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The law of track formation in cloud chambers is derived from the Liouville equation with a
simple Lindblad’s type generator that describes coupling between a quantum particle and a classical,
continuous medium of two-state detectors. Piecewise deterministic random process {(PDP) corre-
sponding to the Liouville equation is derived. The process consists of pairs (classical event, quantum
jump), interspersed with random periods of continuous (in general, non-linear) Schridinger-type
evolution. The classical events are flips of the detectors—they account for tracks. Quantum jumps
are shown, in the simplest, homogeneous case, to be identical to those in the early spontaneous
localization model of Ghirardi, Rimini and Weber (GRW). The methods and results of the present
paper allow for an elementary derivation and numerical simulation of particle track formation and
provide an additional perspective on GRW's proposal.

§1. Introduction

Inspired by Bell’s challenging call for an exact formulation of quantum measure-
ment theory,”? Blanchard and the present author proposed a model of quantum
measurement based on completely positive (CP) semigroup coupling between a
quantum system and a classical one.” The main advantages of this proposal emerg-
ed only after the publication of 3). In the following series of papers”~” the method
of Ref. 3) was successfully applied to several model physical situations, including
Zeno’s effect, Stern-Gerlach-type coupling, particle position detector and SQUID-tank
system. In all those cases the coupling was shown to lead to a piecewise-
deterministic random process (PDP) describing time series of experimentally observ- -
ed events. Moreover, in Ref. 8) models that deal with simultaneous measurement of
several non-commuting observables were described, and it was suggested that the
question of determining an unknown state of the quantum system should be answered
using the proposed exact definition of a measurement. However, the obvious and
crucial test of any quantum measurement theory, namely, that of finding the laws
governing track formation iy cloud chambers and on photographic plates was, until
recently, missing. The reason for this was partly of a technical character, namely, in
all of these previous applications the classical system was either discrete or finite-
dimensional, otherwise technical difficulties mounted. In the present paper we will
show how these difficulties can be overcome owing to the discrete Poisson nature of
the PDP.

Technically, the paper is concerned with a non-relativistic quantum particle

*) Permanent address; e-mail: ajad @ ii. uni. wroc. pl
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coupled to a classical medium of two-state particle detectors. The medium is char-
acterized by a family of “sensitivity” functions g.(x), where g, can be thought of as
a Gaussian-like function centered at a.* The configuration space of the classical
system is, in general, infinite-dimensional. In § 3 we will write down the simplest
possible Liouville equation (Eqgs. (3:5)~(3+7)) corresponding to the intuitive idea that
presence of the particle at some point a causes flip in the detector located at that
point. The functions g. are used to describe the spatial sensitivity, and also the
response time, of the detectors. The quantum Hamiltonian is allowed to depend on
the actual configuration of the medium (although in most applications such a depen-
dence can be neglected). We denote by Hr the Hamiltonian corresponding to detec-
tors flipped at the points of a set I". The main result of the present paper is the
derivation of the PDP corresponding to this coupling. For simplicity we will con-
sider only the case where g. and Hr do not depend explicitly on time. Generalization
to the time-dependent case is however straightforward, and the formulation below
covers also this more general case. The PDP, derived in § 4, can be summarized as
follows:

Denote
A(x)=fga(x)zda , 1-1)
Hr=Hr—A. (1-2)

Suppose one starts, at time to, with all detectors in the “off” state, except those in a finite
set In, and with the quantum object described by a wave function ¢o=¢:,. Then ¢
evolves continuously according to the modified Schrodinger evolution:

¢'t=¢’~t/"¢'~t", (1'3)

where ¢ is the solution of
i‘%&t=ﬁn’$t (1-4)

with the initial condition $= o, until a jump occurs at a random time t, at which
time the wave function is, say, ¢u.. The jump consists of a pair: (classical event,
quantum jump). The classical part is a flip of the detector state at a random point of
space, say at ar. It happens at a point a, with the probability density p(a) given by p(a)
=|ga¢pe:ll?/A(¢2,), where the rate function A is given by A(¢9)=(¢, Ag). The quantum
part of the jump is jump of the Hilbert space vector ¢ to the new state ¢
=gu ¢/ |gas¢ell. After the jump the process starts again with a continuous time
evolution as before, but now with to veplaced by t and Iy replaced by

ﬂ=ﬂ)d{al} »

where 4 denotes the set-theoretical symmetric difference. After n events that happened
at the points a1, -+, an, one puts

*) If there is no detector at a, we put ga(x)=0. Thus our model covers also the case of a discrete, finite
or infinite, number of detectors.
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Li=hMa}4--d{aa} .

The random times of jumps are vegulated by an inhomogeneous Poisson process : the
probability P(t t+dt) for the first jump to occur in the time interval (t t+dt) is
computed from the formula

Pt t+a’t)=1—exp<- [ Hdt/l(qﬁs)ds)z.&(f,&'z)dt . (1-5)

Our model admits an interesting special case—that of a passive, homogeneous
medium. If the medium is passive, i.e., if the quantum Hamiltonian does not depend
on the actual state of the medium, and if it is homogeneous, then the description
simplifies: the quantum process separates, the jump rate is constant and one gets
“spontaneous wave-packet reductions” of Ghirardi-Rimini-Weber (cf. e.g., Ref. 9) and
references therein). In general, however, the process of formation of a track has a
non-constant rate, and the dependence of the rate of jumps on the state of the quantum
system given by the present model is essential and experimentally verifiable.® We
believe that the proposed model of the particle track formation is the simplest one
that gives intuitively expected results. It can be used for numerical simulation of
particle track formation for different Hamiltonians and for different geometric
configurations. It should be, in particular, interesting to analyze numerically the
influence of particle detectors on sharpness of the fringe pattern in interferometry
experiments.

From a philosophical point of view, it is worth noting that in the present paper,
in sharp contrast to the standpoint taken by Stapp in his recent paper,'” we deliberate-
ly avoid the concepts of an “observer”. Our model aims at being as objective as the
concept of probability allows for it. A philosophical summary of our results can be
formulated as follows: Quantum Theory, once invented by human minds and once
asked questions that are of interest for human beings, does not need “minds” or
“observers” any more. What it needs is a lot of computing power and effective
random number generators, rather than “observers”. The fundamental question, to
which we do not know answer yet, can be thus formulated as follows: can random
number generators be avoided and replaced by deterministic algorithms of a simple
and clear meaning?

§2. Events and quantum measurements

In this paragraph we will briefly describe the main ideas that influenced our way
of looking at the quantum mechanical measurement problem, and that finally led to
the simple cloud chamber model of this paper.

The crucial concept of our approach to quantum measurements is that of an
“event”. The importance of this concept, and the intrinsic incapability of quantum
theory to deal with it, have been stressed by several authors. In 1958 Schridinger

*) This is one of the important differences between our approach and other ones, where dependence of
the timing of wave packet reductions on the actual state of the quantum system could not be derived—cf. e.g.,
Ref. 10) and references therein.
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wrote:'?

‘It is usually believed that the current orthodox theory actually accounts for
the “nice linear traces” produced in the Wilson chamber, etc. I think this is a
mistake, it does not.’

Stapp stressed the role of “events” in the, “world process” (Refs. 13) and 14), cf. also
the entry “events” in the Index of Ref. 15)). Chew used Stapp’s ideas on soft-photon
creation-annihilation processes (cf. 16)) and proposed the term “explicate order”,
complementing Bohm’s “implicate” quantum order, to denote the world process of
“gentle” creation-annihilation events.'"” Haag emphasized'® that “an event in quan-
tum physics is discrete and irreversible” and that “we must assume that the arrow of
time is encoded in the fundamental laws ---”. In Ref. 19) he went on to suggest that
“transformation of possibilities into facts must be an essential ingredient which must
be included in the fundamental formulation of the theory”.

In 1) and 2) Bell reprimanded the physics community for misleading use of the
term “measurement” in quantum theory. He opted for banning this word from our

»

quantum vocabulary, together with other vague terms such as “macroscopic”, “micro-
scopic”, “observable” and several others. He suggested to replace the term “mea-
surement” by that of “experiment”, and also not speak of “observables” (the things
that seem to call for an “observer”) but to introduce instead the concept of “beables”
—the things that objectively “happen-to-be (or not-to-be).*

On the technical side, Machida and Namiki®® proposed a way of describing
measurements in quantum mechanics that inspired Araki?”?? to formulate his contin-
uous superselection rule model of classical measuring apparatus in quantum
mechanics. In Araki’s model infinite time was, however, needed for an “event”
(change of the classical pointer position) to occur.

In a series of papers Sudarshan et al. investigated possibility of solving the
measurement problem via a unitary, Hamiltonian coupling between a quantum and a
classical system (cf. Ref. 23) and references therein).

Landsman®” and Ozawa® gave quite general (“no-go”) arguments that stressed
impossibility of coupling of classical and quantum degrees of freedom via a unitary,
finite-time dynamics.**

On the other hand many authors were using “dynamical semigroups” —#non-
unitary dissipative time-evolutions that described an effective dynamics of quantum
systems coupled to other quantum systems or to external “reservoirs” or “environ-
ment”. Gorini et al.?® and Lindblad®” derived a general form of generators of
norm-continuous semigroups of completely positive maps of the operator algebra of
a Hilbert space.***’ Such semigroups were widely applied to many kinds of “master
equations” of statistical physics, while Ghirardi, Rimini and Weber® proposed to use
a particular Lindblad-type generator for describing a “spontaneous reduction proc-

*) Calling observables “observables” can be, however, justified in the framework of an “objective theory
of experiments”. We plan to discuss this subject elsewhere.
*%) A short no-go argument can be found in Ref. 8).
*¥%) [t was later extended by Christensen and Evans® to cover the case of more general operator algebras,
including the case that is most interesting for us—that of a non-trivial centre.
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ess” for a single quantum particle. The GRW model incorporated “quantum jumps”
that occurred in finite (Poisson distributed) times, but it did not account for the
(classical) “events”. Although it was clear to the experts that using dissipative
semigroups instead of a unitary dynamics allowed to go around the no-go theorems,
it is only in 3) that simple methods of construction of dissipative generators were
found that led to measurement-like couplings of quantum and classical degrees of
freedom. Later on, in Refs. 4) and 8), using the results of Davis (see Refs. 29) and 30)),
a piecewise-deterministic random process (PDP) on the space of pure states of the
total (classical + quantum) system was associated with the Liouville equation. While
the Liouville equation describes continuous time-evolution of density matrices, that is
of statistical states that concern ensembles, the associated piecewise-deterministic
random process contains apparently more useful information: it can be used to
simulate real-time behaviour of individual systems in measurement-like situations.

§3. The cloud chamber model

Our aim is to explain the “nice linear tracks” that quantum particles leave on
photographs and in cloud chambers. These tracks are indeed hard to explain if one
assumes that there are no particles and no events—only Schridinger's waves.
Schrédinger himself was perplexed and not quite sure which way to take.

Physically, a photographic plate or a cloud chamber is a highly complex many-
particle system. Physiologically, it appears to exhibit a complex, irreversible
dynamics to an external living observer. Many factors participate in the result
—including the mediation of photons in the final act of perception. However, it
seems to us that the detailed internal structure of local particle detectors, and also the
details of the perception process, would it be human or animal, are totally irrelevant
for the phenomenon itself. What is relevant, it is the response of the detectors to the
quantum particle, and their back reaction on it. We put forward conjecture that it is
sufficient to assume that we have to do with a system of classical two-state detectors
that can change their state when a particle passes nearby. Although the real cloud
chamber have a finite number of sensitive centers, it proves to be no more difficult to
deal with a more general, continuous model—the extra bonus being that we cover this
way the GRW model as well.

There is a formal detail in the model below that deserves to be mentioned: our
model is more reversible than any real cloud chamber. Namely, we allow for a local
detector to change its state back, when it registers the particle for the second time, and
so on. This makes the model slightly easier to solve.* The present model can be
easily reformulated to cover also the case of “only-one-flip” detectors. The final PDP
proves to be the same except that each detector can flip only ones.

The derivation of the model below is heuristic. Nevertheless it leads to a
well-defined piecewise-deterministic random process that has a clear physical mean-
ing. We then show that for a passive, homogeneous, medium, the effective time
evolution of the quantum system itself happens to be also Markovian—it is described

*) On the other hand, it is related to the so-called, “detailed balance condition” that is often postulated
in statistical physics models—for a recent discussion, cf. Ref. 31) and references therein.
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by an effective CP semigroup that is identical to that postulated by Ghirardi et al.?
This fact may suggest another application of our model: instead of considering it as
an approximate model of a real, discrete and finite, cloud chamber, we may consider
it as an exact model of some, perhaps yet unknown, space-structure that is participat-
ing in a universal process of wave packet reductions. The actual physical interpreta-
tion may depend on the values of parameters that enter the model. There will be,
essentially, two free parameters: a coupling constant A, of physical dimension ¢7*, that
will regulate the expected time rate of jumps, and a normalized Gaussian function
whose width determines space sensitivity of the detectors. In fact, aiming at a wider
applicability of our model, we will allow for non-constant rates of jumps, and for more
general, not necessarily Gaussian, sensitivity functions. Clearly, presence of arbi-
trary functions that are external to the model, makes it to look like a
phenomenological rather than as a fundamental description—unless these functions
are derived from geometrical and probabilistic considerations.

We proceed to describe our model in mathematical terms. The description will
be brief and will never go beyond elementary mathematical concepts. Special
mathematical terms, when they occur, are used only in an informal way and can be
skipped by a reader who is mainly interested in the main ideas and results. Let E
denote the physical space, we take for definiteness £=R”", although it is straight-
forward to assume E to be a homogeneous space or an arbitrary Riemannian
manifold. We consider the space FE filled up with a continuous medium which can be,
at each point ¢€E, in one of its two states: “on-state”, represented by (}), or
“off-state”, represented by (). We would like to consider the set of all possible
states of the medium. This is however enormously big a set, because states of the
medium are, in our case, in one-to-one correspondence with its configurations, that is
with subsets of £E. Indeed, to each state of the medium we can uniquely associate the
set of all points that are “on”. Thus the set of all states of the medium is isomorphic
to 2. Fortunately we can restrict our attention to much smaller classes of subsets of
E. Let us introduce equivalence relation “~” in 2%, with equivalence classes consist-
ing of subsets of E that differ one from another by at most finite number of elements.
Denoting by 4 the set-theoretical symmetric difference operation, we have; I"'~1I" if
and only if I'4I” is a finite set. It will be sufficient for us to choose some “ground
state” and to take its equivalence class, that is the set of these configurations that
differ from the “vacuum” in at most finite number of points. For convenience we will
take for the ground state the state of “all off”, represented by the empty subset §<2-.
Its equivalence class S =[#] consists of those states of the medium that are every-
where “off” except in a finite number of points, i.e., the class of all finite subsets of E.

Remark The fact that we can restrict ourselves to the above class S of sets,
instead of dealing with whole of 2%, is not evident by itself. It will be justified only
4 posteriori, when we will see that the “events”, that will appear in the piecewise-
deterministic random process which we will construct later on, consist of “flipping” a
state of the medium in single (randomly chosen according to appropriate probability
distribution) points of E, and that with probability one there is a finite number of
events in any finite interval of time.
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We can endow S with a topology and with a measurable structure as follows:
first of all we observe that $ is a disjoint union of subsets S., =0, 1, ---, where S
consists of those states that differ from the ground state at exactly ¢ points of E. But
then, S; is isomorphic to the i-th Cartesian power of E, with coinciding points
extracted, and divided by the action of the permutation group in ¢ elements. It
follows in particular that & has a power of the continuum.

Statistical states of the classical system are probability measures on S. They
are represented by sequences {u:}, where x; is a measure on S;, and 2%, x(S.)=1.

Let H,=L*R" d"xr) be the Hilbert space that is used for description of the
quantum system coupled to our classical medium. We denote by B(I,) the algebra
of bounded linear operators on H,. Its elements are “observables” of the quantum
system. Statistical states of the quantum system are normalized (by Tr(p)=1)
positive trace class operators on H,. Then statistical states of the total, classical
plus quantum, system are described by measures o on S with values in positive, trace
class, operators on Hq, with 2%0Tr(o(S:))=1. A natural candidate for the algebra
At of observables of the total system is the algebra of continuous, bounded functions
on S with values in B(H,). Thus, Aw: is the direct sum of algebras A:, where A;
is the algebra of continuous, bounded, B(4 ;)-valued functions on S,. As our main
aim is to derive the PDP rather than to prove the existence of CP semigroup—we will
apply, from now on, a heuristic notation. Thus, a state of the total system will be
represented by a family {or}res, with ‘2 Tr(er)=1.

To have some definite example in mind, in what follows we will take for the
quantum system a particle of mass m moving in E=R" according to the dynamics
described by the quantum Hamiltonian

_ hz _i 2 .
Hr= ﬁm hcAf) ¥ Vilz). (3-1)

We thus allow quantum Hamiltonian to depend on the actual state of the medium.

Remark We could allow H to depend explicitly on time—then the semigroup
property would be lost, but PDP would be described in the same way as in the present
model. Generalization to the case of quantum particle moving on a manifold and
acted upon by gravitational and electromagnetic forces is straightforward. A more
general treatment, including Bose or Fermi multiparticle case, will appear
elsewhere®® The idea will not change also in such a case.

We proceed now to describe the coupling that corresponds to the following
intuitive picture: the medium consists of detectors that can change their state if the
particle approaches them sufficiently close for a sufficient time. Space and time sensi-
tivities of the detectors are described by real, non-negative functions ga(x), where the
variable a describes the position of the detector. We can think of g. as a hat-like
function with its center at x=a. We introduce then the non-negative function A(x)
defined by

Alx)= ]E. go(x)?da (3-2)

for all x£E. Here da denotes the Lebesgue measure, but if we want to describe a
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discrete, rather than a continuous, case, then the integral above should be replaced by
a sum. By the abuse of notation we will denote by the letter A the operator of
multiplication by the function A(x), acting on the Hilbert space LA R", d"x).

Each density matrix p of the total system can be, formally, written as

p:rgs orQer, (3 : 3)

where, for I'e S,

(3-4)

er=n®ae5(’”(“) 0 )

0 1 _Xr'(a)

and where xr stands for the characteristic function of the set I, i.e., xr(a)=1 for aE€
I, otherwise xr(a)=0.

Remark The last statement requires some care. It is also not quite trivial. For
a finite number of detectors it is not too difficult to see. We are using the above
notation introduced by Neumann in his theory of continuous tensor products. To
give to the above expressions a precise mathematical meaning, we would have to
invoke a part of this theory. (For a more modern account, cf. Ref. 33) and references
therein.) That tool is however not necessary for the present, heuristic, purpose.
More complete mathematical treatment will be given elsewhere.

To define the coupling between the particle and the medium, we will apply the
ideas introduced in Refs. 3) and 4). Namely, we will write the Liouville time evolu-
tion equation for the statistical state of the total system as

o=—ilH, o]+ L(0), (3-5)
where L is a Lindblad-type generator that provides dissipative coupling.

Remark In the present model we will neglect a possible free dynamics of the
medium.

For L we take the simplest possible coupling:
— lii,2
L(o)= [da(Vap Va4 Vi, o), (3-6)

where
Va=ga®fa ’ (3'7)

g« being the multiplication operator by the function ga(z), and 7. denoting the “flip”
of the detector at the point a:

to=I1Qsus , (3'8)

10
ub=(0 1) (3'9)
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for b+a, while

01
ua=<1 0). (3-10)

Because z.°=1d, our evolution equation reads now:
.. 1
p=—ilH, o)+ [daVao Va1, o}, (3-11)

where A in the anticommutator is understood as a multiplication operator by the
function A(x).
Let us denote by a(I") the set representing the state I" with the flipped a:

a(N)=TIA{a}. (3-12)

Then, using change of summation variable I'= I"=a(I"), and also using the fact that
a(a(I")=TI" —i.e., that the second flip cancels the first, we obtain

Vao Vo= 2 gaprga®ear= 2 gaparrgaQer (3-13)
res res
so that we can write:
.. 1
pr=—1ilHr, Pr]+fdagapa(mga——2‘{/1, or}. (3-14)

The equation (3-14) is fundamental. It describes time evolution of the family {or},
where I" runs over all finite subsets of £. All the relevant statistical information
about the quantum particle and the classical medium can be derived from this
equation. In the next paragraph we will derive the piecewise deterministic random
process that is compatible with Eq. (3:14) and that concerns histories of individual
coupled systems. Before however going to this, let us see that in the passive,
homogeneous, case we can obtain effective time evolution for the quantum particle
alone. If the medium is passive, then the Hamiltonian does not depend on the actual
state of the medium: Hr=H. If the medium is homogeneous then, for symmetry
reasons, /1 must be a constant: A(x)=A. For instance this happens if we take for g.
the Gaussian functions:

ga(x)=AY 2(%>”/2exp( —a(x—a)?). (3-15)

The effective state of the quantum particle is determined by tracing over the classical
configurations:

=2 pr. (3-16)

To sum up Eq. (3-14) over I" we note that, for each a€E, a: I'a(I') is a one-to-one
map of S onto itself, this owing to the fact that 2% is a group under the symmetric-
difference operation, and that S is a subgroup.

Thus we have XrespoIN)=2resor=p. It follows that the time derivative of
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depends, for our particular choice of the coupling, only on @ and not on the full
hierarchy of the por’s; we have

p=—ilH, o)+ [dagapou—25, (3-17)
which is exactly of the type discussed by Ghirardi, Rimini and Weber (cf. Ref. 9)).
§4. The Piecewise deterministic process

4.1. Definition of PDP and ils infinitesimal generator

In his monographs®-*® dealing with stochastic control and optimization Davis,
having in mind mainly queuing and insurance models, described a special class of
piecewise deterministic processes that was later found to fit perfectly the needs of
quantum measurement theory. Even if for the present model we will have to extend
slightly the original Davis’ framework, and to work with jumps between continuously
parameterized states and not between discrete manifolds, we will describe briefly the
discrete case and we leave the problem of a rigorous formulation of its evident
extension to continuous families aside.

Let ¢ be an index running over a finite or countable set /. Consider functions
F(&, o), where for each ¢ the variable & is continuous and runs through some set M.*
Suppose we have a semigroup of transformations . acting on the space of such
functions with the infinitesimal generator 9 which is an integro-differential operator
of the following form:

(DAE, O)=(ZS)E, )+ AE, c)ZuLQ(E, 6 de, Of(E, )= ), (&-1)

where Z, are vector fields that generate one-parameter flows ¢. on M, A(§, ¢) are
non-negative functions, while Q(&, ¢; d¢’, ¢’) are (non-negative) transition measures
—thus satisfying

5[0 s g, =1, @

and also
[, Q& ¢ de, =0 (4-3)

£}

for all ¢ and £€M. We notice that by the very definition we have Z.(&)
=d¢. (&, t)/dt|.=o. Then, as it is shown in Refs. 29) and 30), one can associate with
this generator 9 a piecewise deterministic stationary Markov process that is de-
scribed as follows.

Suppose the process starts at some point (£o, ). Then & evolves continuously
along the vector field Z., &:= ¢.(&o, ¢), while ¢ remains constant until a jump occurs
at a certain random time #. The time of this jump is governed by a (inhomogeneous)

*) We will need the case where also ¢ will be continuous running over E, while M will coincide with the
unit ball in the Hilbert space L% E) (modulo the phase).
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Poisson process with rate function A(#)=A(&:, ). When jump occurs at {=#, then
(&4, ) jumps to (&, ¢) with probability density Q(&:,, tw; d€’, ¢) and the process starts
again.

Remark Notice that the probability that the jump will occur between ¢ and ¢ + dt,
provided it did not occur yet, is equal to 1 —exp (—/i**A(s)ds) =~ A(¢)dt. This justifies
calling A the rate function.

Association of the random process with the semi-group a: is canonical and can be
described as follows: first one goes from a: that acts on functions f(&, ¢) to its dual *
acting on measures. Then, choosing the Dirac measure de,,., concentrated at (&, «)
as the initial point wo, we apply to it a* to get ge=a’(¢). The resulting measure z:
is then characterized by the fact that du‘(&, ¢) is equal to the probability that the
process starting at =0 from (&, %) will end, at time ¢, at the point (&, ¢).

A detailed and precise description of the above correspondence should include
specification of the involved measure structures and domains of definition. We refer
the reader to Refs. 29) and 30) for mathematical details. Here we only notice the
following important relation: let K(¢; &, ¢; d€, ¢’) be the transition function for the
process. Then the semigroup a: is given by the formula

(@f)E =3 [K(t; & 6 d&, OFE, ). (4-4)

4.2. Derivation of the PDP for the cloud chamber model

We will now describe the most important fact about our cloud chamber model: we
will show that Eq. (3-14) describing the time evolution of statistical states of the total
system can be interpreted in terms of a piecewise deterministic Markov process.
That process has then a transparent description in terms of pairs of (classical event,
quantum jump) that are interspersed (in a random way, according to an in-
homogeneous Poisson point process law with rate A) with the periods of continuous,
Schrédinger’s type, time evolution. In our derivation we will consider the case where
Hr and g. do not depend explicitly on time. In this case the process defined in the
Introduction is a stationary Markov process, and we are dealing with semigroups. It
is however straightforward to generalize our reasoning to non-stationary case. The
derivation and the formulas are in this case much the same, except that semigroups
should be replaced by two-parameter families of maps, and that in several evaluations
below ¢=0 should be replaced by an arbitrary ¢.

If we want to interpret Eq. (3:14) in terms of a PDP on pure states, then the first
thing we have to do, is to rewrite Eq. (3-14) as an equation for observables rather than
states. After doing so we will interpret observables as functions on pure states.

Given a state p={or: 'S} and an observable A={Ar: '€ S}, the expectation
value of A in p is given by <p, A>=2r Tr(prAr). Time evolution of observables is
then defined as dual to the time evolution of states, so that we have <p, A>=<p, A>.
By substituting the equation (3-14) for ¢, we easily find that, in our case, observables
evolve according to the law that is almost identical to that for states, except that there
is change of sign in front of the commutator:



642 A. Jadczyk

Ar=ilHr, Arl+ [dageAurrga—5{4, Ar} . (4-5)

Each observable A (of the total system) can be interpreted as a function 71 on pure
states (of the total system):

fal¢, N=(¢, Arg), ¢EH,TES. (4-6)

We can now sandwich Eq. (4:5) between two ¢ vectors to see if we can interpret this
equation in terms of time evolution of functions on pure states. We get

fa(g, D)=Fi(y, r)
=(¢, i[Hr, Arl¢)+(9, ,fdagaAa(r)gagb)——é—(gb, {4, Ar}g) . 4-7)

The first term on the rhs of Eq. (4:7) can be written also as (Zufu)(¢, I'), where Zx is
the vector field of the Hamiltonian evolution of pure states

Li —iHrt ‘ .
(Zﬂf)(¢y I-')— dt f(e ¢) F) ¢=0 . (4 8)
The second term can be rewritten as

(¢, Ida gaAairrga ¢)=fdd(ga¢, Aargad)

=9, 49) [ da%fﬁ(“ﬁﬁ, a(F)) . (4-9)

Finally, the third term of Eq. (4:7), rewritten in terms of the functions fa, gives rise
to two terms:

A
) EXp\ —5—
—5 014, A = lexo( —5- )l ";E ,21; il )
~ exp( —‘;1“ )S/'
=—(y, A¢)+ Fa ”exp(_—/z-l- >¢" r o (4-10)

Let us introduce the second vector field Z» corresponding to the non-linear evolution:

(40 )

i lexo —4- )¢l

(4-11)

We now see that we can write the evolution equation for the functions f4 in the form
required by Eq. (4-1) provided we introduce
the rate function:

AP)=(¢, A¢), (4-12)
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the vector field:
Z=ZH+ZD, (4'13)

and the transition measure Q(¢, I'; ¢, I")d¢’dI"’ that vanishes except for

Q. 1 ¢, a(r) =1L oy — 18 )ay (t140)

where 8(¢’— ¢)d¢’ is a symbolic expression for the Dirac measure concentrated at ¢.
It is easy to see that the vector field Z=Zx+ Zp generates the flow @, given by

O,eof (P0)=1(¢e), (4+15)

where ¢; is given by the formulas (1.3) and (1.4).

We now describe the piecewise deterministic process on pure states of the total
system that is associated with these data. Starting with the quantum system de-
scribed by an initial wave packet ¢ = L*(E), and with the initial “all off” state of the
medium, ¢ develops according to Eq. (4:15) until a jump occurs at random time 4, at
which time the wave packet is ¢:. The time # of the jump is governed by the
inhomogeneous Poisson process that is characterized by the probability P(¢, ¢ +dt)
for the jump to occur in the time interval (¢, £ +dt), provided it did not occur yet. It
is given by the formula

Pt t+dt)=1—exp(~ f ”"”/1(¢s))dsz,1(¢,)dt . (4-16)

The jump consists of a pair (classical event, quantum jump). The classical event is a
flip of the detector at a random point ¢ E. It happens at @ with probability density

2
— 19a¥t, .
HA="3g.) (417
When the classical detector flips at some point = a, then the quantum states jumps
from its actual state ¢:, to the new state ¢ given by

=Yoo 19)
and the process starts again.

It is worth noting that, for simple Gaussian packets, and for a free evolution, the
most probable place for a flip to occur is at the maximum of the actual wave-function.
That explains linear tracks. For more complicated geometries and dynamics
—numerical computation is necessary, at least until simple general laws are found
that are based on PDP.

4.3. Additional comments and discussion

The derivation given above, although containing all the essential steps, is still too
sketchy and needs some additional comments. First of all we remark that the
argument above is intended to show that the jump-event process that we have
described implies the Liouville equation. We did not attempt to prove here that the
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Liouville equation implies the process. For general Liouville equations one expects
that there will be several processes that lead to the same equation. For instance, in
Ref. 34) examples are discussed where the same Liouville equation can be associated
either with diffussion or with a jump process—the two cases corresponding to
different experimental detection schemes. On the other hand what we have in our
case is a very particular type of Liouville equation that describes pure measurement-
type coupling (with no extra noise) between a quantum and a classical system. For
such a Liouville equation we conjecture uniqueness. The arguments for uniqueness
of the stochastic process for a class of Liouville equations that describe measurement-
like couplings are given in Ref. 35). Using the method of Ref. 35) it is possible to
prove that the PDP described in the Introduction follows uniquely from the Liouville
equation (3+14)—at least for infinitesimal time steps. We do not have yet a complete-
ly rigorous proof for finite time steps.

Let us now discuss some mathematical details that may help the reader to fill out
some missing pieces in our short argument of the previous subparagraph. We claim
that the process described in the Introduction implies the Liouville equation (3-14).
In order to better understand this claim let us explain the precise meaning of the term
implies, which is not quite trivial in our context. Let K be the transition function (or,
more precisely, measure) of the process. Thus K (s; & I'; d€’, I'’) is the probability
that the process starting at (&, I') at time ¢, will end at (d€’, I'’) at time ¢t +s. The
process defines time evolution of measures on pure states. If x~(d€) is a measure on
pure states (of the total system) at time ¢, then it evolves into measure (@°y)(d€)=
Drfur(dE)K(s; &, I'; €, dl”) at time t+s. Now, each measure yr(df) defines a
density matrix {or} of the total system:

or= [Puur(de), | (4-19)

where P are projection operators onto pure states £. However, the association is
many-to-one, as the same quantum density matrix can be decomposed in infinitely
many ways into pure states. Therefore a general stochastic process with values in
pure states will not induce transformation of density matrices. For this we must
have the property that if # and 7 define the same density matrix, then as¢ and as/ also
define the same density matrix. By the duality between the algebra of bounded
operators and the space of trace class operators the last condition is equivalent to the
following one:

Consistency Condition: For each Hermitian A€ A and each s =0 there exist A’'€
Aot such that asfa=fa. If the condition holds, then A’ is uniquely defined, and by
setting a*(A)=A" we obtain: {a'(A)>,=<{A>aup) .

It is sufficient if the above condition is satisfied infinitezimally, i.e., if for each A there
exists -L(A) such that
d - (4-20)
Eafsf,ds:o—f.r(m .

That is exactly what we have done in § 4.2: we verified that D fa=f r), where .L(A)
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is the r.h.s. of Eq. (4:5). In this way we have proved two things: first, the process
taking values in pure states of the total system, described in the Introduction, satisfies
the compatibility condition and thus defines time evolution of density matrices, and
second, that time evolution of density matrices defined by the process coincides with
time evolution determined by the Liouville equation (3-14).

§5. Summary and conclusions

We have seen that a simple coupling between quantum particle and classical
continuous medium of two-state detectors leads to a piecewise deterministic random
process that accounts for track formation in cloud chambers and photographic plates.
For a passive, homogeneous medium the process is essentially identical to the sponta-
neous localization GRW model of Ref. 9). In particular all the theoretical and
numerical analysis that has been done for GRW models applies also in this case.

As mentioned in the Introduction, to simulate track formations only random
number generators and computing power is necessary. QOur model does not involve
observers and minds. This does not mean that we do not appreciate the importance
of the mind-body problem. In our opinion understanding the problems of minds needs
also quantum theory, and perhaps even more—that is still beyond the horizon of the
- present-day physics. But our model indicates that quantum theory does not need
human minds. Quantum theory should be formulated in a way that involves neither
observers nor minds—at least not more than any other branch of physics. Our model
can be considered as a step in this direction. It can rightly be criticized as being too
phenomenological to satisfy us wholly. But, provided it correctly accounts for
experimental results, it can give a valuable new insight into the quantum duality of
potential and actual, of waves and particles, and of determined and random.
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