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Abstract. We prove that, in constrast to the theories of continuous observation, in the formalism
of event enhanced quantum theory the stochastic process generating sample histories of pairs
(observed quantum system, observing classical apparatus) is unique. This result gives a rigorous
basis to the previous heuristic argument of Blanchard and Jadczyk.

1. Introduction

Effective time evolution of a quantum system is usually described by a dynamical semigroup:
a semigroup of completely positive, unit preserving transformations acting on the algebra
of observables of the system. A general form of generator of a norm-continuous semigroup
was published in 1976 independently by Goréial [1] (for matrix algebras) on the one
hand, and by Lindblad [2] (for the more general, norm-continuous case) on the other. It is
usually referred to as the Lindblad form; it reads

A=i[H, Al +)_ViAV, — J{A, A} (1)

where H = H* is the Hamiltonian{, } stands for anticommutator, and

A= "ViVe. 2

In contrast to a pure unitary evolution that describes closed systems and which is time-
reversible, the second dissipative part of the generator makes the evolution of an open
system irreversible. This irreversibility is not evident from the very form of the equation, it
is connected with the positivity property of the evolution. Formally we can often solve the
evolution equation backward in time, but positivity of the reversed evolution will be lost.

We can also look at the dual time evolution of states rather than of observables. For
states, described by density matrices, we get

p=—ilH Al+) VapVs = 3lp, A) ®)
where the duality is defined by Tp) = Tr(4p).
Here again only propagation forward in time is possible, when we try to propagate

backward we will have to deal with negative probabilities. This irreversibility is reflected
in the fact that pure states evolve into mixed states. How do mixed states arise? In quantum
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theory, similarly as in classical theory, they arise when we go from individual description
to ensemble description, from maximal available information to partial information. Or
simply, they arise by mixing of pure states. Pure states are represented by one-dimensional
projection operator®. If du(P) is a probabilistic measure on pure states, then the density
matrix p defined byp = [ P du(P) is a mixed state, unlessudP) is a Dirac measure.

In contrast to classical theory, however, in quantum theory decomposition of a mixed state
into pure ones is non-unique. So, for instance, the identity operator can be decomposed into
any complete orthonormal basist = ), |i)(i|, thus in indenumerably many ways. This
mysterious and annoying non-uniqueness of decomposition into pure states in quantum
theory can be simply taken as an unavoidable price for our progress from classical to
guantum—as a fact of life. And so it was. Yet it has started to cause problems in quantum
measurement theory.

The first attempt to give a precise mathematical formulation of quantum measurement
theory must be ascribed to John von Neumann. In his monograph [3] he introduced
two kinds of evolution: a continuous, unitary evolutidh of an ‘unobserved’ system,
and discontinuous ‘projections’ that accompany ‘observations’ or ‘measurements.” His
projection postulate, later reformulated byuders for mixed states, is expressed as follows:

‘if we measure a propertg of the quantum system, and if the propefyholds, then as the
result of this measurement the system which was previously described by a density matrix
o switches to the new state described by the density mawik/ Tr EpE.’

A whole generation of physicists has been influenced by this apparently precise
formulation. Few dared to ask: who are ‘we’ in the phrase ‘if we measure’ [4], what
is ‘measurement’ [5, 6], at which particular instant of time does the reduction take place?
How long does it take [7], if ever [8], to reduce? Can it be observed? Can it be verified
experimentally [9-11]? Nobody could satisfactorily answer these questions. And so it
was taken for granted that quantum theory cannot really be understood in physical terms,
that it is a peculiar mixture of objective and subjective. That it is about ‘observations,’
and so it makes little or no sense without ‘observers,” and without ‘mind’. There were
many who started to believe that it is the sign of a new age and the sign of progress. A
few opponents did not believe the completeness of a physical theory that could not even
define what constitutes ‘observation’ [5-6]—but they could not change the overall feeling
of satisfaction with the successes of quantum theory.

This situation started to change rapidly when technological progress made it possible to
make prolonged experiments with individual quantum systems. The standard ‘interpretation’
did not suffice. Experimenters were seeing with their own eyes not the ‘averages’ but
individual sample histories. In particular, experiments in quantum optics allowed one to
almost ‘see’ the quantum jumps. In 1988 Cook [12] discussed photon counting statistics
in fluorescence experiments and revived the question ‘what are quantum jumps?’ Another
reason to pay more attention to the notion of quantum jumps came from the several groups
of physicists working on effective numerical solutions of quantum optics master equations.
The works of Carmichael [13], Dalibardt al [14,15], Dumet al [16], Gardineret al
[17], developed the method of quantum trajectories, or the quantum Monte Carlo (QMC)
algorithm for simulating solutions of master equations. It was soon realized (cf e.g. [18—
22]) that the same master equations can be simulated either by the quantum Monte Carlo
method based on quantum jumps, or by a continuous quantum state diffusion. Wiseman
and Milburn [23] discussed the question of how different experimental detection schemes
relate to continuous diffusions or to discontinuous jump simulations. The two approaches
were recently also put to comparison by Garraway and Knight [24]. There are, at present,
two schools of simulations. Gisiat al [25] tried to reconcile the two arguing thathée
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guantum jumps can be clearly séatso in the quantum state diffusion plots. On the other
hand, already in 1986 Diosi [26] proposed a pure state, piecewise deterministic process that
reproduces a given master equation. In spite of the title of his paper that suggests uniqueness
of his scheme, his process, although mathematically canonical for a given master equation,
is not unique. This problem of non-uniqueness is especially important in theories of gravity-
induced spontaneous localization (see [27], also [28, 29] and references therein) and in the
recent attempts to merge mind-brain science with quantum theory [30-32], where quantum
collapse plays an important role.

In the next section we shall see how the situation changes completely with the new
approach to quantum measurement developed by Ph Blanchard and one of us (AJ) (see [33]
and references there)ln section 2 we will sketch the main idea of the new approach. We
will also indicate infinitesimal proof of uniqueness of the stochastic process that reproduces
the master equation for the total system, i.e. quantum systaassical apparatus. In
section 3 we give concrete examples of non-unicity when only a pure quantum system is
involved—as it is typical in quantum optics. In section 4 we give a rigorous, global proof
of unicity of the process, when classical apparatus is coupled in an appropriate way to the
guantum system. The technical part of the proof can be found in the appendix. Conclusions
are given in section 5. There we also comment upon the most natural question: we all
know that every apparatus consists of atoms—then how can it be classical?

2. The formalism

Let us sketch the mathematical framework of the ‘event-enhanced quantum theory’. Details
can be found in [33]. To describe events, one needs a classical systéinen possible
events are identified with changes of a (pure) stat€.0One can think of events as ‘clicks’
of a particle counter, changes of the pointer position, or changing readings on an apparatus
LCD display. The concept of an event is of course an idealization, like all concepts in
a physical theory. Let us consider the simplest situation corresponding to a finite set of
possible events. The space of pure stateg oflenoted byS,, hasm states, labelled by
a = 1,...,m. Statistical states of are probability measures af.—in our case just
sequencep, > 0,> ", p, = 1.

The algebra of observables 6fis the algebrad, of complex functions ors.—in our
case just sequences, o = 1, ..., m of complex numbers.

We use Hilbert space language even for the description of the classical system. Thus
we introduce ann-dimensional Hilbert space{, with a fixed basis, and we realizé. as
the algebra of diagonal matrices = diag(f1, ..., /). Statistical states o€ are then
diagonal density matrices diggt, ..., p»), and pure states of are vectors of the fixed
basis of H,.. Events are ordered pairs of pure states> 8, « # 8. Each event can thus
be represented by an x m matrix with 1 at the(«, 8) entry, zero otherwise. There are
m? — m possible events.

We now come to the quantum system. l@tbe the quantum system whose bounded
observables are from the algebdg of bounded operators on a Hilbert spakig. In this
paper we will assum@{, to befinite dimensional Pure states o are unit vectors irt{,;
proportional vectors describe the same quantum state. Statistical stafearef given by
non-negative density matricgs with Tr(p) = 1.

Let us now consider the total systefh= Q x C. For the algebrad, of observables

1 Complete, actual bibliography of the quantum future project is always available under URL:
http://www.ift.uni.wroc.pl/” ajad/qgf-pub.htm
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of T we take the tensor product of algebras of observableg ahdC: A, = A, ® A.. It
acts on the tensor produti, ® H. = ®_, He, where'H, ~ H,. Thus.A, can be thought
of as algebra otliagonalm x m matricesA = (aqg), Whose entries are quantum operators:
Qg € Agy aqp =0 for o # .

Statistical states of) x C are given bym x m diagonal matricep = diag(ps, ..., pm)
whose entries are positive operatorsigy with the normalization Tip) = >, Tr(p.) = 1.
Duality between observables and states is provided by the expectation {lipe=
Yo TH(Aapa).

We will now generalize slightly our framework. Indeed, there is no need for the quantum
Hilbert space$,, corresponding to different states of the classical system, to coincide. We
will allow them to be different in the rest of this paper. We dengte= dim(H«).

We now consider dynamics. It is normal in quantum theory for classical parameters
to enter the quantum Hamiltonian. Thus we assume that quantum dynamics, when no
information is transferred fronQ to C, is described by Hamiltonian#,, : H, — H,
that may depend on the actual statelofas indicated by the index). We will use matrix
notation and writeH = diag(H,,). Now take the classical system. It is discrete here. Thus
it cannot have continuous time dynamics of its own.

As in [33] the couplingof Q to C is specified by a matri¥’ = (g.5), whereg,z are
linear operatorsig,s : Hg —> H.. We putg,, = 0. This condition expresses the simple
fact: we do not need dissipation without receiving information (i.e. without an event).
To transfer information fromQ to C we need a non-Hamiltonian term which provides a
completely positive (CP) coupling. As in [33] we consider couplings for which the evolution
equation for observables and for states is given by the Lindblad form

Aa = i[Ha, Aa] + Zg;;aAﬂgﬂa - %{A(xv Aa} (4)
B
or equivalently:
pu = =1 Ho pal + ) 8app8ip — 5 (A o) ®)
B
where
Ao = Zg/gagﬂa' ©)
B

The above equations describe the statistical behaviour of ensembles. Individual sample
histories are described by a Markov process with values in pure states of the total system.
In [33] this process was argued to be infinitesimally unique. For the sake of completeness
we repeat here the arguments. First, we use equation (5) to compidte when the initial
statep, (0) is pure:

Pa(0) = Saaq | V0) (Yol (7

In the equations below we will discard terms that are higher than linear order ifrat
o = ag We obtain

Pao (A1) = |90) (Yol — i[ Hay [V0 >< Yol] di — 3{Auq. [0} (Wol} dt (8)
while for o # ag
Pao (dF) = 8aaol o) (Y0lgq, df- 9)

The term fora = g can be written as
,an(dl‘) = Pa0|1ﬂao>(1ﬁao| (10)
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where
; 1
T Zﬁi—'ﬁi :Itt - 2;; zgi(;n -

and

P = 1 = A (Y0, AgoPo) di. (12)
The term witha # ag can be written as

o (At) = pola) (Yol (13)
where

Pa = l|gaasVoll* dt (14)
and

wp Y0
Y = h (15)

This representation is uniqgue and it defines the infinitesimal version of a piecewise
deterministic Markov process. The process is defined by the following piecewise
deterministic algorithm (cf [33]).

Let us assume a fixed, sufficiently small, time step Guppose that at time the
system is described by a quantum state vegtprand a classical statey. Compute the
scalar produci(vo, ag) = (Yo, Aey, Yo). Choose a uniform random numbegre [0, 1].

Jump if p < A(¥o, xg) dt. Otherwise do not jump. When jumping, change— « with

prObablllty Pag—a = ||gaa01ﬂ0||2/)»('ﬂ0, O50)1 and Changeﬂo - gaaowO/”gaaowO”- If not
jumping, change

exp{—iHy, df — 3 Ay, dt}io
% .
Il exp{—i Hao df — £ A, dr} ol
Repeat the steps.

t— t+dr.

4

3. Non-uniqueness in the pure quantum case

In this section we will show on simple examples the nature of non-uniqueness in the pure
guantum case. At first let us note that so-called ‘canonical decomposition’ of a dynamical
generatorL is not unique. To see this suppose that

n

. 1
L(p) = ~i[H. p] + ) _ axpa; — 2{ D> aiar, p}
k=1

k=1
where H = H* is the Hamiltonian and; are arbitrary bounded operators. Let us define

- 1 n
H=H+ —(§-§* I = A
+ 2|( ) dg 1:21 aa + 2k
wherez; € C, (Ax) is a unitary matrix ands = ), ; zxhua- ThenL(p) given by

= oo L (N
L(p) = —i[H. p] + ) _depdi” — 2{ > ddi, p}
k=1 k=1

coincides withL(p). For more details see [34].
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Now we show that the nature of the non-unigqueness is much deeper than that described
above. For simplicity let us consider a two-state quantum system whose algebra of
observables is equal td,,,. Let T, be a dynamical semigroup with a generatogiven by

L(p) = apa* — }{a*a, p}

wherea € My,».

3.1. Pure diffusion process

First let us show that the time evolution determinedi/bgan be described by a diffusion
process with values i€ P! [35]. Let a two-component complex valued procegs=

(1, w2 (prime denotes the transposition) be given by the following stochastic differential
equation,

dyi = fi(Y) B, + gi(Y)dr  i=12
where B; is a one-dimensional real Brownian motion and

&) =Y _((a")ai; — 3@ )iy — 3(a*)ila) ]
J

F@) =Y ayyi — (@)
J

_ (Wilaly) o (Wnla )
(@), = LLP0 gy, = P08 R
Wil Wil

Moreover, let us choose an initial conditiafy = (23, z3)’ such that|z3|* + |z3]° = 1.
Becausef; and g; are continuously differentiable (in the real sense)@n\ {0} so there
exists a local solution with a random explosion tiffigsee, for example, [36]). But

diy1? = v diy + 9 dy; +dly. ],
where ff/;, /], is the quadratic covariation aof, and+,. Thus
dly;. vile = 1 fi )2 dr
and so
diel® = D i vy + v dy) + 11 f (Y| dr = .
It implies thatT = oo with probability one and so our process is a diffusion with values in

a spheres®. Let us define a proces® with values in one-dimensional projectors by
Po= )Wl =Y ivle;
ij
wheree;; form the standard basis i#,.,. Then, using the equation
A )) = (Fw) + fiv) B + G + & + £ f) e
we obtain that
dP, =[(a — {a)) P, + P;,(a* — {a™),)]dB, — %{a*a, P} dt +aPa*dr.
Since B, is a martingale then after taking the average we get
dE[P] = aE[P]a*dr — %{a*a, E[P/]} dt.
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Let us define a density matrix, = E[P;]. Then
pr = apa”* — %{a*a, o1}
and so the average of the diffusion gives the quantum dynamical evolution.
Finally, we show thato, = [ P(z, xo,dy)Py, where Py, = |y)(yl, xo = |¥o)(¥ol
and P(z, x, dy) is the transition probability of the described diffusion. By the definition,

P(t, xo,T) is the distribution of the random variablg™ such thatP;° = xo. It implies
that for every bounded and measurable functfodefined onC P! we have

E[f(P)] = / F)P(t, xo, dy).
Let us consider a function given bg(y) = Tr(AP,), whereA € M,,,. Then
/Tr(APy)P(t, x0, dy) = E[Tr(A P,xo)] =Tr(Ap,).

So THA [ P(t, xo,dy) Py)) = Tr(Ap,) for every A and thusp, = [ P(t, xo, dy) P, with
Lo = Xo.

3.2. Piecewise deterministic solution

On the other hand, it is possible to associate with the same quantum dynamics a piecewise
deterministic process, as in the method of quantum trajectories [13]. Now the situation

is more complicated, because, in general, we cannot replace the Brownian motion by the
Poisson process. We have to solve a stochastic differential equation for an unknown process

(Ny, ¥).
dy! = fi(y-) dN; + g (y) dr

where f; and g; are prescribed functions, together with the following constraih:is a
semimartingale such that

(@) [N, N], = N,, No=0, E[N,] < oc for all t >

(b) for a given non-negative function: C2 — R the processV, ;= f A(Ys) ds
is a martingale.

It is clear thatM, will be a purely discontinuous martingale. A continuous, increasing
and with paths of finite variation on compacts proc§[§$(w,) ds is called the compensator
of N,. In our case due to assumption (a) it is also the conditional quadratic variatisn of
[36]. The functional () is called the stochastic intensity and plays the role of the intensity
of jumps. Let us recall that for the (homogeneous) Poisson prd\@essfot Ads =N, — At
is a martingale. From the assumption (a) above we obtamNhaﬂ; quadratic pure jump,
its continuous part is equal zero andV, = (AN,)?, where AN, = N, — N,—so it is a
point process. Let us emphasize that in general it is not an inhomogeneous Poisson process
since its compensator would be a deterministic function equal[#,] [37]. So it will be
the case only when the stochastic intensity is a deterministic function depending on

Moreover, IV, 1], = 0 as N, is of finite variation on compacts. This implies the
following symbolic rules:

(dN)? = dN dN dr = dtdN = 0.

From assumption (b) we get\fj = dN, — A(y,) dt. Let F; be ac-algebra of all events up
to time ¢. BecauseV/, is a martingale, s&[dM;|F;] = 0 which implies

E[AN;|F] = A(¥;) ot
see [39].
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Up until now the operator € M,.»> was arbitrary. A particular simple case is if we

take
a*=a= 0 1
7 \1 0

Then L(p,) = ap,a — p, and so the intensity

(Yela*aly)
AY) = (a*a), = """ =1
’ (v
which implies thatV, = N,. Because there is no deterministic evolution (we do not have
the Hamiltonian part and the jump rate is constant) so in this case we can pug, =0
and f1(Y,) = ¥2 — ¥, L(4) = ¥ — ¢? as the probability of a particular jump depends
on the difference betweep! and2. Thus we arrive at

dy; = f;(¥,-) dN,.

Using the identity df’, /], = f; f; dN, we find that d v |> = 0 and &P, = (a P,a—P;) dN,.
Taking the average we obtajiy = ap,a — p;, since N, — it is a martingale. The above
stochastic differential equation admits the following solution:

1+ (=™ 1—- (-
wzlzzé 2 +Z§ 2

1— (=DM 14 (=M
)

This implies that

1+ (=D N yol — (=DM
2 2

wherexo = |v0) (Yol and yo = |do) (dol, do = (a + a*) o = (2, 25/
If we take

. (o 1)
~\0 O
as is usual in quantum optics problems, then we have
Eak
I 112
So we need a point process whose rate function is random and the situation is slightly more
complicated. We have to use the more general method described at the beginning of this
paragraph.
Let us start with calculating functiong, which are responsible for the deterministic
flow. They are obtained by taking the derivative of

exq—%sa*a)l//,
Il exp(—gsa*a)y |
with respect tas and at the instant = 0. So we get
g(Wn) = 3(=a*a + (@ a)) .

It can be checked that the only functiofiswhich lead to the Lindblad equation are of the
following type,

[ = =y + V(W) €40 L) = —y?

P,=)Co

A(y) =

v [l
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whereh : C? — R is an arbitrary Lipschitz function. Let us point out that if we put
e" = y2/|y?| then we can writef in a compact form

a
fW) = ( - 1) 1
(a*a),

see [39], but it needs a careful interpretation because zero can appear in the denominator.
Again by simple calculations we find thaf¢,|> = 0 and

22 172 .
on = (Ljise k) o
1 ( 20y 22 w,1¢,2<|w,2|2—|1/f,1|2>>dt_

oy \ G222 S [ 2Ry

However, dV, = dM, + A(y;) dt so after averaging we get the quantum evolution equation
for p, = E[P/].

4. Global existence and uniqueness

After analysing a typical example of non-uniqueness in the pure quantum case, here we will
return to the general EEQT scheme as described in section ZI; lbet a norm-continuous
dynamical semigroup on states of the total algedracorresponding to equation (5). We
extendT; by linearity to the whole predual spacgr., which is equal tad;, because the

total algebra is finite-dimensional. L& denote a space of all one-dimensional projectors

in Ay. Becausedr = @571 M (n, x ny) We obtain thatt = U,CP, and SoE is a disjoint

sum of compact differentiable manifolds (complex projective spacég,jn We would like

to associate witlf, a homogeneous Markov—Feller process with valueg isuch that for
everyx € E

T,(Py) = / P, x.dy)P, (16)
E

where P(z, x, dy) is the transition probability function for the procegsandy — P, is
the tautological map, which assigns to every poirté E a one-dimensional projectar,.
This leads us to the following definition.

Definition. Let M(E) denote a Banach space of all complex, finite, Borel measures on
E. We say that a positive and contractive semigréyp M(E) — M(E) with a Feller
transition functionP (¢, x, I') is associatedwvith 7; iff equation (16) is satisfied.

Let us describe this notion more precisely. lzetbe a map between the two Banach
spacesM(E) and Ar, given by

() = /Eu(dx) Py.

It is clear thatr is linear, surjective, preserves positive cones gmd = 1. An intuitive
meaning of the mapr is clear: every measure on one-dimensional projections of the
total algebra defines an operator and every operator in the algebra decomposes into one-
dimensional projections. This decomposition is non-unique, because of the non-uniqueness
of the quantum decomposition of the unit, and kemeasures this non-uniqueness.

Proposition 1. U, is associated witlT; iff ker = is U, invariant andl, = T,, whereU, is
the quotient group ot/, by ker .
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Proof. Let U, be associated witlf,. It implies that

/P(t,.x, dy) 1))' = T}(P)L)
E

thus for anyuo € kerr we have

/ (Unpto) (@) P, = f / P(t. y, d) po(dy) P, = / T,(P,)po(dy)
E EJE E

= Tz[/Euo(dy) Py} =0

and soU, ug € kermr. Moreover,Yu € M(E)

Uzn(u)=n(Ufu)=/E(Uzu)(dy)Py=/E/EP(t,x,dy)u(dX)Py

- TUE u(dx)Px] — T,

Now let us assume thdt, = 7,, i.e. Vu € M(E) we haveU,7(w) = T, (w). Let us take
u =38,. Then

U, (8,) = (U, 8,) =/(Uz5x)(dy) Py ://P(tvz7dy)5x(dZ)Py
E EJE

= / P(t,x,dy) P,
E

and T, () = T,(P,) SOT,(P,) = [, P(t, x.dy)P,. O

This means that to find/, is to extend the semigroufy from M(E)/kermx to M(E)
in an invariant way. It should be emphasized that, in general, such an ‘extension’ may not
exist or, if it exists, need not be unique. We show that in our case, under mild assumptions,
the existence and the uniqueness can be proved.

Let us write the evolution equation for states in the Lindblad form

. : . 1 .
p = —i[H, p] +ka PVi — Z{P’kavk }
k k

where H = diag(Hi, ..., H,), H, = H} € M(ny, x ny) and V; satisfy the following
assumptions:

() (Vi)aw = O for everyk ande;

(b) if for somek, [, a, B (Vi)ag # 0 and(Vi)es # 0 thenk = I7.

We will now construct a Markov process on pure states of the total system, associated
with the above master equation, and then prove its uniqueness. Because we can already
guess the process from the infinitesimal argument of section 2, we start with the description
of the generator of the semigrodp that describes the process.

Let A be a densely defined linear operator ©E) with D(A) = C1(E) given by

(Af)(x) = Z Ca(X) f(Xe) = c(x) f(x) +v(x) f

aFag

T In general, we can allow for a weaker versiaivi)es # 0 and(Vi)eg # 0 = 3c € C: (Vi)ag = c(Vi)ag, but
this simply reduces to (b) above by the substitut{&m)(,ﬁ =1+ [cl2(Vi)ap and(V,)‘,ﬂ =0 fork #1.
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wherex € (CPaoy Coz(x) = Tr(PxWotan* ), Waoa = Zk(vk)aoot € L(Hct» H(Xo)l szoa =

(674104
>V € LMoy, Hy), c(x) = ZO,#D Ca(X), Py, = Wi, PiWage/ TH(PcWo0a Wy ,) €
CP, andx — v(x) is a vector field onE given by

. 1
v(x) = —i[ Hap, P] — Z{Px, > Waoawjoa} + P Tr (Px > WaanJOL,).
aFag aFag
It may be easily checked thatx) € T,CP, = T, E. Because

expl (—iHy, — % Za;&ao Waga Wo )] Py €Xple (i Hy, — % Za;ﬁao Waga Wepe)]

&(Py) =
! Tr(Px eXp[—t Za;ﬁao Waoa W;oa])

is an integral curve foo, we have thav is a complete vector field.

Theorem 2. A is a generator of a strongly continuous positive semigroup of contractions
S; on C(E).

Proof. A = A; + Ay, where (A1 f)(x) = Z#ao ca(X)8y, f — c(x)8,f and Ay = v.
It is clear that A; is a bounded and dissipative operator. It is also a dissipation,
i.e. A1(f? > 2fA.(f) for f = f. BecauseA, generates a flow orE given by
f(x) = f(g,(x)), whereg,(x) is the integral curve ob starting at the poink, it follows
that A = A; + Ay is the generator of a strongly continuous semigroup of contractions (see,
for example, [40]). Positivity follows from the Trotter product formula, since héthand
A, generate positive semigroups. O

Let P(r,x,T") denote the transition function of;. It is clear that this is a Feller
transition function [41].
Now prove that our process reproducgs

Theorem 3. Let (U,u)(I') = fE P(t,x,T)u(dx) for u € M(E). ThenU, is associated
with T;.

The proof is given in the appendix. We can pass to the uniqueness problem. Let us
consider a Markov pregeneratBp given by

(Bou)(x) = Y T (x)(3:0;u)(x) + Y _ V' (x)(du) (x)
ij i

+/ po(x, dy)u(y) — po(x, E)u(x) (17)
E

where (T (x)) form a positive matrix anduo(x, dy) is a positive measure such that
wo(x, {x}) = 0 for everyx € E. Its domainD(Bg) consists ofC*-functions. It follows

from the theory of Dirichlet forms that this is the most general form of a pregenerator of a
Markov semigroup (see [42]).

Theorem 4. Let B be the operator closure &h. If B generates a Markov—Feller semigroup
associated witlf; then D(A) = D(B) andA = B.

The proof is given in the appendix. Thus we have the uniqueness. In the proof we
used repeatedly the fact that our Hilbert spaces were finite-dimensional. In an infinite-
dimensional case the problem is much harder and we have no rigorous result. Our intuition
is shaped here only by the infinitesimal argument of section 3.
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5. Conclusions

We have seen that the special class of couplings between a classical and a quantum system
leads to a unique piecewise deterministic process on pure states of the total system that, after
averaging, recovers the original master Liouville equation for statistical states. Irreversibility
of the master equation describing time evolution of ensembles is reflected by going from po-
tential to actual in the course of quantum jumps that accompany classical events. Why is this
uniqueness result so interesting? During the roundtable discussions at the conf@guanee

tum Theory Without Observerkeld in Bielefeld in August 1995, the following wish was
repeatedly expressed: ‘in a complete quantum theory all should be in the equations, nothing
relegated to the background.” Although this statement was made in particular reference to
the consistent histories approach to quantum measurement theory, it applied as well to the
problem of quantum mechanical descriptions of individual quantum systems. The necessity
of having such a description became increasingly apparent as progress in technology enabled
us to perform continuous observations of individual atoms. Quantum opticians were among
the first to propose and to look for the philosophical consequences of stochastic algorithms
reproducing a given master equation (ME). It soon became apparent that not all is in the
equations. As we have illustrated in section 3 there are infinitely many different algorithms
that, after averaging, lead to the same ME. Yet, in each case, Nature chooses only one of
them. Our position is that the only way to have all in the equation is by admitting explicitly
the classical nature of part of the experimental set-up—according to Bohr's philosophy. We
interpret the results of the present paper as confirming that this is, indeed, the case.

One may ask what are the possible implications of EEQT in general, and of the
uniqueness theorem in particular? One of the simplest applications that is already worked
out is in the solution of Mielnik’s ‘waiting screen problem’ [43]. As shown in [11] the long
standing problem of the time of arrival observable in quantum theory (cf [44] for a recent
review) finds a simple solution within EEQT. Moreover, in [45] a relativistic formulation
of the event generating algorithm has been given. The uniqueness theorem of the present
paper applies also to this relativistic generalization—provided time is replaced by proper
time.

Our results may be compared to those obtained by Diosi [26]. As noted in the
introduction his ‘ortho-process’, using only the quantum master equation, although canonical
(in cases where there is no infinite-dimensional degeneraaywtisnique. It is, however,
interesting to observe that if the method by Diosi is generalized and extended to a hybrid
classical- quantum system then his prescription coincides with our process. This is not a
surprise because, as we have proven in this paper, our prigcassique one for the total
system.

That is all fine and good, but the natural question arises: whatassical? There
are several options possible when answering this question. First of all the theory may be
considered as phenomenological—then we choose as classical that part of the measurement
apparatus (or observer) whose quantum nature is simply irrelevant for the given problem.
Second, we may think of superselection quantities [46, 47] as truly classical variables. Some
of them may play an important role in the dynamics of the measurement process—this
remains for a while just a hypothesis. It is to be noted that Jibu and Yasue (cf [48],
especially the last section ‘Quantum measurement by quantum brain’ puts forward a similar
hypothesis in relation to the possible role of microtubules in the quantum dynamics of
consciousness.

Finally, a careful reader certainly noticed that in the formalism of EEQT one never really
needsC to be aclassical system. It can be a quantum system as well. What is important
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is that the the Liouville evolution preserves the diagonalCof Thus the end product of
the decoherence program [49-51] can be directly fed into the EEQT event engine. The
uniqueness result above will be immediately relevant in this case also.
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Appendix

A.1. Proof of theorem 3

At first we show thatvx € E
L(P,) = [A(P)](x) (18)

whereL is the generator of;, A is the generator of, andP : x — P,.

Letx € CP,,. In'H = @)/_;H, let us choose any orthonormal bagis ;, }f:::ll’;_'_'jf,’ja, for
which e, ;, € H,. Obviously, for anyP, € Ar.{eqi,|L(p)leg,i,) = 0 for o # B and the
same is true for4(P)](x). So it is enough to evaluate tfig, iz, jz)th matrix elements of
both sides of equation (18):

<eﬁ,iﬂ | W Px Waoa |e/3,jﬂ)

(07103

Tr(Py Wy WS,

(o744

(epi, [AP)](@)lep.j,) = D TH(PWaga W)

aFog

— Y TP Waga Wi ep.is| Peles )

aFag

. 1 .
+<eﬂ,iﬂ|< - I[Holo’ Px] - Z{Px’ Z WD‘OE‘WQDO(}

aFag

+PTr <Px > Waoawgﬂoa))wﬂ,jﬂ) = (ep.iy Wi 5 Pc Wagplep.j,)

0(730(0

. 1 )
+80¢0ﬁ (eﬂ,if;'( - I[Hotov Px] - Z{PX’ Z WaodWaoa}>|eﬂ,jﬂ>' (19)

aFag

On the other hand, thgth component of..(P,)

. 1 )
(L(Py))g = Z(Vk)zoﬁpx(vk)aoﬂ + 840 — <|[Hao7 P+ Z{Px’ Z(Vk)ﬁa(vk)ﬁa}>

k k,a

. 1 N
= W} 4 PiWaos + 5a0ﬂ( —i[Hyy, P] — Z{Px, > W”"”W""""}) (20)
aFog
where the last equality holds owing to assumptions (a) and (b) above. Taki(g) the js)th
matrix element of (20) we see that it coincides with (19), thus, due to arbitrariness of
(B, ig, jg), we have proved equation (18).
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Let F denote the finite-dimensional space of functions generated-by (| P, |¢). It
is clear thatF = {f : f(x) =Tr(AP,), A € Ar}. So dimF = dim Ay. We show thatF
is the null space for ketr. Let f(x) = Zi,j(x/f,-|PX|1pj) and letug € ker r. Then

po(f) = f,uo(dX) fx) = Z(%I / wo(dx) Py |yr;) = 0.
i

Moreover, because€A (y;|P|y;))(x) = (¥;|L(Py)|¥;) we have thatd : F — F and so
S, : F — F. This implies thatl, : ker = — ker & sinceU,u(f) = (S, f). Let U, be the
guotient semigroup. Then

lim 2[0,(P,) — P.] = lim “[x(U,8,) — P
t'ﬂ});[ ((Py) — x]—tm;[ﬂ( 18x) — Pyl
1
= ll_r)rg)t(//P(t,z,dy)Sx(dZ) P, — Px) = (AP)(x) = L(Py)

so U, and T, have the same generator and thus coincide. By propositigni4 associated
with T;. O

A.2. Proof of theorem 4
At first we show the following lemma.

Lemma 1. (Vi)eae = 0 = Yo € {1,...,m}Vx,y € CP, such thatP, L P, the equality
Tr[P,L(P,)] = 0 is satisfied.

Proof. Letx,y e CP, and P, LP,. Then
TPy L(P)] = =i Tr(Py[Ha, P]) + Y THPy(V{ Py Vi)aal
k

1 ) )
-5 ijTr[Py{Px, VeVi)aal] = ijTr[mvk PeVi)aal.

But
(VEPVidaa = (Vi) gy Pr(Vidaa = 0
so the assertion follows. O
We are now in position to show that the diffusion part is hecessarily zero.
Lemma 2. T (x) = 0 for everyi, j.
Proof. Because
B[Tr(P,P)](x) = Tr[P,L(P,)]

so, by the above lemma, for evesyand everyx, y € CP, such thatP, L P, we have that
B[Tr(P,P)](x) = 0. Let us denote the function— Tr(P,P;) by fy(z). Then, becuse,
is a smooth function,

(Bofy)(x) = / po(e. dz) f,@) + > TU () @8 f,) () + Y V)@ ) ().
ij i

CP,

Becausef, possesses a minimum at potso Y, Vi(x)(9; fy)(x) = 0 and we arrive at

/«: | Hox. 60) () + 3 T @2 f) () = 0.
w ij
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But (9;9; fy(x)) and(T" (x)) are positive matrices so, by Schur’s lemni& (x)d;d; fy(x))
is also a positive matrix. It follows that

Z T (x)9;9; f,(x) = 0.
ij
Now let us introduce a chart at point say,x = [(1,0, ..., 0)], (Uo, ¢o) such that

Uo = {[(Zo, 21, .. zn-1] 1z € C, Z|Zi|2 =1z0# 0}

z Zn—
¢0[(ZO5 Z:L’ IO ) Zl’l—l)] = (15 LICEU ) . 1) = (x:l_, yla eeey xn—lv Yn—l)
20 20
where x; = Re&(z;/z0), i = Im(zi/z0). Thengo(x) = 0 € R**~V. Let us choose

y=1[00,10,...,0)]. Itis clear thatP, L P, and so

n—1 2 ] .

7(0) —o.
ax '8 x,ay] 0y; 0y,

ij=1
But for everyj > 2 we have

M(O)— Ilm {8(]6‘8%( sees X =h,0,...,0) = M(O):|

ox 12 h—oo h X; 0x;
In the same way we prove that for evefy> 2
(fyodyh)

T
By positivity of the matrix D?( fyody 1)(0) we obtain that
2 o _1
Txl,i(x)M(O) + 2T (x) Oy 0 (0) + TR (x )M(O) —0.

ax? 0x 8 dy?
Let » be an embedding : CP! — CP, given by

A (zo, z0)] = [(z0, 21,0, ..., 0)].

It is clear thatx = A(no) andy = A(n) for some uniqueng, n € CP = S2. Let o be a
chart atng given by

Yo:CP —{n} > C  o(m)=pogooi(m)
wherep = C" — C is the projection onto the first coordinate. So we may write that
0*(fno Yo" 0*(fao o' 0%(fn
(]07021’00) 0) + 2012(n0)M(0) + a22(no)w

dg? 991992 995

whereat(ng) = T (x), a¥(no) = T (x), a®*(no) = T (x) andgi(m) = x1(.(m)),
g2(m) = yi(A(m)). Let us change the chanty, onto spherical coordinate®, ¢),
0<06 <m0 ¢ < 2rinsuch away thab(ng) = /2, ¢(ng) =0, i.e.ng = (1,0, 0)
and@(n) =7/2,9(n) =m,ie.n=(-10,0). Because

fa(m) = Tr(PpPp) = 3(1+4 (n, m)) = 3(1 — sinf cosyp)

att(no)

0 =

SO

Pfn, 02 fn an
898<p(n0) =0 592 (M0) =

(o)—*




1878 A Jadczyk et al

which implies thatz'(ng) = a*?(ng) = @??(ng) = 0, wherea’/ are the coefficients in the
chart (@, ¢). But it is equivalent to

T = T =T = 0.
Changingy = [(0, 1,0, ..., 0] into y =[(0,0, 1,0, ..., 0)] we obtain that
TR0 = TE@ =T =0

and so on. Thus, by the positivitf;’/ (x) = 0 for everyi, j. Becausex was arbitrary the
assertion follows. O

From the above lemma we conclude that the genertiw the closure of

Bou(x) = V(x)u +/ po(x, dy) u(y) — mo(x, E)u(x).
E

Lemma 3. Let X be a tangent vector t@ P, at pointP,. ThenP, + X >0 < X =0.

Proof. BecauseX ¢ T,CP, so P,.X + XP, = X. This implies thatP,XP, = 0 and
PrxPl =0, whereP! = I — P,. Therefore, in a basi®,H & P*HX is of the form

(}3 )é ) So P, + X is a positive matrix if and only if¥ = 0. 0

Lemma 4. By = Alc~.

Proof. BecauseA and B are generators of semigroups which are associated Tyjtfor
everyx € E we have that(B — A)P](x) =0. Letx € CP,,. Then

Vx)P + Z[E 1w (x, dy) Py — po(x, EYPy — ) ca(X) Py, + c(x) Py —v(x)P =0
a=1 Py

aFog
where uo 4 (x, dy) denotes the restriction gfo(x, dy) onto CP,. It is an operator valued
equation so it has to be satisfied for evergeparately. So for any # ag we get

/ MO,a(xvdy) Py:Ca(x)an
CP,
which implies thatug  (x, dy) = ¢, (x)3(x,)(dy). Forag we have
/ 0,00 (X, dy) Py — po(x, E)Py + c(x) Py + V(x) —v(x) = 0.
CPyy

Let us introducez(x) = c(x) — puo(x, E) andw(x) = V(x) — v(x). Then taking the trace
of the above equation we obtair{x) < 0. Let us assume that(x) < 0. This implies that

(x).

Hoeo (X, dy) Py = Py — ———w
la()l Jep, T a)l

The left-hand side of the above equation gives a positive operatowande 7,CP,, So,
by lemma 3,w(x) = 0. Thus we arrive at the contradiction becawsg, (x, {x}) = 0. So
a(x) = 0 and we obtain that

/ roeo(x, dy) Py +w(x) = 0.
(CPC(O

Evaluating the trace we get thab ., (x, CP,,) = 0. Because it is a positive measure it
vanishes on every Borel subset©f,,. Sow(x) = 0 too and hencel|c~ = Bo. O

BecauseB is the closure ofBg andC*>°(E) is a core forA, D(A) = D(B) andA = B.
This ends the proof of theorem 4. O
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