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1 INTRODUCTION

Quantum Mechanics has proved to be tremendously powerful, practical, and
successful in the description of the micro-world of elementary particles, atoms and
molecules. There seems to be no limit to the versality of the Schrédinger equation
and to the power of Quantum Theory as an incredibly accurate computational tool
for the physicist, chemist, and biologist. The progress made in the last 70 years
has really been a matter of sharpening the quantum mechanical mathematical for-
malism rather than of our understanding of it. As Quantum Mechanics amassed
success after success only a few physicists remained fascinated by the fundamental
problems that remained unsolved. The proposed solutions to the quantum mea-
surement problem by e.g. von Neumann and Wigner — are no solution at all. They
merely shift the focus from one unsolved problem to another. Oun the other hand the
predictions for the outcomes of measurements performed on statistical ensembles
of physical systems are excellent. What is however completely missing in the stan-
dard intcrpretation is an explanation of experimental facts i.e. a description of the
actual individual time series of events of the experiment. That an enhancement of
Quantum Theory allowing the description of single systems is necessary is nowadays
clear. Indeed advances in technology make fundamental experiments on quantum
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systems possible. These experiments give us series of events for which there are
definitely no place in the original, standard version of quantum mechanics, since
cach cvent is classical, discrete and irreversible. In recent papers [1 8] we provided
a definite meaning to the concepts of experiment and event in the framework of
mathematically consistent models describing the information transfer between clas-
sical event-space and quantum systems. We emphasize that for us the adjective
‘classical’ has to be understood in the following sense: to each particular experi-
mental situation corresponds a class of classical events revealing us the Heisenberg
transition from the possible to the actual and these events obey the rules of classical
logic of Aristotle and Boole. The World of the Potential is governed by quantum
logic and has to account for the World of Actual, whose logic is classical. We accept
both and we try to sce what we gain this way. It appears that working with so
enhanced formalism of quantum theory we gain a lot. ' We proposed mathematical
and physical rules to describe
- the two kinds of evolution of quantum systems namely continuous and stochastic

the flow of information from quantum systems to the classical event-space

the control of quantum states and processes by classical parameters.

In our event-enhanced formalism the quantum system L, is coupled to a classical
space ¥, where events do happen — and a measurement is nothing else but a
particular coupling between ¥, and X.; in a simplest case — via a completely positive
semigroup «; = €'’ in such a way that information can be transferred from %, to
.. We consider the total system ¥, = 2, x X, and the behaviour associated to
the total algebra of observables

Ao = Ay @ A = L(H,) @ C(X,)

where X, is the classical event-space and H, the Hilbert space associated to the
quantum system. The “classical” pure state corresponds to a point in X, and
the coordinates of this point corresponds exactly to the properties of .. There
is no such correspondence in Hy. The quantum state is a unique sort of entity.
Time evolution of ensembles of coupled system, prepared by the same algorithm,
is described by a Liouville equation in the Hilbert space H; of the total system
with H, = H, ® L*(X,). Individual quantum systems and the classical degrees of
freedom are described by pairs of pure states: a pure state of the classical system 3,
and a pure state of the quantum system X,. Time evolution of this pair is derived
from the Liouville equation. It is a piecewise deterministic random Markov process.
At random times distributed according to a specific inhomogeneous Poisson process
jumps occur. There are jumps of the quantum state vectors and also at the same
time jumps of the states of X.. These second jumps we can “see” (to measure a
quantity we must “look at it” ) and these classical events can be recorded if necessary.
Sometimes these can be jumps of a “pointer” discrete positions, sometimes jumps
in the pointer’s velocity. Knowing this PD-process one can answer many (perhaps
even all) kinds of questions about time correlations of the events as well as simulate
numerically the possible histories of individual systems. What we achieved in this

'Referring in the title to Christopher Columbus seems to us appropriate for two reasons. First
he is known mainly as the discoverer of the New World despite the fact that he was certainly not
the first European to land on the coast of the Americas. But his achievement is distinguished
from the earlier adventures by its consequences. Second, according to legend, in addition to being
a famous navigator, Columbus also knew a thing or two about the phenomenological solution to
an otherwise unsolvable problem - namely that of balancing an egg on its cnd on a flat table. His
solution, however, albeit simple and effective, was hardly acceptable to anybody clse.
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way is the maximum of what can be achieved without introducing hidden variables,
which is more than original orthodox interpretation gives. That is why we call our
approach the “Event Enhanced Quantum Theory”. Within this framework there
need not be cat paradoxes anymore — cats are allowed to behave as cats; we cannot
predict individual events as they are random, but we can simulate the observations
of individual systems. Our formalism is therefore closcly linked to practical matters
and is of relevance to today’s experimental Quantum Physics.

[n Section 2 we will briefly describe the mathematical and physical ingredients
of our class of phenomenological models. The range of applications is rather wide
as will be shown in Section 3 and 4 with a discussion of Bohm’s version of the EPR
experiment and the discussion of a general cloud chamber model. In a particular
case this model explains the extension of Quantum Theory formulated by Ghirardi,
Rimini and Weber in 1986. The GRW theory is based on a process of amplification
called spontancous localization [9]. Born’s interpretation of the wave function can
be derived and has not to be postulated. EPR. connection between a pair of distant
quantum entities that have previously interacted in some way seems to involve a
strange communication called by Einstein a “spooky action at a distance”. We dis-
cuss this problem briefly in Section 3. Section 5 deals with some other applications
and concluding remarks.

2 COUPLING QUANTUM SYSTEM TO THE CLASSICAL EVENT-
SPACE

For a long time the theory of measurements in Quantum Mechanics, claborated
by Bohr, Heisenberg and von Neumann in the 1930-s has been considered as an
esoteric subject of little relevance for real physics. But in the 1980-s the technology
has made possible to transform “Gedankenexperimente” of the 1930-s into real
experiments. This progress implies that the measurement process in Quantum
Theory is now a central tool for physicists testing experimentally by high-sensitivity
measuring devices the deeper aspects of Quantum Theory. Quantum mechanical
measurement brings together a macroscopic and a quantum system,

Let us briefly describe the mathematical framework we will use. A good deal
more can be said and we refer the rcader to [1 6]. Our aim is to describe a simple
model of a non-trivial transfer of information between a quantum system X, coupled
to a classical event—space X.. To concentrate on main ideas rather than on technical
details let us describe first a simple situation, namely that of a coupling correspond-
ing to a measurement of a discrete quantum observable. In this case the classical
event--space can be finite. As we shall see later in the applications it is possible to
handle continuous and infinite dimensional generalization of this framework. To the
quantum system there corresponds a Hilbert space H,. In H, we consider a family
of orthonormal projectors e; = ef =¢€?, (i =1,....,n), Y., e, = 1, associated to an
observable A = 37" | Ae; of the quantum mechanical system. The space of classi-
cal events is supposed to have m distinct pure states, and it is convenient to take
m > n, otherwise some information about the quantum system can be lost. The
algebra A, of classical observables is in this case nothing else than A, = C™. The
set of classical statistical states coincides with the space of probability measurcs
on X.. Using the notation X, = {sq,..., Sm_1), a classical state is therefore an m-
tuple p = (o, ..o, Pm-1), Pa = 0, Z;";Ol Pe = 1. The state sy plays in some cases a
distinguished role and can be viewed as the neutral initial state of a pointer. The
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algebra of observables of the total system Ay, is given by Ay = A, ® L(H,) =
C™® L(H,) = @&, L(H,), and it is convenicnt to realize A,y as an algebra of
operators on an auxiliary Hilbert space Hy = H, ® C" = @'~} H,. Aot is then
isomorphic to the algebra of block diagonal m xm matrices A = diag(ag, a1, ..., dy_1)
with a, € L(H,). States on A,y are represented by block diagonal matrices
p = diag(po, p1, ..., pm—1), where the p, are positive trace class operators in L(H,)
satisfying moreover X, Tr (p,) = 1. By taking partial traces cach state p projects
onto an effective quantum state m,(p) and an effective classical state 7.(p) given
respectively by 5 = 7m,(p) = X o Telp) = (Tt po, Tt p1, ..., T pp_y). Let us con-
sider dynamics. A nontrivial coupling between both systems is impossible withont
a dissipative term. The time evolution of the total system is given (in the simplest
case that we consider) by a semigroup o = ' of completely positive maps of A,
preserving hermiticity, identity and positivity - with L of the Lindblad form

L(A) — i[H, A+ S (V2 AV, - —;-{Vl*v;,A}). ()

i=1

There is a simple method of constructing appropriate couplings. In order to
couple ¥, to X, in such a way that the coupling will correspond to measurement of
the given quantum observable A = >0 | Ae;, the V; are chosen as tensor products
Vi = Vhe; ® ¢, where ¢, act as transformations on classical (pure) states. Denoting
p(t) = «(p(0)), the time evolution of the states is given by the dual Liouville
equation

1) = —ilH, (0] + SOV~ L (VVe a0, ©)

where in general H and the V, may depend explicitly on time (in fact, H can also
carry an index: H — H,).

In [1] we propose a simple, purely dissipative Liouville operator (i.c. we put
H = 0) that describes an interaction of }>, and 3., for which m = n 4+ 1 and
V; = ¢; ® ¢;, where ¢; is the flip transformation of X, transposing the neutral state
so with s;. We show that the Liouville equation can be solved explicitly for any
initial state p(0) of the total system. The quantum probabilities are after switching
on of the interaction, mirrored by the state of the classical systemn. Morcover we
show that the effective quantum state p(t) = m,(p(t)) of the quantum subsystem
tends for t — 400 to a limit which coincides with the standard von Neumann-
Liiders quantum measurement postulate. The model can be easily generalized (cf.
Refs. [4-8]) to include measurements of fuzzy or noncommuting observables (in
fact, in the cloud chamber model, discussed in Section 4, we are measuring fuzzy
position of a quantum particle).

The total system ¥, = ¥, ® X, is open. Thus one can try to understand its
dynamical behaviour as an effective evolution of a subsystem of unitarily evolving
larger quantum systems. Although mathematically possible and studied by many
authors (for a recent discussion related to quantum measurements cf. Ref. [10])
- such an enlargement is non unique and our understanding of the problem of
“minimal” extensions in the case of mixed, classical4+-quantum, systems is still rather
poor. Morcover, it is not clear at all what practical gain can be achieved this way.
Therefore we prefer to extend the prevailing paradigm and learn as much as possible
how to deal directly with open systems.

A complete general theory of dissipative couplings of quantuin systems to classi-
cal ones does not, vet exist. The best we can do is to study a lot of examples. In the
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following sections two characteristic situations will be presented. Sce Refs. [2-6] for
more examples. For every example we have considered, a piecewise deterministic
random process has been constructed that takes place on the state of pure states
of the total system and which reproduces the Liouville equation of the total system
by averaging. A theory of piccewise deterministic processes (PDP) is described in
a recent book by M.H. Davis [11]. Examples of processes of this type but with-
out a non-trivial evolution on the classical space were also discussed in a physical
context [12-15]. Piecewise deterministic Markov processes enjoy deterministic dy-
namics punctuated by random jumps generated by a Markov stochastic structure.
The model introduced by Davis contains virtually all nondiffusion models of applied
probability. A PDP is determined by its local characteristics:

i) A vector field X which determines a flow ® on the state space .S

i) A jump vate function A,
iii} A transition probability matrix Q.

From these characteristics a right-continuous sample path z; of the process
{z:}i>0 starting at = may be constructed as follows. Define z, = ®(t,z) for
0 < t < t}, where ] is the realization of the first jump time #; with general-
ized exponential distribution determined by P.[t; > t] = exp (~ JEN®(s, :E))ds) )
We may now restart the process at z,; according to the same recipe and proceeding
recursively we obtain a sequence of jump times 7,15, ... between which X, follows
the integral curve of X. The space S itself is a disjoint union of smooth manifolds
S,, and jumps happen between different S, (the vector field is also parametrized by
the index ¢). Let us denote now by « the parameter characterizing the point in the
classical event—space (it corresponds to « above). Each observable A of the total
system defines now a function fa(1, o) on the space S = {(v, &)} of pure states of
the total system ¥, = X, ® 3,

fa(ih,a) =<, Agp > .

In [3-8] we showed that the time evolution for observables can be written in a Davis
form

d
afA(‘IZMO/) = [(Xg + Xp)fl(v, )

A, Y [ Q,a3d0, B){14(6, 5) ~ fa(0, )]
3

where () is the transition probability matrix of the PDP. In Section 3 and 4 we will
describe processes associated to semigroups of the above type.

3 BOHM’S VERSION OF THE EPR EXPERIMENT

The anti-realism of the Copenhagen interpretation of Quantum Mechanics was
met head — on by the very nice thought experiment proposed 1935 by Einstein,
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Podolsky and Rosen [16], today commonly called EPR. The argument proceeds
by characterizing and using the key notions of Completeness, Reality and Locality.
The most perspicuous Bohm version of the EPR argument considers a system which
decays into a pair of particles, which travel in opposite directions along the z axis.
Ignoring all but spin, each particle, call them L and R for left and right, is associated
with its own two dimensional Hilbert space C?. The spin of the system is zero to
start with and this is supposed to be conserved. Thus if L has spin +1 in the 2
direction then R must have spin —1 in the same direction. In the singlet state the
system is represented by the state ¥p = (|+L > Q- R> +| - L > Q|+ R >
)/V/2 where | + L > and | — L > are the spin eigenstates for the L particle and
| + R > | — R > the eigenstates for the R particle. If we measure the spin of
the L particle, and if we know that the total spin is conscrved, we then know
the state of k. While it might be concerned that the spin measurement on the
L particle may have disturbed it the same cannot he said of the IR particle which
should be unaffected by the measurement. In other words we are in a position to
predict with probability one the state of the R particle and since we could not have
influcnced it (Locality) it follows that the spin of the R particle exists independently
of measurcment, (Reality), which implies that Quantum Mechanies, not being able
to predict the result with certainty, does not completely describe the whole of reality
(Completeness).

Let us describe an EPR-type set up. The quantum Hilbert space H, is
C? ® C? (we have two particles). For the classical Hilbert space that accomodates
events we choose C* x C? (we have detectors on the left and right).

Let us first remark that the statistics (Bose, Fermi,... ) of the two particles that
originate from a common source does not play a role here, since in the experimental
situation EPR considered the two particles fly apart to the left and right ends of
the laboratory. We define now four properties to be measured
E\: Is spin up in the z-direction at the left end?, Fy = Bt = 1 — F|
E}: Is spin up in the n-direction at the right end?, F) = it =1 — F|
It is clear that [E;, B/l =0, 4,j=1,2.

In the Hilbert space H;, = C? ® C? ® C* @ C? of the total system we introduce now
four operators Vi,V 4,j = 1,2 defining the Lindblad generator

=VIE®A®I, V/=VNE®1® A,

where (Aj)ap = diadog, fori =12, =0,1,2. Assuming quantum Hamiltonian
H, it is now easy to describe the associated PD-process. We get the following table
of transitions, there rates, probabilities and jumps:

o,

0) — AN 25 IEwl? v — B
(0,0) —

) —

1) —

( ) HEH/’tH
(2,0) A+ X Z2pl Bl o —
(0,0) = (0,6) A+ SUER® w
(0,1) — (i, 1)
(1,2)

(L,0) —

where 9, = U(t)y = exp(—iHt)).

We may ask now the question whether the statistics of cvents on the right
depends on measurements performed on the left. To answer this question let us
compute the probability that the pointer on the right will jump from 0 to 1 during
the time interval (0, ). This can happen in three ways:

[ E2the]]
Ely
i1 A —XjA,HEth‘Z W,

&bl
E. ¢
b
N /\+/\’ Epll* 4

{115,301
E;U)/
[ B |

lllll

1,4

’
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1. as a dircct transition (0,0) — (0,1)
2. as a composite transition (0,0) — (1,0) — (1,1)

3. as a composite transition (0.0) — (2,0) — (2,1)

Transition 1 happens in the time interval (0,¢) with probability
!

/)— A
11—/\+/\,

Bl (1= e G2, (3)

The composite transition 2 happens with probability

D2 ./: )/\—HE1U(.S)'z/)]]z(i—(’\ﬂ”’)«ﬁ()\ + /\’)(],S

AN

EU(s)y o
XHE{U(tS)ﬁq;%HHQ % (1 Nt ‘>)

t B . l
/ e dg s |BLU(E — s)E U (s)0]]? % (1 —e? (’*S))
Jo

and a similar formula with Fy replaced with Fy gives p3. If now
[U(s)*EU(s),U(s') E;U(s")] = 0 5,8 <t (4)
then a straightforward computation gives the result:
P pe s — |EU@0] (1—e ) (5)

It follows that as long as the usual locality assumptions (4) are satisfied, the event
statistics seen on the right does not depend on what is measured on the left, and
whether anything is measured there at all. We stress that this observation alone
should not be used to conclude that superluminal signalling using EPR is impossible
- this for the very reason that we were considering a particular and simplified model.
What we proved is only that superluminal communicators must necessarily use more
refined methods than the one considered above.

4 CLOUD CHAMBER MODEL AND GRW SPONTANEOUS LOCA-
LIZATION THEORY

Our aim is now to account for the tracks that quantum particles leave in cloud
chambers. Physically a cloud chamber is a highly complex system. To describe the
response of the chamber to a quantum particle it is sufficient to assume that we
have to do with a collection of two state systems able to change their state when a
particle passes nearby a sensitive center. Let us sketch the model proposed in [7],
8.

Let us consider the space E = R? as filled with a continuous medium which can
be at cach point @ € F in one of two states: “on” represented by (é) and “off”

represented by (?) The set of all possible states of the system is then 2£. But we
will be only interested with a continuum of states namely the “vacuum” and states
which differ from the vacuum only in a finite number of points. As vacuum let us
choose the state “off” everywhere. The space of classical events can be identified
with the space of finite subsets of E from which it follows that the total system
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Sie = L, ® X, is described by families {pr}rcz, T finite subset of E. For each
a € E let g, be a Hermitian bounded operator which represents heuristically the
sensitivity of the counter located at a. We can think of g, as a gaussian function
go(x) centered at = a. We denote

[ gi@)da = AGw). (6)

The quantum mechanical Hilbert space is then H, = L*(R? dz). Each state p of
the total system can be, formally, written as p = > 1cs pr ® er, where, for I' € S|

ér = H BackE (XI‘(EG) 1-— )?r(@)) ) (7)

and where xp stands for the characteristic function of I'. The Lindblad coupling is
now choosen in the following way

Lodp) = [ dalVipVe — 0200 0

where V, = g, ® 7o, 7, denoting the flip at the point a € R3. Let us introduce
the following notation: a(I') represents the state I" with the counter at position
a flipped, i.e. a(T) = (T'\ {a}) U {{a} \ T} . The Liouville equation is given by
p=—ilH, p| + Lint(p) . But using the following identity in Eq. (8)

VopVe = Z Gaprda @ €q(ry = Z 9aPa(r)Ja & €q (9)
r r

we can write 1
pr = —i[H, pr] + /R3 daGaparya —~ §{A7Pr} . (10)

Summing up over [' we get for the effective quantum state p = > p pr

A, L,
p= —i[H, p] — /RE daga p ga = 5{N, P} - (11)

Let us emphasize that the time derivative of p depends only on p. Moreover
(11) is exactly of the type discussed in connection with the spontancous localization
model of Ghirardi, Rimini and Weber [9], the difference being that GRW considered
only the constant rate case, and were simply not interested in the classical traces
of particles.

We can also construct the associated PD Markov process. We get for time
cvolution observables the same equation as in (10, except for the sign in front
of the Hamiltonian. By taking cxpectation values we obtain a Davis generator
corresponding to rate function A(¢) = (¢, Av), and probability kernel ¢ with non-
zero elements of () given by

Ga olI* ' a b '
Q@, T dy', a(T)) = “i(z)’)' 8(¢' — ll? ;}H)dz/). (12)

Time evolution between jumps is given by:

o exp (—th — %) (7
o (—iHE— ) goll

P (13)
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The PD process can be described as follows: ¢ € L*(R?, dx) develops according
to the above formula until at time #; jump occurs. The jump consists of a pair:
(classical event, quantum jump). The classical medium jumps at ¢ with probability
density

plasvn) = llgatbu II*/ M) (14)

(fip of the detector) while the quantum part of the jump is jump of the Hilbert
space vector ¥y, to gay, /||gath, || and the process starts again. The random jump
time f; is governed by the inhomogeneous Poisson process with rate function A(v).
If the medium is homogeneous, then A() = const = A, and we obtain for quantum
jumps the GRW model. More complete discussion can be found in Refs. [7,8]. 2

Derivation of Born’s interpretation Let us consider now the idealized case of a

homogeneous medium of particle detectors that are coupled to the particle only for
a short time interval (£, £+ At), At — 0 with intensity A, so that AAtL — oo. Let us
also assume that the detectors are strictly point-like that is, that g*(z) — Aé(z—a).
In that case the formula (14), giving the probability density of firing the detector
at a, becomes p(a; 1) = ||go¥||*/X = |¥(a)]* and we recover the Born interpretation
of the wave function. The argument above goes as well for the case of a particle
with spin.

Remark 1 For free particles in a homogeneous medium, i.e. H = —;—fj—LA, and for
gaussian wave packets, straight lines are the most probable one. Indeed starting
with a moving gaussian wave packet ¢, then the probability of a registration of the
particle at a is {| 494, ||?/A which is maximum if a coincides with the center of the

gaussiarn.

Remark 2 For different values of the parameters we obtain different situations.
Choosing A =~ 1072 years and a “universal” medium we obtain exactly the sponta-
neous localization model 4 la GRW. But we can also obtain standard nice particle
tracks. The behaviour depends essentially on the relation between the two time
scales: the one given by the energy spectrum and the other provided by the jump
rate function.

Remark 3 In [8] the above model is discussed in more details introducing a multi-
particle cloud chamber model. For a homogeneous medium one gets, for the effective
statistical state of the quantum system, exactly the same equation as in Ref. [18].
For N particles the localization effect is proportional to the number of particles.
The rate of jump, even in a homogeneous medium, is no more constant and the
formulas given there provide the framework for a numerical simulation.

Remark 4 Several authors tried to explain track formation by a purc Hamiltonian
theory (for recent attempts cf. Ref [19,20]). We know of no successful derivation
that leads to a clear law relating rate of detections to geometry of detector locations
and shape of wave function. The law we derive could have been in principle obtained
already by E.B. Davies [21].

2We could translate our simple algorithm of track formation into the language of stochastic
differential equations and filtering theory (cf. e.g. Ref. [17]), but that would serve no useful
purpose at all — as all questions of interest can be answered using PDP algorithm, either by
analytic computation, or by numerical simulation as in Monte Carlo Wave Function method of
Refs. [12-15].
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CONCLUDING REMARKS

We have seen that the word “measurement” instead of being banned, as sug-
gested by J. Bell [22,23] can be given a precise and acceptable meaning: an ap-
propriate CP coupling between the quantum system and a classical event-system,
where information about the quantum states is transfered to the classical recording
device by a continuous family of CP maps of the total system. It is fundamental to
note that a transfer of information from ¥, to . is impossible by any automorphic
evolution. For a discussion of this fact sce [6] and also Landsmann [24] and the
no-go theorem by Ozawa [25]. In the framework we propose, all probabilistic prop-
crties of Quantum Mechanics - as ¢.g. Born’s interpretation of the scalar product
as a probability amplitude — can be derived thanks to the PD Markov process.

Our approach is in some respects similar in spirit to the idea of Quantum
Stochastic Processes of E.B. Davies [26], especially to his class of “transition pro-
cesses”. The main difference being that he took the space of events as a primary
object, without recognizing usefulness of introducing a classical system whose states
can parametrize quantum dynamics and jump rates, and whose changes of states
constitute events.
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