)/H can be considered as 

the biggest subgroup K of G such that HxK eG. Here "in many" does not mean 

"in all"! One must be particularly careful if G is non-compact or non-semi

simple. For instance,if G is the Poincar~ group and H is the translation 

group then N(H)/H is the Lorentz group which is not the direct factor of the 
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translation group in G. 

In [6] the following result has been proven: there is 1-1 correspon

dence between G-invariant metrics gE on E and triples (gM,A,¢) of fields on 

M, where gM is a metric on M, A is a gauge field with gauge group N(H)!H and 

¢ is a multiplet of scalar fields. The metric gM induced by gE is called 

"the Kaluza-Klein projection of gE". The following connnents can be given to 

this result: 

i) The projection E + M is an example of what is called in the mathe

matical literature a "Riemannian submersion". There are many results in the 

mathematical papers dealing with what is called "totally geodesic" case. The 

case we have to deal with is not of that kind unless the scalar fields are 

switched off. (There are also mathematical results dealing with the case of 

gauge fields switched off). 

ii) The results and the formulae of [6] form up a tool. It can be ap

plied whenever one has a group acting on some manifold, and whenever one is 

interested in geometrical objects invariant under this group action. A gene

ral theory of dimensional reduction of geometrical objects has been initia~ 

ted in [2]. 

iii) It is convenient to introduce a concept of a "dimensionally re

ducible geometrical object". This is an object on E which can be also inter

preted as a finite-component field on M. As a rule all objects on E which 

are G-invariant (G-singlets) are dimensionally reducible. But also objects 

whose values transform under a finite dimensional representation of G are 

dimensionally reducible. Sometimes it may be, however, convenient to consi

der objects transforming under an infinite dimensional representation of G 

as dimensionally reducible too. 

iv) The assumption of the global action of G on E is used in the pro

cess of harmonic expansion of fields. As we shall discuss it later it is not 

necessary to assume that much for the harmonic expansion scheme to work. 

3. The non-G-invariant scheme of dimensional reduction 

Let us start with an example which will illustrate the idea of "non

invariant" dimensional reduction. The example will at the same time introdu

ce the concept of a double coset, the concept which may prove to be useful 

for building model manifolds with interesting geometrical properties. 

Consider a homogeneous space H'G, on this space there is a finite parameter 

family of G-invariant metrics: Indeed, since G acts transitively on the coset 
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H'G, a G-invariant metric on H'G is completely determined by knowing it at 

one point; the. number of G-invariant metrics on ~G is therefore equal to 

the number of AdH-invariant scalar products at the origin of the coset space. 

Let now K be another closed Lie subgroup of G, we can form then the double 

coset space H'G/K. The (right) action of K on H'G will have, in general, more 

than one orbit type. In such cases we can restrict ourselves to an open dense 

submanifold of H'G which constitutes the principal stratum of K-action on 

H,G. With this understanding H'G/K becomes a manifold. Observe the analogy: 

E ...... ~G, M ...... H'G/K = E/K. Every G-invariant metric on ~G is now, a fortiori, 

K-invariant and therefore, according to the G-invariant scheme of dimensio~lal 

reduction, determines its Kaluza-Klein projection on H,G/K. In this way 

we obtain a finite-parameter family of metricson H~/K which, in general, 

have no isometries at all. Observe that the group which survives the double 

quotient and still acts on ~G/K is N(H)/H x N(K)/K (it is however not auto

matically guaranteed that the action of this group on ~G/K is effective). It 

may be instructive to consider a concrete example. Let us therefore take for 

G the group U(2;JH) , and for Hand K the following two subgroups of U(2;JH) , 

each isomorphic to U(1 ;JH) ...... SU(2): 

H q E JH , q rf. 0 } 

K q E JH , q .f 0 } 

The coset G/K is isomorphic to a seven-sphere s7. The coset H,G/K is S4 and 

G/K + H'G/K is nothing but the Hopf fibration of S7. Observe that the resi

dual group which still acts on S4 is N(H)/HxN(K)/K = 0(2) x SU(2). 

Remark. The groups Hand K are both naturally isomorphic to U(1;JH) , there

fore we can take first a partial quotient of G by the "diagonal" U(1 ;JH) • The 

resulting manifold of orbits of the diagonal U(1;JH) acting (on both sides) 
7 on U(2;JH) is diffeomorphic to an exotic seven-sphere E • The group 0(2)xSU(2) 

acts therefore on E7. The principal stratum of this action projects onto an 

open dense subset of s4. It would be interesting to know whether there is 

any relation between this construction and exotic :JR4 recently investigated 

(see [7] for E7 and [8] for a review on exotic :JR4_s). 
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After discussing the double-coset example let us discuss a similar const

ruction which will generate a class of non-G-invariant, dimensionally redu

cible, metrics on a G-space E. Let therefore E, G and M be as in the dis

cussion of the G-invariant ansatz. We already know the form of the most ge

neral G-invariant metric on E. We will enlarge now this class of metrics 

so as to include some dimensionally reducible non-G-invariant ones. To 

this end we will use the following recipe: first, replace E with a bigger 

space E=ExG. Then, on E we have right action of the group GxG: (y ,a) (b ,c)= 

(yb,c- 1a), and E is isomorphic to the quotient E/Gd , where' Gd is the diago

nal of GxG. Indeed, the isomorphism of R/Gd onto E is given by (y,a) +ya. 

Observe that, in fact, we have action on E of the product (GxG)xG, the last 

factor being the right action of G on itself; it goes to the quotient E= 

E/Gd to coincide with the right action of G on E. Now, consider the class 

of all GxG-invariant metrics on R. Since GxG acts on E with the stability 

group H=Hxid, it follows (by application of the tool of G-invariant dimen

sional reduction, with G+GxG) that these metrics can be described in terms 

of fields on M, and that they give rise to gauge fields of N(H)!H=N(H)/HxG. 

But each of these metrics, being GXG-invariant is, a fortiori, Gd-invariant, 

and therefore it defines, by the Kaluza-Klein projection, a metric on E.The 

class of metrics on E induced that way contains the class of G-invariant 

ones, as a subclass. But it contains much more: it contains also those met

rics on E which give rise to gauge bosons of G" which degrees of freedom 

are not contained in the G-invariant ansatz. The receipt given above may 

seem to be unnatural, this is not, however, so. We will describe now a fra

mework for dimensional reduction which does not require the assumption of 

a global G-action. And in this framework the receipt above will find its na

tural place. But before discussing the technical side of the extended fra

mework, let us first analyse the following simple illustrative example: the 

two-'torus contra the Klein-bottle. Both are s1 fibratio~s over S1. Both car

ry a flat Riemannian metric which correspond to the vacuum configuration 

{F } discussed at the beginning. Both are candidates forE with M=S1, G= o . ", ' 
U(n, H trivial. But the internal u(O acts globally on the two-torus but 

does not act globally on the Klein bottle. It is this Klein bottle example. 

which is an archetype for the extended model. This model can be defined b:¥ 

the following axioms 

1. There are two fibrations m and E over M. 

2. The fibers G (xEM) are groups which act transitively (from the 
x 

right) on the fibers E of E. 
x' 
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3. There is an open covering (U ) of M and, for each a, there are maps 
a 

(¢a and ljJa are assumed to be diff"eomorphisms and are called local tri

vializations of E and ~ respectively; G is a (compact) Lie group, and 

H is a closed Lie subgroup of G) such that ¢ restricts to group iso-
a 

morphisms G +G on the fibers, and ljJ satisfies 
x a 

ljJ (ya) = ljJ (y)¢ (a) 
a a a. 

f or all y E E, a E G, x E U 
x x a. 

The Klein bottle example is a particular case of such a structure. The 

group G is U(1) here, and the bundle of groups ~ coincides with E,i.e. with 

the Klein bottle itself, in this case. The model of a global G-action consi

dered in Sect. 2. is a particular case of the above situation corresponding to 

the case of ffi being the global product ~=MxG. 

The important question to be answered reads as follows: what is the 

natural class of metrics on E? We will answer this question later on, where 

we will see that the effective gauge group, resulting from the class of met

rics we will describe, consists of gauge bosons of the group Geff~ N(H) /H x G 

(modulo the common central factors). Here, anticipating the final result, we 

will first concentrate 

from the discussed scheme 

on the group theoretical structure arising 

Let us start with giving the precise definition of the group Geff . To 

construct this group we will have to introduce the groups AutG and AutHG. The 

group AutG of all automorphisms of G is a Lie group. This group, however, 

need not be compact even if G is such. Indeed, the group of automorphisms of 

the torus U(1)xU(1) contains the non-compact group SL(2,Z) (the map (u,v) + 

( m n k 1 . . 
+ u v,u v), wlth u,vEU(1), is 1-1 if and only if ml-nk=±1). If H isaLie 

subgroup of G then AutHG will denote the subgroup of AutG consisting of those 

automorphisms ¢ of G for which ¢(H) is conjugated to H: 

{¢ E Aut G: 3a E G, -1 ¢(H) = aHa }. 

Recall that an automorphism ¢ of G is called inner if there exists a E G such 
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-1 
that 1>(b)=aba for all bEG. The group of all inner automorphisms of G is 

an invariant subgroup of AutG. Observe that all inner automorphisms belong 

automatically to AutHG. Later we will be interested in the Lie algebra of 

AutHG. Locally (i.e. in a neighborhood of the identity) the group AutHG is 

isomorphic to G/Z(G), Z(G) being the center of G. On the Lie algebra level 

therefore we have Lie(AutHG)=Lie(G) - Lie(Z(G». 

We will describe now the structure of the group Geff - the effective 

gauge group arising from the non-invariant scheme. We will first describe 

the construction of Geff , and only later justify it. The first step is to 

build the semidirect product G=G € AutHG. The group G consists of pairs (a,1», 

a E G, 1> E AutHG, with the semidirect product multiplication law: 

The group Geff is then defined as 

Geff = N(H)/H, 

where R=H € id ~s the subgroup of G which is isomorphic to H, and N(R) is the 

normalizer of H in G. 

Remark. A similar construction of the effective gauge group appeared in stu-
-dying symmetric Yang-Mills fields [9 ], with the difference that G there was 
-

the direct product G=GxR of G and the initial gauge group R, and H was the 

diagonal HXA (H), A :H + R being a group homomorphism characterizing t he action 

of G on a principal bundle carrying the initial gauge fields. 

Some relevant information concerning the group Geff is contained 1n 

the following diagram whose rows and columns are exact 

i- -r -r 

1+ H + N(H) + N(H)/H + 1 
-r -r -r 

1+ H+ N(R) + N(R)/R + 
-r -r -r 

+ + 1 

Of particular interest is the last column which tells us that Geff=N(R)/R is 
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an extensiOl1 of AutHGbyN(H) /B. In the, cOIJlpac,t;: case we ,therefore ,locaHy 
- - loc loc 

haveN(H)/H '" N(H)!HXAutHG '!"', (N(H)/H) x (G/Z(G».To descr:i-.b.e the Li~ 

algebra of Geff it is, convenient to decompose the Lie,{llgebl=a of G, <;lS fol

lows (we as.sume. that the action of G onG/H is. effective, what, implies that 

HnZ(9) is trivial), 

Li,e (G) Lie (H) + S " 

$ = K + L 

where S is a reductive complement of Lie(H) in Lie(G), K is the subset of S 

consisting of H - singlets of the adjoint representation, Z is the Lie al

gebra of the center Z(G) of G, K1 is a complement of Z in K , and L is 

a reductive complement of K in S. 
The Lie algebra of Geff is then given by 

Observe that K1 ' which is the Lie algebra of N(H)/(HxZ), enters twice. For 

instance, if G is simple and H is trivial, then the effective gauge group 

is GxG. At this place it is to be stressed again that the extended, non-G

invariant scheme of dimensional reduction will, in general, lead to an in':" 

consistent' ansatz, unless' one 'r'etains aU the modes in the harmonic expan

sion of fields. Before,' however, comritenting on the problem of a harmonic ex

pansion in the absence of global G-action, let us first show the relation 

of Gef~ defined above to the extended scheme based on a pair (E,a:). a: being 

a bundle of groups. The axioms for (E,a:) deal with local trivializations 

~ ,~ so that. on the intersections of the domains U nuo ' we get transi-
0: 0: -1 -1 _10: iJ , 

tion functions ~ o~o and ~ o~o • The functions~ o~o take value in the group 
0: iJ 0: iJ • 0: iJ -1' 

AutHG - the group we already know. The f~nction,~ ~0:0~f3 take value in another 

group - the group Taut(~) of twisted autOmo~phismsof (H~). The group 

N(H)/H can be identified with the group of automorphismsAut(ll'-.G) of the ho

mogeneous space H~. Recall that an automorphis~ of ll'-.G i~ a map ~: ll'-.G + 

+ll'-.Gsuch that ~([a]b)=~([a])b for all a,bEG. To every nEN(H) there corres

ponds an automorphism ~ : [a]+[na] of ll'-.G, and: the map n ~ ~ defines an iso-
n n 

morphism between N(H)/H and Aut(ll'-.G). The group Taut(H,G) of twisted auto-

morphisms' of ~G contains Aut (H~), and is defined as follows: 
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Definition A twisted automorphism of ~ is a pair of diffeomorphisms 

¢ : G -7- G, 1jJ: H"-G -7- H--G, where ¢is an automorphism of G, and 1jJ satisfies 

1jJ ([a]b) 

for all a,bEG. The set of all twisted automorphisms {(¢,1jJ)} of H ....... Gisa group 

under the composition of maps, and is denoted by Taut(H ....... G). 

Remark. We always assume that H ....... G is an effective homogeneous space. In 

this case the map ¢ in the formula above is completely determind by 1jJ. 

Let us now show that Geff=N(H)/R is indeed isomorphic to Taut(H"-G). 

First of all observe that (a,¢) E N(R) if and only if ¢(H)=a- 1Ha. Now, given 

(¢,1jJ) E Taut (H ....... G) let [a]=1jJ ([e]). Then [a]=1jJ( [e])=1jJ ([e]h)=1jJ ([e])¢ (h)=[a]¢ (h), 

and so (¢,a) EN(R). It is easy to see that this gives rise to the required 

isomorphism. 

Transition functions allow one to construct a principal bundle. There-

fore, as a corollary to the above considerations we find: given an extended 

Kaluza-Klein scheme (E,~) one can automatically construct two principal 

bundles: a principal bundle Q with structure group Geff , and another princi

pal bundle, with structure group AutHG. In fact the second bundle is the 

quotient of Q by N(H)/H which is an invariant subgroup of Geff . The group 

bundle ~ is a bundle associated to this quotient bundle. Knowing the above 

structure one can easily distinguish now a class of dimensionally reducible 

metrics on E which give rise to Geff gauge boson on M. Namely, having the 

principal bundle Q over M, with structure group Geff=N(R)/R, we can const

ruct an associated bundle E with fiber H.......C. The group C acts now globally 

on E from the right, and E can be identified with a quotient of E by AutHG, 

which is a subgroup of C. The class of metrics on E which interests us is 

now defined as the Kaluza-Klein projections of C-invariant metrics on E. In

deed, every C-invariant metric on E is, a fortiori, AutHG-invariant, and 

therefore projects onto E=E/AutHG by the Kaluza-Klein projection. This an

satz produces automatically gauge bosons of Geff on H. 

Let us finally comment on the problem of harmonic expansion in the 

absence of global G-action. A particular example we may keep in mind is 

that of harmonic expansion of fields defined on the Klein bottle. The impor

tant point to observe in this connection is that the harmonic expansion sche

me is well defined provided the bundle Q/(N(H)/H) is equipped with a fZat 

connection. It does not mean it has to be trivial - by a fZat connection we 
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mean a connection with zero curvature but possibly non-trivial global holono

my group. (The ground state metric should be a natural source of such a c,on

nection). This flat connection will distinguish a class of trivializations 

of the associated group bundle ~, which will be related one to another by 

constant transition functions. Or, in other words, there is a restricted 

class of local G-actions of G on E, related one to another by constant auto

morphisms of G. And, as one can easily see, the method of harmonic expansion 

developed in Ref. [2] , can be applied to each local G-action with the re

sults being independent of the choice of a .local G-actions in the restricted 

class. 
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