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1, INTRODUCTION The primary aim of the present author was to under-

stand “conformal invariant wave equation"
(O §)e = A ¢’ (o)

This equation appears in [1] without given any explicite reason aas to
"why" it is invariant. A conformal structure is best described by
a tensor density yuv (2] . 1t ¢ is a scalar density of dimension
-1, then, with gﬁ.v‘: 'f’zxuv , the equation (0) is nothing but R(g)

~ A . Therefore its conformal invariance is obvious and "impro-
ved energy - momsntum tensor® of [3J is automatic (4] . This obser-
vation can not be taken as catilfacfory enough, One would like to ha-
ve A machine /like a "coveriant derivative” in a metric ocase/ which
generates conformal invariant field equations., Long ago Cartan [5]
considered connections more general than principal ones, A theory of
conformal connections has been then developed to a highly sofisti-
cated degree [6,7] , and more recently it was shown, to be equivalent
to a theory of twistor conmnections [8,9},. We prefer to work with
0(4,2) vectors rather than spinors, The convenient mathematical appa=-
ratus is that of second order frames [7,10,11J . Wo give an interpre~-
tation of the bundle of 0(&,2) -vectors in terms of jets of scalar
densities and write down empty space field equations of gravitation
in terms of the conformal comnection. The theory is similar to one

iv [12] . More details can be found in [13]'
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2., CONFORMAL STRUCTURE OF SPACE - TIME Let M be a smooth, W-di-

mensional manifold, thought of as being a set of space-time events.
Let B(M) be the bundle of linear frames over M . Then B(M) 1is
a principal bundle with the structure group GL(4) .

Let G be a Lie subgroup of GL(4) . A G-structure on M is
a smooth subbundle of B(H) with G as a structure group. In many
interesting cases G oan be jdentified as the stabilizer of some ten~
sorial object on Ru . For example, to give M a pseudo - Riemannian
structure is to give it an 0(1,3) =structure and 0(1,3) is the
stabilizer of the standard metric tensor M = Ulab)= dlag (=1,1,1,1)
Similarly, to give M a conformal structure is to give it co 1,3

-structure, and C0+(1,3) is the stabilizer of /pseudo-/ temsor
ab

[~}
1 [ 1:3 fb
Xod —{ eodo!‘ ’Yl 72. N
Let P be a conformal struoture on M , The frames in P are
called conformal frames /of the first order/. Take any coordinate
system x* around peM , and let (o:) be a conformal frame
over p . Then the formula
-Xu(ﬂ s o* of .o, ‘dS X ab )
(¢ a b cd
defines a /pseudo-/ tensor X at p , ‘which is independent of
(o:‘) . According to a general theorem /see [7] /, P 1is integrable
/flat/ Aff each point peM admits a coordinate neighbourhood, with
local coordinates x* , wWith respect to which the components of ‘X
coincide with the standard ones (1) . The tensor (2) is nothing but
a Hodge - % = opersator restricted to 2-forms, Therefore, modulo to=
pological subtleties, to give M a conformal structure is to give it

a smooth # ~operator acting linearly on the bundle of 2-forms and

satisfying
(i) #tm-1,
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(11) *FAG = FA G ; F,G € A® (M),
/see [14] /
Although )( determines conforma) structure completely, it is
more convenient to deal with its "square root" i,e. with a tensor

density X»v uniquely defined by
v 1 u/A ;] v
a) ;(GT = E'exfﬁn X b

b) dot(J,.-) = -1
As it was above, a conformal structure is flat iff there are local
coordinate asystems in whioch J‘vE Yﬂ' e Since this condition 13
known to be equivalent to vanishing of the Weyl conformal curvature
tensor W , it should be possible to express W in terms of
only.
Assume nov that a conformal structure ’,u is given, and let

¢ be a scalar density of dimension 1 , i.e.

1/4 -
Fex) - |22 |7 g ().
If 1 = -1, then a&v ] gf 2(%#v is a metric tensor on M . In
this way one gets a correspondence between conformal structures and
olasses of conformally equivalent pseudo-Riemannian metrics on M .
It follows in particular, that each scalar density of dimension -1
determines a aymmetric affine connection which preserves the oonfor-
mal structure, However, no such an affine connection is distinguis-

hed,

3., CONFORMAL FIELD EQUATIONS Usually field equations are consice-

red on a flat Minkowskian background, What is a deeper meaning of con-
formal invariance in such a case? The group of all automorphisms of
flat causal structure is the Weyl group - semidirect product of
Poincaré transformations and dilatations. Special conformal transfor-

mations are singular, and conformal inversion x — x*/ x? does



SR Lt o 2% WA

205

not preserve causal relations. If so, them why should one require
full oonformal invariance and not only invariance with respect to the
¥Veyl group? To answer this question it is necessary to consider what
will happen after loocal deformation of the flat light-come structure.
In a flat space the very difference between local and global aspocts
can easily be lost. The total space can be naturally identified with
its tangent space at a given point. A point cun be identified with
intorsection of two infinite lines etc. On the contrary, in a generic
Riemannian space no such identifications are possible, and no auto-
morphisms of its causal structure exist., Here conformal structure
exhibits its true meaning, Rimannian metric separates into a voluwme
element /Jor length scale/ 25 4 and a causal struoture J" .
Conformal invariance means that the field equations are governed only
by the causal structure, end not by the length scale. In consequence
energy~-umomentum tensor is automatically traceless, and field equa-
tions are automatically invariant with respect to all Killing vector
fields X of the causal struoture. In particular they remain confor-
mally invariant when specified to the flat case.

It follows that covariance of field equations under conformal
inversions x* iy x*/ x2 should be considered only as a hint that
the equations are stable under local deformations of the conformal
/flat/ structure. And only such stable systema are of physical in-
terest, Given a transformation law of fields under conformal inver~
sions it is then usually possible to deduoe what kind of a geometri-
cal object one is dealing with, and to generalize field equations to
a curved background, However, the situation here is not as simple as
in a Rismannian case, since no straightforward recipe like "replace
derivatives by the covariant ones" is possible. /In fact, even in

Riemannian case one meets umbiguity of ocurvature terms,/.
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4, SECOND ORDER CONFORMAL FRAME

a) The bundle P3(M)

A second order frame at PG M is characterized /with respsct

to a coordinate, system x/*/ by a set of numbers (o~ = x~(p), eq,
”» - m~
eab = ®ba ) with transformation laws

' = x*'(p)

¢ 2 x*'
o“a L ey (p) e:

2 ’
iy 2x* n Chat o “« A
b T Sxr %p * Txagxr(P) o o -
The coordinates e: can be interpreted as determining linear

/1=8t order/ freme at p , and ':S

ocan be interpreted as de-
termining connection coefficients

r s M
M = -9 ey © .
eps = f rs

We denote by Pz(M) the bundle of second-order frames,

The | c2(4) I-ot]of all second-order frames at O & RY is

a group with the multiplication law

a a a a a r a r s a.r
(B%m™ ) (K%, ) = (BT KT, n0 kT ke n0 de
a a " M
I1f h b'h bo are replaced by ®a ' ®ap 7 then the last formu-

la gives natural action of Gz(k) on P2(M) which makes P2(M)

a principal bundle,
b) reduction of Pz(H) induced by conformal structure,

Let a conformal structure C be given on M in terms of Jmv e
A general symmetric affine connection which preserves C 1s of the

form

r: :,_': +(I‘PV'S:P/~’,-v -/’P/:) (3)
, r TN ]

where

-

ﬁiﬁ = 1’J$°(?~J%6 * Qn%ﬁa-—?%dyv).
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2
Theref ore PZ(M) can be reduced to E°(M) defined as consis-
ting of second order frames e such that e/ are ‘orthonormal
conformal frames, and oﬁ; are coefficients of connections (3) .
Lyw
The structure group of Q?(M) is G = co(1,3) x R with

the multiplication law
a a a.r r
(8%, v, ) (K7, w,) =(n® &', v ok, e, )

2
identified with & subgroup of G<(4) by

(hab’va )"_’ (h.b' habc)
where
habo = har (S;VO + 8: b~ nbo ’Yl.r. v').
It is evident that, conversely, each reduotion of PZ(M) to G

determines a conformal struoture C. There is, however, a distingu-

2
ished class of reductions, namely those of the form Po ( M) .

c) bundle of jets of scalar densities.

Let ¢ be a scalar density of dimension 1 .

The first jet of ¢ at p is parametrized by 1{+4 parameters:

g $(p)
Zu Qﬂﬁ(lp)

If e 1is a conformal frame in Po

"

» then one defines coordinates

of (¢ ’ z) with respect to e by
A A N
za(o)éﬂlar o: ol/u(n/*-r —,"—QF)
where F = 9:} . From the transformation character of ((f (e) ,

z(e)) one then finds that the bundle of Jjets of scalar densities of

dimension 1 can be considered as an associated bundle Pi L of
[ ]
Pi(M) corresponding tc the following representation Dt of
144

G on R H
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B v 0
D, (A.0)= 6"
1 ( W A
where h.b = QA‘b,and /\'rlAT =7 .

This representation admits no invariant bilinear form. If, howe-

ver, 8 new parameter ¥y is introduced, then the following quadratic

form: ¢ 2
2 2
7 = z 3 Z - ny
Y
is scale invariant, provided D1 is prolonged to 5& given by
(V]
= D. !
D = (o]
1 129 2 b
5 v, 1 vqA, 6

The representation 5; preserves the scalar product given by the

matrix

up to a factors

T 2(1-1)
Dl SDl = e S .
T

In particular, for 1l=z1, the quadratic form 2°S Z is invariant,

5.  CONFORMAL CONNECTIONS The above prolongation ﬁi , of i
» s
carries natural invariant bilinear form (Z,2’) with 0(2,4) as an

invariance group {brooiloly speaking the atability group of S 1is
isomorphic to 0(4,2)). It carries also a natural one-dimensional

isotropic line subbundle I defined by Y =0, 2z =0,
A natural linear connection in 5§ 1
1]

connection exists. There exists conmnection which preserve scalar

should preserve both, No such

product /but no I / , It is given by
Z
%z <3z oL

where
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1 r 8 r v
E: = %ﬁ D + 3'9% s M r & vk‘r K + f% + Pr =
t/a,',“” (o]
a a
= V/;’w/‘b"/c
o [ Ha o‘gﬁ
and

w2 o

ot o

a

(Of‘b"Gvf* b
1 v

Wa E'( = 3. R{P”) ®a

tu = arbitrary one-form.
Here gﬁ and R.. are covariant derivative and Ricoi tensor of 8~v =
a b
(% 1 ab %y ° Sinoce 5» is a one-form, one can put 5” =0 to
eget what is called “ocanonical normal Cartan connection®,
It should be observed that this oonnection preserve the cone
2

2°“ =0 , and so defines a /nonlinear/ connection in a ¥compacti=

fied tangent bundle®,

6. FIELD EQUATIONS FOR GRAVITATION, The equations W,~ Z = 0 are

squivalent to the field equations of gravitation in empty space. In
fact, V. Z = 0 1implies z% = const, and then Vi Z =0 1is

equivalent to R(g) = const, where §P' = ¢ -2 °f?723b eYb

/observe that Z is always refered to section (e:) of Pl , Wwhich
determines section of Pi /+ In particular Z2 is proportional to
a cosmclogiocnl constant, and R(g) s const is nothing but the fa-
milar "wave equation® (0)-

Equations of the above type can not be obtained from a Lagran-
gean., It is, however, interesting to notice that D = K"Y@w is
an 1%nr1ant operator /like the Dirac operator/, and Z satisfies

V/ﬂz = 0 Aff it satisfies
i) Dz =0

11) 22 2 oonst,
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Therefore Zt Dz oan be taken as proportional to Lagrangean den-

sity which, together with the constraint 11) gives us standard
Einstein vacuum equations.

The connection ' ocan be defined in every associated 0(2,%)
bundle, in particular, it defines ocovariant derivative of twistors.
However, in the twistorial /four-valued/ representation of 0(2,4)
K/L Kv = O . Therefore the invariant operator D has no curvatu-
re terms in this oase, Therefore DZ = O has a different

meaning for a twistorial section z .
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