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Sunmary

Let X be a standard, transitive Borel G-space for en lcsc
group G. A multiplier for (G,X) is a Borel function « from
GXGXX into the circle group satiafying a cocycle-like rela-
~tion w(g,h;x) w(gh,k;x)= W(h,k;g” x)ca(g,hk,x) for almost all
x€X, and norealization condition w(gye;X)= W(e,g;x)= 1 (x-a.e.)
A projective imprimitivity system /with a multiplier W/ in a
separable Hilbert space 4l is a pair (E,U), where E is a spec-
-trel measure on X, and g->U_ is a Borel map from G into the
unitary group of # such that: U o=1) ga(sw*s B(gS) and
suh- f w(g,h,x)dx(x)U@ Ir (g,h)-y(.)(g,h *) is continuous in
the w*-topology ofL'zX), we require g-ng to be strongly con-
~tinuous. We prove that if » 48 a continuous nm.‘l.tiplier for
(G,G) then there exists a nn:lque irreducible co-inprinitivity
ayatcn.Int!nconrseoftheproofnconatmctakindafare-
gular - imriniti‘rita aystem for a general (@,X)-multiplier.
The thecrem generalizes theorems of Stone, von Neumarm and Ma-
~ckey on unigueness of a solution of canonical commutation re-
-lations of quantum mechanics to cases in which translational
syuetr,r is broken by external oloctronyntic fields.
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~ 1. Introduction
Heisenberg’s commutation relations for kinematical variables
fpi,qi}iﬂ’z'a of a quantum particle ;ead: ‘

[Qilq‘; .= o, ./
[a;,pg= 1 8¢5 » o , N
[Pivﬁ‘gg o. | o AT v

VWeyl /8/ put them into an exponential form /CCR/:

"Jh = exp(ia_b)vhu. ’
YE = .xp(igg) ’ U’. = exp(ipa),

and von Neumann /7/ proved that every irreducible representation '
of CCR is unitarily equivalent to the Schridinger ons:

(py2) () = -1(22/ 232, -
(af)(x) = 'x;£(x).

Mackey /3,4/ replaced ¥, by its spectral measure E such that

v = fexp(iﬁ)dn(x)-

Then (E,U) is an imprimitivity system for B> based on B> and the
uniqueness theorsm follows from the Imprimitivity Theorem /4,5/.
According to these results th'ero is a unique néthod of quan-
~tiging ﬁfee ptrti.ciﬂes.r If, however, extermal fields are present
then there are no ressons to insist on existence of a represen-
~-tation U of the translation group /since translations are no
lang\er symmetries of the systex/ and so, the theorems of Stone,
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von Neumarm and Mackey are no longer appiicabie. i
In spite of th_is ’ physiciéts ﬁsg a defiizite prescription: if
s magnetic field B(g)is présent, ki.:he‘y 'replace eanonical p;-8 by
*gauge imrinnt' variables S’i Ai' where A is a vector-
-potential of B B = curl . The obaembles 9 and STi aaf.is-
-fy now generahzed Heisenberg?’s commutation relations

[qi,’qj]? Y , o 1.4/
[ags 573]" i sijv : _/1_.5/
[, 7 d= 1645800 1.6/

In this framework it ie inportaxit to. know, whether every irredu-
-cible representation of the comuticn relations /1.4-6/ is
unitarily equivalent to the conventionsl one' T = 2 A(q) s where
pandqaretheSchradingeropmtors. 7

On a formal, algebrai.c level, the smswer is "yes®. In féct,
it follows fron 1.5/ that llﬁl'ib,f(qil= -1 O, ;7(Q), and the Jacobi
identity, when. applied to Ji, .n k ’ ngea ai-Bi = 0. It *fol-
~lows” that there exists j such thgt B = curl 4, and with
p:=T + A one r:.nda that p-and q satisfy /1.1-3/. Moreover,
(a,p) is irreducible if and only if (q,¥) is such. Tt is.then
knatural to ask whtther these fornal nanipulations can be put
mto a r:.gorous form. ‘One way to do 80 :.s to,;'eplace q,i-a by
a spectral measure E and m’i-s by unitaty operators U =
= exp (-151’ a) analagous): as Mackey aia. Formal series expemion
leads then to -

-

| UE(S)U= E(s+a), . Nna.
"h Q (2,0)0 BA N/
where :

Q(a)= [o(a,biziaEce) iKY
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w (a,b;x)= exP{i &( ..!_’.x.)}'

and @ (8,b;x) ls,a flux of B through a triangular surface span-
-ned by vectors -a and -b at x. It is interesting that asso-
ciativity requirement for U, /which is an integrel analogue of
the Jacobi identity/ is equivalent to the condition that the
flux of B through "almost all” tetrshedrons is an integral mul-
-tiple of 2§ /2/. Thue fields satisfying. divB =J & &xx @
are admissible /Dirac’s magnetic poles/ and one can hardly expect
that B is of the form curl A. _
~ In the present paper we generalize relations /1.7-9/ to an
arbitrary G-space X (o-imprimitivity system/ and prove, under
appropriate continuity conditions, a uniqueness \of an ,irréduci-
-ble w-imprimitivity systém in the case of G acting on itselr,
We wish to draw the reader attention to a possible éonnection
between w-imprimitivity éysta’m and connexiens in principal ‘
bundles /in an analegy with the electremagnetic cese one can
expect that « is commected to a curvatufé, forn/. Only in the
case of a constant cﬁrvatire U reduges to an ordinary projecti-
-ve representation, and in the case of curvature zero proaective
mprinitivity system reducea to an ordimry one.

2. Projective Imprimitivity Systems

s

Let X be a set and let B be a S -algebra of subsets of X.
Then X is said to be & Bore) space with aB_q&gtﬁzcture B (=
=8(X)). & Borel space X is standard if its B&rellatructure is
is isomorphic to the natural Borel structure of a Borel subset
of a complete, separable metric space.,

Let G be a locally compact group setisfying the second axiem
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of countability and let X be a standard Borel space. Assume that

there is given a homomorphism t:g—»rt_ of G inte the group of Bo~

-rel automorphisme of X such that ¢

1°/ X is a transitive G-space i.e, for each vpair x,y€ X there
is geG such that r—-tg(x), . ‘

2°/ the mapping (8,x)~> tg(x) from GXX into X is Borel.

Then X is said to be & transitive standard Borel G-space /we

shall write gx instead of t g(x)/. There are quasi-invariant
6 ~finite Borel measures on X, every. two of them being mutually
abéolutely continuous /6, p.25/. If «x is such a measure, and
if Cx is the class of all Borel sets of «-measure zero, ther
€« is «-independent and so, there is a unique invariant me: -
-sure class ¥ on X /6, Ch, VITI/. We shall write "f(x)= gx!
(x-a.e.)" if a;ad only if the set {x: £(x)# g(x)} is in € .
Let us fix G,X and « throughout this section, X being a
transitive standard Borel G-space and « -being a quasi-inva-

-rient 67 -finite measure on X.

Definition 2.1. A mu ltlpller for (G,X) is a Borel fun-

-etien o
0 :(g,h,x) - w(g,h;x)
from GXGXX .1nto the éircle group, such that

s

/i/ for all g,h keG
w(s.h.X)co(sh. sx)=co(h,k;g” x)co(g,hk,x) /x-a.e./,
/n/ for all geG. :

-

w(g,eix) =w(e,gix)= 1 ' /x~8.q./,

We say that w is continuous if for every Borel function
fe .C’(X,o() the mapping g,h—)/co(g,h;x)f(x)do((x) is

continuous on GXG.
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7\ let us observe that if co(g,hj;x) is x-independent, then the
above definition reduces to a usual definition of a ﬁultiplier
for G. ' ‘

A class of multipliers for (G,X) can be obtained in the fol-
-lowing way: let w be & Borél map w:(g,x)» w(g;x) from GXX
into the circle group, such that i(e;x)§ 1 /x-a.e./. let

W, (8h3x) := i(s;x)w(h;sdx)w(sh;x)" .

It is easy to see that «_ is a multiplier for (G,X). Moreover,
if g-w(g;+) is contimuous in the w*-topology of £ “(X), then
G is continuocus. It will be shown in Sec.3 that every conti-
nuous multiplier for (G,G) is of the form D

Iet # ©be a separable Hilbert space. We denote by u(#) the
unitary group of 3 equipped with a strong /equivalently: weak/
operator topology. P(#) will stand for an orthocomplemented

lattice of orthogonal projections in & .

Definition 2.2, let « be a multiplier /resp. continuous
multiplier/for (G,X), and let { be a separable Hilbert
space. A pair (U,E), where U is a map U:g«?Ug from G to
U(#) and E:S+E(S) is a projection-valued measure from &(X)
inte Aw), is said to be an W-imprimitivity stten ro-1s/
if

/i/ g-st is Boerel /re'spf. centinuous/,

/ii/ UT ,

/iii/ UgE(S)Uz*= E(gS),

/iv/ U0, = Q(g,nlu, ,

where

v/ Qgh) = Jeo(g,h;x)dE(x) .

A pair (U,E) is said to be a /continuous/ projective impri-
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-mitivity system if there exists a /contimmous multiplier
for (G,X), such that (U,E) is an w-imprimitivity system.

The foll&ving result can be easily extracted from a standard
version of the Tmprimitivity Theerem /see e.g. 6, p. T2-76/ :

Lems 2.1, let U snd E satisfy the condition /iii/ of
the Def. 2.2. There is a Hilbert space K and an iscmetry

T from # onto «£2(X, ¥ ,«) such that TET™ =gt Jvhere
E® is a canonical spectral measure in o 2(X, ¥ ,«) y iee.

for every f € (2(1,3(,1)

(E5(S)P)(x) = ' xsgx)f(x) | fx-a.e./.

Lemma 2.2, Iét @ be a mmltiplier /resp. continuous mul-
tiplier/ for (G,X), and let (#,U,E) be an co-IS. There
exist: a unitary representation v: g—vvg of G in H , and
a Borel /resp. contixmous/ mp I':g-vis from G into U(#)
.auch thnt »

£V L .3 ’ .

/ii/ | 'S comteka with :(s) for all ge G, Se 8(x),
(;ii/ I).(g,n) LA 'h';'gh ‘ for ell g,h eG ',
liv/ U, =¥V for a1 gee ’

g g 8 .
N/ - ({,V,E) isa 1-15. . . o
Cenversely, if (& sV>E). is a 1-IS, g-vlg is a Borel /resp.

Acant:mum/ map fre- G into U(W) aatisfying the conditions
/1-1ii/, with 0 as in Def. 2. 2., and i£ T in ginn vy /iv/,
then (,U,E) ia an “c-Is. | , . .
Proof. YWith T and E° as in Lemma 2.1., Ietvcbclunita-
ry representation of G in .cz(x,x-(. «) , such that /V°,ES/
is a 1-IS /for an existence see ¢.g. 6, p. 60/. Lt ¥ :=

= T°r™! and W:=UV, then /i-v/ are sutomatically satisfied.
The converse is also easily verified.



If 3 is of the form w then one can easily classify all

w t}
irreducible ro—JS-s by redacing the problem to 1-IS-s.

Theorem 2.1. Let o be a multiplier for (G,X) of the form
@, Let & ‘be an irreducible representation of the stabi-
-lity subgroup G, of an x e X, and let (#%,V",E"). be a uni-
-que irreducible 1-IS associated with G /see 6, p. T8/,
Then, with v jw(g,x)cm"(x) and U =W ,E",U") is
an irreduclble w IS, Every irreduclble w-IS is of the
above form. Moreover,(E¥,U") is unitarily equivalent to

(2™ ,u™') if and enly if & is equivalent to ¥/ . In parti-

-cular, if G, is trivial, then there exists a unique w-IS,

Proof. The first part of thegtheorem is an immediate con-
-sequence of Lemma 2.2. To prove the converse, let (%,U,E)
be an irreducible « -IS, let ¥ = fw(g;x)dE(x), and let V
and ¥ be as in Leama 2.2. Nm,{ig}eE” /the von Neumamn al-
-gebra generated by E/, and with Qg-- Wg*'g it follows
that Q v th*- Q.. Therefore g-»Q V_ is a unitary rep-
-resentat:.on of G, and (E,QV) is a 1-IS. Moreover,(E,QV)is
irreducible /since QV=W*U/ and so, there exists @ such
that (E,QV)=(E™,V¥). It fellews that =WV’ . Clearly,
(EF,UN)~4E",0") if and only ir (E¥,v5H=E*,v¥).

The next theorem assures thay. for every multiplier w fer
{G,X) an @ -IS exists. In order te prove this, we construct a

kind of a regular projective IS.

Theorem 2.2. ILet w be a multiplier for (G,X) and let
=£%(ax X,pux«) , where u is a left Haar measure on G.
Let us define A

(¥ XK, x)= & 'x,x) ,

('gka'x): w(k" ,g;x)f(k,x) »

(B(S) 2Kk, x)=  Lg(ex)2(x,x) .
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Then (4,E,V) is & 1-IS, and W satisfies the conditions
/i-iii/ ef Lemma 2.2. In particular, with U= WV, (B,U) is

an cw-IS. Moreover, if w is continuous, then U is such.

 Proof. One immediately verifies that (E,V) is a 1-IS, and

that ¥ is Borel and satisfies the conditions /i-ii/ of Lemma
2.2. lloreover, if © is continuous, then a routine applica-

~tion of the Fubini theorem and Lebesgue Dominated Conver -

-gence theorem shows that g-¥_ is continuous. Tt is.the-

-refore enough to show that /iii/ of Lemma 2.2. holds. First
of all, it follm from the definitions that

(v, v s X 3)= w0 (g, h;x) 2(x,x) .
Then, for fixed g,h,keG, there is an NB h(i)ef such that
s
w(k“,s;x)w(k'1g,h'x)= w(g,h'h)w(k" gh;x)

for all .x‘;( N_ n(k) /eee Def. 5 1.,/i//. It follows that
for all xé€ N h(k)
CAA NS *ka,x) = w(g,h;x Yo (k" ,gh,x)f(k,x)=
= w(g,h;kx)(¥ f)Ck,x).
Thus, :ror almpost all (k,x} we get

(v Vg Ok, x)= (Q(e.h)vsthk.x) ,
since it follows fron the very definition of E that

([l(g,h) ka,t)= w(g,h,kx)f(k x)  /k,x-a.e./.

aww

Let us assume that G acta en X not. only - tranaxtively but also

freely i.e. that X ia an affine G-space. Without lost of gepera-

-iity we may then assume that X=G and that o= - @ left Haar

‘measure on G.

Theorem 3.1. Every centinuous imltiplier for (G,G) is of
the form w ., g&->w(g;<) being continuous in the w*-topo-
legy of £*(G).
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Proof. ILet (xz %) be ‘the regular w-IS. For every fe¥
let (TLXx,y)= L£(yx,y ) It is easy to see that T is a uni-
-tary operator in 3 with '1'2—1 that commutes with V of the
Theorem 2.2. Let (E,U):(TET,T0T), then (E,U) is an & -IS and

(B(S) )x,¥)= .xs(x)f(x,y) ,

(Ugf)(x.:)= w(x ey e ny).

¥o now identify ¥ with £XQ, ¥ ,x) , K= £L2G,x) ,
and define for evezj- g,keC - : o

(w(gsx) oXy) == w(y" ".s.y ) B(y) , (BeX)

Then w(g;x) is a unitax'y eperator in X and with
(W tXx)= w(g;x) f(x)
g =¥ V /observe that (g,x)»>w(g;x) is a Borel map/.

Now, since 'svs'hvs = (1(g,)¥ ., it follows that

w(g;x)w(h;g~ 0= wo(g,h;x)w(gh;x) /x-a.e./
and so, there exists x &G such that '

we get U

'(g;xo)'(h;g°lx°)=w(g,h;xo)v(gh;xo) /g,h-a.e./  /3.1/

Let p be a projection in £ 2(G,)t) s and let

~1

(xj:= w(xx ' ,x, ) p w(x, x ,x e /3.2/.

The function x->p(x) is a Borel functxon from G to PX).
Tt follows that (Pf)ix):= (x)f(x) defines a projection in H
and it follows from the very definition.that P reduces E .
Let us show that P reduces U slso. Firs{, we observe that
for almost all g,x

P& D)= wigix) 'p(x)wigix) . 7323/
In fact, it fellows fron /3.1/ and /3.2/ that
w(g;x) " p(x)w(g;sx)= w(g; (x,x" )"1:.)"’!?(1:‘,1:'1 ;x,}"pv(xax“ $%g) X
x w(g; @gx ) 'x )=

-}

- =t -1 e - -
-'(.xox 8x,) w(xox 185X ) puL(x X 1,5;1.)"(:0: 1g;x‘,)=

= '(xox" gx, )"pv(x,x" gix.)= p(g”'x),
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fer almost all g,x. This shews that for almest all geG
(UgPﬁ(x)=CPU (x) /x-a.e./, ad gso, U P<PU_ for almost all
. 8¢ G. Therefore P commutes with U by the centimuity of U.
~ Now, let ¢ be a unit vector in X , and let pg bde an
orthogenal projectien ente {eg}. The subspace ¥Hy= Py ¥
is now inveriant under E and U and so U = Uty and E¥ =
= EMdy - form up an w-IS in #s Fer every gefz(a,ﬂ) let

L @pme s x e .

Then x->(R})(x) is a Borel functien from G into X, end

IBR¥E =0%¢ . Ionmr, it is easy te see that P’l; = RY

and 80, R maps ./ (G,,u) inte ¥y isometrically, In fact,

the range of R is equal to dy, since for every £« #{y/i.e.

such that Pyf = f/ R maps the functien gx) :=(g,w(x x ',x )1 (x))
i.nto . Now

(n"zw)x;xx)s Xg )50,

m *
L (n"ug:)cx)s(' Vo),
(¥ o= 5",

and . ‘
B (¥ )= ‘ﬂs;x)ﬁx)f
= (Paw(xgs i w(Emwr g g, T ) Y (x)-

‘Since (8”'ER,E"'UR) is an (0-TS, we cenclude that ¥ has
the requirod prepertica.

Gorelary 3,1, Let .o be.a contimeus mttpncr ter (6,6).
There is a unique h-reducible w-15 (E,U), and E is unita-
-rily equivalent te the canonical spectiral measure in {2(0, o ).

_Broof. Fonm imedinte‘ly from the nférens 3.1 and 3.2.

4. Finsl Remarks.

It would be desirable to know, whether the Corollary 3.! can

be obtained under a weaker conditien en w . From a physical point
of view one would like te knew what happens if lJ8 is assumed te
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be locally continuous only. In fact, what ocne needs is an exis-
tence of selfadjoint generators /in case of a Lie greup/. On the
other hand, ene should teke into accou:;t unobeérvability of phase
factors. It is then metural to censider equivalence classes of
multipliers. Pargmann /1/ has shown that on & connected simply
connected Lie group G, eyéry multiplier is equivalent té:gn ana-
lytic ome. An analogous problem for a general (@,X) case is not
solved. \ _ \
Finally, we would like to drew the reader attentien te the
fact that our formula :dr a regular o -imprimitivity system is
a kind of generalization of the Poincaré Lemma. The lﬁst deals
with differential forms. We deal with their exponents and geode-
.sic simplexes. When written in an infinitezimal form and applied
to the electromagnetic case, our fermula for a regular represen-
tation leads to a bilocal electromagnetic potential

1 5 k
Ay(x3)= o‘l ij("'%Lt % at
where z = x+t(x’-x) and i,j,k = 1,2,3,0. This should be compared
with B, de Witt's proposal /9/.
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