
J. Phys. A: Math. Gen.30 (1997) 1863–1880. Printed in the UK PII: S0305-4470(97)74843-1

On uniqueness of the jump process in event enhanced
quantum theory

A Jadczyk†, G Kondrat and R Olkiewicz
Institute of Theoretical Physics, University of Wroc law, Pl Maxa Borna 9, PL-50 204 Wroc law,
Poland

Received 23 May 1996, in final form 8 November 1996

Abstract. We prove that, in constrast to the theories of continuous observation, in the formalism
of event enhanced quantum theory the stochastic process generating sample histories of pairs
(observed quantum system, observing classical apparatus) is unique. This result gives a rigorous
basis to the previous heuristic argument of Blanchard and Jadczyk.

1. Introduction

Effective time evolution of a quantum system is usually described by a dynamical semigroup:
a semigroup of completely positive, unit preserving transformations acting on the algebra
of observables of the system. A general form of generator of a norm-continuous semigroup
was published in 1976 independently by Goriniet al [1] (for matrix algebras) on the one
hand, and by Lindblad [2] (for the more general, norm-continuous case) on the other. It is
usually referred to as the Lindblad form; it reads

Ȧ = i[H,A] +
∑
α

V ∗α AVα − 1
2{3,A} (1)

whereH = H ∗ is the Hamiltonian,{ , } stands for anticommutator, and

3 =
∑
α

V ∗α Vα. (2)

In contrast to a pure unitary evolution that describes closed systems and which is time-
reversible, the second dissipative part of the generator makes the evolution of an open
system irreversible. This irreversibility is not evident from the very form of the equation, it
is connected with the positivity property of the evolution. Formally we can often solve the
evolution equation backward in time, but positivity of the reversed evolution will be lost.

We can also look at the dual time evolution of states rather than of observables. For
states, described by density matrices, we get

ρ̇ = −i[H,A] +
∑
α

VαρV
∗
α − 1

2{ρ,3} (3)

where the duality is defined by Tr(Ȧρ) = Tr(Aρ̇).
Here again only propagation forward in time is possible, when we try to propagate

backward we will have to deal with negative probabilities. This irreversibility is reflected
in the fact that pure states evolve into mixed states. How do mixed states arise? In quantum
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theory, similarly as in classical theory, they arise when we go from individual description
to ensemble description, from maximal available information to partial information. Or
simply, they arise by mixing of pure states. Pure states are represented by one-dimensional
projection operatorsP . If dµ(P ) is a probabilistic measure on pure states, then the density
matrix ρ defined byρ = ∫

P dµ(P ) is a mixed state, unless dµ(P ) is a Dirac measure.
In contrast to classical theory, however, in quantum theory decomposition of a mixed state
into pure ones is non-unique. So, for instance, the identity operator can be decomposed into
any complete orthonormal basis:I = ∑

i |i〉〈i|, thus in indenumerably many ways. This
mysterious and annoying non-uniqueness of decomposition into pure states in quantum
theory can be simply taken as an unavoidable price for our progress from classical to
quantum—as a fact of life. And so it was. Yet it has started to cause problems in quantum
measurement theory.

The first attempt to give a precise mathematical formulation of quantum measurement
theory must be ascribed to John von Neumann. In his monograph [3] he introduced
two kinds of evolution: a continuous, unitary evolutionU of an ‘unobserved’ system,
and discontinuous ‘projections’ that accompany ‘observations’ or ‘measurements.’ His
projection postulate, later reformulated by Lüders for mixed states, is expressed as follows:
‘if we measure a propertyE of the quantum system, and if the propertyE holds, then as the
result of this measurement the system which was previously described by a density matrix
ρ switches to the new state described by the density matrixEρE/TrEρE.’

A whole generation of physicists has been influenced by this apparently precise
formulation. Few dared to ask: who are ‘we’ in the phrase ‘if we measure’ [4], what
is ‘measurement’ [5, 6], at which particular instant of time does the reduction take place?
How long does it take [7], if ever [8], to reduce? Can it be observed? Can it be verified
experimentally [9–11]? Nobody could satisfactorily answer these questions. And so it
was taken for granted that quantum theory cannot really be understood in physical terms,
that it is a peculiar mixture of objective and subjective. That it is about ‘observations,’
and so it makes little or no sense without ‘observers,’ and without ‘mind’. There were
many who started to believe that it is the sign of a new age and the sign of progress. A
few opponents did not believe the completeness of a physical theory that could not even
define what constitutes ‘observation’ [5–6]—but they could not change the overall feeling
of satisfaction with the successes of quantum theory.

This situation started to change rapidly when technological progress made it possible to
make prolonged experiments with individual quantum systems. The standard ‘interpretation’
did not suffice. Experimenters were seeing with their own eyes not the ‘averages’ but
individual sample histories. In particular, experiments in quantum optics allowed one to
almost ‘see’ the quantum jumps. In 1988 Cook [12] discussed photon counting statistics
in fluorescence experiments and revived the question ‘what are quantum jumps?’ Another
reason to pay more attention to the notion of quantum jumps came from the several groups
of physicists working on effective numerical solutions of quantum optics master equations.
The works of Carmichael [13], Dalibardet al [14, 15], Dum et al [16], Gardineret al
[17], developed the method of quantum trajectories, or the quantum Monte Carlo (QMC)
algorithm for simulating solutions of master equations. It was soon realized (cf e.g. [18–
22]) that the same master equations can be simulated either by the quantum Monte Carlo
method based on quantum jumps, or by a continuous quantum state diffusion. Wiseman
and Milburn [23] discussed the question of how different experimental detection schemes
relate to continuous diffusions or to discontinuous jump simulations. The two approaches
were recently also put to comparison by Garraway and Knight [24]. There are, at present,
two schools of simulations. Gisinet al [25] tried to reconcile the two arguing that ‘the
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quantum jumps can be clearly seen’ also in the quantum state diffusion plots. On the other
hand, already in 1986 Diosi [26] proposed a pure state, piecewise deterministic process that
reproduces a given master equation. In spite of the title of his paper that suggests uniqueness
of his scheme, his process, although mathematically canonical for a given master equation,
is not unique. This problem of non-uniqueness is especially important in theories of gravity-
induced spontaneous localization (see [27], also [28, 29] and references therein) and in the
recent attempts to merge mind-brain science with quantum theory [30–32], where quantum
collapse plays an important role.

In the next section we shall see how the situation changes completely with the new
approach to quantum measurement developed by Ph Blanchard and one of us (AJ) (see [33]
and references there)†. In section 2 we will sketch the main idea of the new approach. We
will also indicate infinitesimal proof of uniqueness of the stochastic process that reproduces
the master equation for the total system, i.e. quantum system+ classical apparatus. In
section 3 we give concrete examples of non-unicity when only a pure quantum system is
involved—as it is typical in quantum optics. In section 4 we give a rigorous, global proof
of unicity of the process, when classical apparatus is coupled in an appropriate way to the
quantum system. The technical part of the proof can be found in the appendix. Conclusions
are given in section 5. There we also comment upon the most natural question: we all
know that every apparatus consists of atoms—then how can it be classical?

2. The formalism

Let us sketch the mathematical framework of the ‘event-enhanced quantum theory’. Details
can be found in [33]. To describe events, one needs a classical systemC, then possible
events are identified with changes of a (pure) state ofC. One can think of events as ‘clicks’
of a particle counter, changes of the pointer position, or changing readings on an apparatus
LCD display. The concept of an event is of course an idealization, like all concepts in
a physical theory. Let us consider the simplest situation corresponding to a finite set of
possible events. The space of pure states ofC, denoted bySc, hasm states, labelled by
α = 1, . . . , m. Statistical states ofC are probability measures onSc—in our case just
sequencespα > 0,

∑
α pα = 1.

The algebra of observables ofC is the algebraAc of complex functions onSc—in our
case just sequencesfα, α = 1, . . . , m of complex numbers.

We use Hilbert space language even for the description of the classical system. Thus
we introduce anm-dimensional Hilbert spaceHc with a fixed basis, and we realizeAc as
the algebra of diagonal matricesF = diag(f1, . . . , fm). Statistical states ofC are then
diagonal density matrices diag(p1, . . . , pm), and pure states ofC are vectors of the fixed
basis ofHc. Events are ordered pairs of pure statesα → β, α 6= β. Each event can thus
be represented by anm × m matrix with 1 at the(α, β) entry, zero otherwise. There are
m2−m possible events.

We now come to the quantum system. LetQ be the quantum system whose bounded
observables are from the algebraAq of bounded operators on a Hilbert spaceHq . In this
paper we will assumeHq to befinite dimensional. Pure states ofQ are unit vectors inHq ;
proportional vectors describe the same quantum state. Statistical states ofQ are given by
non-negative density matriceŝρ, with Tr(ρ̂) = 1.

Let us now consider the total systemT = Q × C. For the algebraAt of observables

† Complete, actual bibliography of the quantum future project is always available under URL:
http://www.ift.uni.wroc.pl/̃ ajad/qf-pub.htm
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of T we take the tensor product of algebras of observables ofQ andC: At = Aq ⊗Ac. It
acts on the tensor productHq ⊗Hc = ⊕mα=1Hα, whereHα ≈ Hq . ThusAt can be thought
of as algebra ofdiagonalm×m matricesA = (aαβ), whose entries are quantum operators:
aαα ∈ Aq , aαβ = 0 for α 6= β.

Statistical states ofQ×C are given bym×m diagonal matricesρ = diag(ρ1, . . . , ρm)

whose entries are positive operators onHq , with the normalization Tr(ρ) =∑α Tr(ρα) = 1.
Duality between observables and states is provided by the expectation value〈A〉ρ =∑

α Tr(Aαρα).
We will now generalize slightly our framework. Indeed, there is no need for the quantum

Hilbert spacesHα, corresponding to different states of the classical system, to coincide. We
will allow them to be different in the rest of this paper. We denotenα = dim(Hα).

We now consider dynamics. It is normal in quantum theory for classical parameters
to enter the quantum Hamiltonian. Thus we assume that quantum dynamics, when no
information is transferred fromQ to C, is described by HamiltoniansHα : Hα −→ Hα,
that may depend on the actual state ofC (as indicated by the indexα). We will use matrix
notation and writeH = diag(Hα). Now take the classical system. It is discrete here. Thus
it cannot have continuous time dynamics of its own.

As in [33] the coupling of Q to C is specified by a matrixV = (gαβ), wheregαβ are
linear operators:gαβ : Hβ −→ Hα. We putgαα = 0. This condition expresses the simple
fact: we do not need dissipation without receiving information (i.e. without an event).
To transfer information fromQ to C we need a non-Hamiltonian term which provides a
completely positive (CP) coupling. As in [33] we consider couplings for which the evolution
equation for observables and for states is given by the Lindblad form

Ȧα = i[Hα,Aα] +
∑
β

g?βαAβgβα − 1
2{3α,Aα} (4)

or equivalently:

ρ̇α = −i[Hα, ρα] +
∑
β

gαβρβg
?
αβ − 1

2{3α, ρα} (5)

where

3α =
∑
β

g?βαgβα. (6)

The above equations describe the statistical behaviour of ensembles. Individual sample
histories are described by a Markov process with values in pure states of the total system.
In [33] this process was argued to be infinitesimally unique. For the sake of completeness
we repeat here the arguments. First, we use equation (5) to computeρα(dt) when the initial
stateρα(0) is pure:

ρα(0) = δαα0|ψ0〉〈ψ0|. (7)

In the equations below we will discard terms that are higher than linear order in dt . For
α = α0 we obtain

ρα0(dt) = |ψ0〉〈ψ0| − i[Hα0, |ψ0 >< ψ0|] dt − 1
2{3α0, |ψ0〉〈ψ0|} dt (8)

while for α 6= α0

ρα0(dt) = gαα0|ψ0〉〈ψ0|g?αα0
dt. (9)

The term forα = α0 can be written as

ρα0(dt) = pα0|ψα0〉〈ψα0| (10)
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where

ψα0 =
exp(−iHα0 dt − 1

23α0 dt)ψ0

‖ exp(−iHα0 dt − 1
23α0 dt)ψ0‖

(11)

and

pα0 = 1− λ(ψ0,3α0ψ0) dt. (12)

The term withα 6= α0 can be written as

ρα(dt) = pα|ψα〉〈ψα| (13)

where

pα = ‖gαα0ψ0‖2 dt (14)

and

ψα = gαα0ψ0

‖gαα0ψ0‖ . (15)

This representation is unique and it defines the infinitesimal version of a piecewise
deterministic Markov process. The process is defined by the following piecewise
deterministic algorithm (cf [33]).

Let us assume a fixed, sufficiently small, time step dt . Suppose that at timet the
system is described by a quantum state vectorψ0 and a classical stateα0. Compute the
scalar productλ(ψ0, α0) = 〈ψ0,3α0, ψ0〉. Choose a uniform random numberp ∈ [0, 1].
Jump if p < λ(ψ0, α0) dt . Otherwise do not jump. When jumping, changeα0 → α with
probability pα0→α = ‖gαα0ψ0‖2/λ(ψ0, α0), and changeψ0 → gαα0ψ0/‖gαα0ψ0‖. If not
jumping, change

ψ → exp{−iHα0 dt − 1
23α0 dt}ψ0

‖ exp{−iHα0 dt − 1
23α0 dt}ψ0‖

t → t + dt.

Repeat the steps.

3. Non-uniqueness in the pure quantum case

In this section we will show on simple examples the nature of non-uniqueness in the pure
quantum case. At first let us note that so-called ‘canonical decomposition’ of a dynamical
generatorL is not unique. To see this suppose that

L(ρ) = −i[H, ρ] +
n∑
k=1

akρa
∗
k −

1

2

{ n∑
k=1

a∗k ak, ρ
}

whereH = H ∗ is the Hamiltonian andak are arbitrary bounded operators. Let us define

H̃ = H + 1

2i
(S − S∗) ãk =

n∑
l=1

λklal + zk

wherezk ∈ C, (λkl) is a unitary matrix andS =∑k,l zkλklal . ThenL̃(ρ) given by

L̃(ρ) = −i[H̃ , ρ] +
n∑
k=1

ãkρãk
∗ − 1

2

{ n∑
k=1

ãk
∗
ãk, ρ

}
coincides withL(ρ). For more details see [34].
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Now we show that the nature of the non-uniqueness is much deeper than that described
above. For simplicity let us consider a two-state quantum system whose algebra of
observables is equal toM2×2. Let Tt be a dynamical semigroup with a generatorL given by

L(ρ) = aρa∗ − 1
2{a∗a, ρ}

wherea ∈ M2×2.

3.1. Pure diffusion process

First let us show that the time evolution determined byL can be described by a diffusion
process with values inCP 1 [35]. Let a two-component complex valued processψt =
(ψ1

t , ψ
2
t )′ (prime denotes the transposition) be given by the following stochastic differential

equation,

dψi
t = fi(ψt ) dBt + gi(ψt ) dt i = 1, 2

whereBt is a one-dimensional real Brownian motion and

gi(ψt ) =
∑
j

(〈a∗〉t aij − 1
2(a
∗a)ij )ψ

j
t − 1

2〈a∗〉t 〈a〉tψi
t

fi(ψt ) =
∑
j

aijψ
j
t − 〈a〉tψi

t

〈a〉t = 〈ψt |a|ψt 〉〈ψt |ψt 〉 〈a∗〉t = 〈ψt |a
∗|ψt 〉

〈ψt |ψt 〉 .

Moreover, let us choose an initial conditionψ0 = (z1
0, z

2
0)′ such that|z1

0|2 + |z2
0|2 = 1.

Becausefi and gi are continuously differentiable (in the real sense) onC2 \ {0} so there
exists a local solution with a random explosion timeT (see, for example, [36]). But

d|ψi
t |2 = ψi

t dψ̄ i
t + ψ̄ i

t dψi
t + d[ψi

t , ψ̄
i
t ]t

where [ψi
t , ψ̄

i
t ]t is the quadratic covariation ofψi

t and ψ̄ i
t . Thus

d[ψi
t , ψ̄

i
t ]t = |fi(ψt )|2 dt

and so

d‖ψt‖2 =
∑
i

(ψi
t dψ̄ i

t + ψ̄ i
t dψi

t )+ ‖f (ψt)‖2 dt = 0.

It implies thatT = ∞ with probability one and so our process is a diffusion with values in
a sphereS3. Let us define a processPt with values in one-dimensional projectors by

Pt = |ψt 〉〈ψt | =
∑
i,j

ψi
t ψ̄

j
t eij

whereeij form the standard basis inM2×2. Then, using the equation

d(ψi
t ψ̄

j
t ) = (f̄jψi

t + fiψ̄j
t ) dBt + (ḡjψi

t + giψ̄j
t + fif̄j ) dt

we obtain that

dPt = [(a − 〈a〉t )Pt + Pt(a∗ − 〈a∗〉t )] dBt − 1
2{a∗a, Pt } dt + aPta∗ dt.

SinceBt is a martingale then after taking the average we get

dE[Pt ] = aE[Pt ]a
∗ dt − 1

2{a∗a,E[Pt ]} dt.
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Let us define a density matrixρt = E[Pt ]. Then

ρ̇t = aρta∗ − 1
2{a∗a, ρt }

and so the average of the diffusion gives the quantum dynamical evolution.
Finally, we show thatρt =

∫
P(t, x0, dy)Py , where Py = |y〉〈y|, x0 = |ψ0〉〈ψ0|

andP(t, x,dy) is the transition probability of the described diffusion. By the definition,
P(t, x0, 0) is the distribution of the random variableP x0

t such thatP x0
0 = x0. It implies

that for every bounded and measurable functionf defined onCP 1 we have

E[f (P x0
t )] =

∫
f (y)P (t, x0, dy).

Let us consider a function given byf (y) = Tr(APy), whereA ∈ M2×2. Then∫
Tr(APy)P (t, x0, dy) = E[Tr(AP x0

t )] = Tr(Aρt ).

So Tr(A
∫
P(t, x0, dy)Py)) = Tr(Aρt ) for everyA and thusρt =

∫
P(t, x0, dy)Py with

ρ0 = x0.

3.2. Piecewise deterministic solution

On the other hand, it is possible to associate with the same quantum dynamics a piecewise
deterministic process, as in the method of quantum trajectories [13]. Now the situation
is more complicated, because, in general, we cannot replace the Brownian motion by the
Poisson process. We have to solve a stochastic differential equation for an unknown process
(Ñt , ψt ).

dψi
t = fi(ψt−) dÑt + gi(ψt ) dt

wherefi and gi are prescribed functions, together with the following constrain:Ñt is a
semimartingale such that

(a) [Ñ, Ñ ]t = Ñt , Ñ0 = 0, E[Ñt ] <∞ for all t > 0;
(b) for a given non-negative functionλ : C2→ R the processMt := Ñt −

∫ t
0 λ(ψs) ds

is a martingale.
It is clear thatMt will be a purely discontinuous martingale. A continuous, increasing

and with paths of finite variation on compacts process
∫ t

0 λ(ψt) ds is called the compensator
of Ñt . In our case due to assumption (a) it is also the conditional quadratic variation ofÑt
[36]. The functionalλ(ψt) is called the stochastic intensity and plays the role of the intensity
of jumps. Let us recall that for the (homogeneous) Poisson processNt −

∫ t
0 λ ds = Nt − λt

is a martingale. From the assumption (a) above we obtain thatÑt is quadratic pure jump,
its continuous part is equal zero and4Ñs = (4Ñs)2, where4Ñs = Ñs − Ñs—so it is a
point process. Let us emphasize that in general it is not an inhomogeneous Poisson process
since its compensator would be a deterministic function equal toE[Ñt ] [37]. So it will be
the case only when the stochastic intensity is a deterministic function depending ont .

Moreover, [Ñ, t ]t = 0 as Ñt is of finite variation on compacts. This implies the
following symbolic rules:

(dÑ)2 = dÑ dÑ dt = dt dÑ = 0.

From assumption (b) we get dMt = dÑt − λ(ψt) dt . Let Ft be aσ -algebra of all events up
to time t . BecauseMt is a martingale, soE[dMt |Ft ] = 0 which implies

E[dÑt |Ft ] = λ(ψt) dt

see [39].
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Up until now the operatora ∈ M2×2 was arbitrary. A particular simple case is if we
take

a∗ = a =
(

0 1
1 0

)
.

ThenL(ρt ) = aρta − ρt and so the intensity

λ(ψt) = 〈a∗a〉t = 〈ψt |a
∗a|ψt 〉

〈ψt |ψt 〉 = 1

which implies thatÑt = Nt . Because there is no deterministic evolution (we do not have
the Hamiltonian part and the jump rate is constant) so in this case we can putg1 = g2 = 0
andf1(ψt ) = ψ2

t − ψ1
t , f2(ψt ) = ψ1

t − ψ2
t as the probability of a particular jump depends

on the difference betweenψ1
t andψ2

t . Thus we arrive at

dψi
t = fi(ψt−) dNt .

Using the identity d[ψi, ψj ]t = fif̄j dNt we find that d‖ψ‖2 = 0 and dPt = (aPta−Pt) dNt .
Taking the average we obtaiṅρt = aρta − ρt , sinceNt − λt is a martingale. The above
stochastic differential equation admits the following solution:

ψ1
t = z1

0
1+ (−1)Nt

2
+ z2

0
1− (−1)Nt

2

ψ2
t = z1

0
1− (−1)Nt

2
+ z2

0
1+ (−1)Nt

2
.

This implies that

Pt = x0
1+ (−1)Nt

2
+ y0

1− (−1)Nt

2

wherex0 = |ψ0〉〈ψ0| andy0 = |φ0〉〈φ0|, φ0 = (a + a∗)ψ0 = (z2
0, z

1
0)′.

If we take

a =
(

0 1
0 0

)
as is usual in quantum optics problems, then we have

λ(ψt) = |ψ
2
t |2

‖ψt‖2
.

So we need a point process whose rate function is random and the situation is slightly more
complicated. We have to use the more general method described at the beginning of this
paragraph.

Let us start with calculating functionsgi , which are responsible for the deterministic
flow. They are obtained by taking the derivative of

ψs =
exp(− 1

2sa
∗a)ψt

‖ exp(− 1
2sa
∗a)ψt‖

‖ψt‖

with respect tos and at the instants = 0. So we get

g(ψt) = 1
2(−a∗a + 〈a∗a〉t )ψt .

It can be checked that the only functionsfi which lead to the Lindblad equation are of the
following type,

f1(ψt ) = −ψ1
t +

√
〈ψt |ψt 〉 eih(ψt ) f2(ψt ) = −ψ2

t
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where h : C2 → R is an arbitrary Lipschitz function. Let us point out that if we put
eih = ψ2

t /|ψ2
t | then we can writef in a compact form

f (ψt) =
(

a√〈a∗a〉t
− 1

)
ψt

see [39], but it needs a careful interpretation because zero can appear in the denominator.
Again by simple calculations we find that d‖ψt‖2 = 0 and

dPt =
( |ψ2

t |2 −ψ1
t ψ̄

2
t

−ψ̄1
t ψ

2
t −|ψ2

t |2
)
−

dÑt

+ 1

2〈ψt |ψt 〉
(

2|ψ1
t |2|ψ2

t |2 ψ1
t ψ̄

2
t (|ψ2

t |2− |ψ1
t |2)

ψ̄1
t ψ

2
t (|ψ2

t |2− |ψ1
t |2) −2|ψ1

t |2|ψ2
t |2

)
dt.

However, dÑt = dMt + λ(ψt) dt so after averaging we get the quantum evolution equation
for ρt = E[Pt ].

4. Global existence and uniqueness

After analysing a typical example of non-uniqueness in the pure quantum case, here we will
return to the general EEQT scheme as described in section 2. LetTt be a norm-continuous
dynamical semigroup on states of the total algebraAT corresponding to equation (5). We
extendTt by linearity to the whole predual spaceAT ∗, which is equal toAT , because the
total algebra is finite-dimensional. LetE denote a space of all one-dimensional projectors
in AT . BecauseAT = ⊕α=mα=1 M(nα×nα) we obtain thatE = ∪̇αCPα and soE is a disjoint
sum of compact differentiable manifolds (complex projective spaces inHα). We would like
to associate withTt a homogeneous Markov–Feller process with values inE such that for
everyx ∈ E

Tt(Px) =
∫
E

P (t, x,dy)Py (16)

whereP(t, x,dy) is the transition probability function for the processξt and y → Py is
the tautological map, which assigns to every pointy ∈ E a one-dimensional projectorPy .
This leads us to the following definition.

Definition. Let M(E) denote a Banach space of all complex, finite, Borel measures on
E. We say that a positive and contractive semigroupUt : M(E) →M(E) with a Feller
transition functionP(t, x, 0) is associatedwith Tt iff equation (16) is satisfied.

Let us describe this notion more precisely. Letπ be a map between the two Banach
spacesM(E) andAT ∗ given by

π(µ) =
∫
E

µ(dx) Px.

It is clear thatπ is linear, surjective, preserves positive cones and‖π‖ = 1. An intuitive
meaning of the mapπ is clear: every measure on one-dimensional projections of the
total algebra defines an operator and every operator in the algebra decomposes into one-
dimensional projections. This decomposition is non-unique, because of the non-uniqueness
of the quantum decomposition of the unit, and kerπ measures this non-uniqueness.

Proposition 1. Ut is associated withTt iff ker π is Ut invariant andÛt = Tt , whereÛt is
the quotient group ofUt by kerπ .
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Proof. Let Ut be associated withTt . It implies that∫
E

P (t, x, dy) Py = Tt (Px)

thus for anyµ0 ∈ kerπ we have∫
E

(Utµ0)(dx) Px =
∫
E

∫
E

P (t, y,dx)µ0(dy) Px =
∫
E

Tt (Py)µ0(dy)

= Tt
[ ∫

E

µ0(dy) Py

]
= 0

and soUtµ0 ∈ kerπ . Moreover,∀µ ∈M(E)

Ûtπ(µ) = π(Utµ) =
∫
E

(Utµ)(dy)Py =
∫
E

∫
E

P (t, x,dy)µ(dx)Py

= Tt
[ ∫

E

µ(dx)Px

]
= Ttπ(µ).

Now let us assume that̂Ut = Tt , i.e. ∀µ ∈M(E) we haveÛtπ(µ) = Ttπ(µ). Let us take
µ = δx . Then

Ûtπ(δx) = π(Utδx) =
∫
E

(Utδx)(dy) Py =
∫
E

∫
E

P (t, z,dy)δx(dz)Py

=
∫
E

P (t, x,dy)Py

andTtπ(µ) = Tt (Px) so Tt (Px) =
∫
E
P (t, x,dy)Py . �

This means that to findUt is to extend the semigroupTt fromM(E)/ kerπ toM(E)

in an invariant way. It should be emphasized that, in general, such an ‘extension’ may not
exist or, if it exists, need not be unique. We show that in our case, under mild assumptions,
the existence and the uniqueness can be proved.

Let us write the evolution equation for states in the Lindblad form

ρ̇ = −i[H, ρ] +
∑
k

V ∗k ρVk −
1

2

{
ρ,
∑
k

VkV
∗
k

}
whereH = diag(H1, . . . , Hm),Hα = H ∗α ∈ M(nα × nα) and Vk satisfy the following
assumptions:

(a) (Vk)αα = 0 for everyk andα;
(b) if for somek, l, α, β (Vk)αβ 6= 0 and(Vl)αβ 6= 0 thenk = l†.
We will now construct a Markov process on pure states of the total system, associated

with the above master equation, and then prove its uniqueness. Because we can already
guess the process from the infinitesimal argument of section 2, we start with the description
of the generator of the semigroupUt that describes the process.

Let A be a densely defined linear operator onC(E) with D(A) = C1(E) given by

(Af )(x) =
∑
α 6=α0

cα(x)f (xα)− c(x)f (x)+ v(x)f

† In general, we can allow for a weaker version:(Vk)αβ 6= 0 and(Vl)αβ 6= 0⇒ ∃c ∈ C : (Vk)αβ = c(Vl)αβ , but

this simply reduces to (b) above by the substitution(Ṽk)αβ :=
√

1+ |c|2(Vk)αβ and(Ṽl )αβ = 0 for k 6= l.
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wherex ∈ CPα0, cα(x) = Tr(PxWα0αW
∗
α0α
), Wα0α =

∑
k(Vk)α0α ∈ L(Hα,Hα0), W

∗
α0α
=∑

k(Vk)
∗
α0α
∈ L(Hα0, Hα), c(x) =

∑
α 6=α0

cα(x), Pxα = W ∗α0α
PxWα0α/Tr(PxWα0αW

∗
α0α
) ∈

CPα andx → v(x) is a vector field onE given by

v(x) = −i[Hα0, Px ] − 1

2

{
Px,

∑
α 6=α0

Wα0αW
∗
α0α

}
+ Px Tr

(
Px
∑
α 6=α0

Wα0αW
∗
α0α

)
.

It may be easily checked thatv(x) ∈ TxCPα = TxE. Because

gt (Px) =
exp[t (−iHα0 − 1

2

∑
α 6=α0

Wα0αW
∗
α0α
)]Px exp[t (iHα0 − 1

2

∑
α 6=α0

Wα0αW
∗
α0α
)]

Tr(Px exp[−t∑α 6=α0
Wα0αW

∗
α0α

])

is an integral curve forv, we have thatv is a complete vector field.

Theorem 2. A is a generator of a strongly continuous positive semigroup of contractions
St on C(E).

Proof. A = A1 + A2, where (A1f )(x) =
∑

α 6=α0
cα(x)δxαf − c(x)δxf and A2 = v.

It is clear thatA1 is a bounded and dissipative operator. It is also a dissipation,
i.e. A1(f

2) > 2fA1(f ) for f = f̄ . BecauseA2 generates a flow onE given by
f (x)→ f (gt (x)), wheregt (x) is the integral curve ofv starting at the pointx, it follows
thatA = A1+A2 is the generator of a strongly continuous semigroup of contractions (see,
for example, [40]). Positivity follows from the Trotter product formula, since bothA1 and
A2 generate positive semigroups. �

Let P(t, x, 0) denote the transition function ofSt . It is clear that this is a Feller
transition function [41].

Now prove that our process reproducesTt .

Theorem 3. Let (Utµ)(0) := ∫
E
P (t, x, 0)µ(dx) for µ ∈M(E). ThenUt is associated

with Tt .

The proof is given in the appendix. We can pass to the uniqueness problem. Let us
consider a Markov pregeneratorB0 given by

(B0u)(x) =
∑
ij

T ij (x)(∂i∂ju)(x)+
∑
i

V i(x)(∂iu)(x)

+
∫
E

µ0(x, dy)u(y)− µ0(x, E)u(x) (17)

where (T ij (x)) form a positive matrix andµ0(x, dy) is a positive measure such that
µ0(x, {x}) = 0 for everyx ∈ E. Its domainD(B0) consists ofC∞-functions. It follows
from the theory of Dirichlet forms that this is the most general form of a pregenerator of a
Markov semigroup (see [42]).

Theorem 4. LetB be the operator closure ofB0. If B generates a Markov–Feller semigroup
associated withTt thenD(A) = D(B) andA = B.

The proof is given in the appendix. Thus we have the uniqueness. In the proof we
used repeatedly the fact that our Hilbert spaces were finite-dimensional. In an infinite-
dimensional case the problem is much harder and we have no rigorous result. Our intuition
is shaped here only by the infinitesimal argument of section 3.



1874 A Jadczyk et al

5. Conclusions

We have seen that the special class of couplings between a classical and a quantum system
leads to a unique piecewise deterministic process on pure states of the total system that, after
averaging, recovers the original master Liouville equation for statistical states. Irreversibility
of the master equation describing time evolution of ensembles is reflected by going from po-
tential to actual in the course of quantum jumps that accompany classical events. Why is this
uniqueness result so interesting? During the roundtable discussions at the conferenceQuan-
tum Theory Without Observers, held in Bielefeld in August 1995, the following wish was
repeatedly expressed: ‘in a complete quantum theory all should be in the equations, nothing
relegated to the background.’ Although this statement was made in particular reference to
the consistent histories approach to quantum measurement theory, it applied as well to the
problem of quantum mechanical descriptions of individual quantum systems. The necessity
of having such a description became increasingly apparent as progress in technology enabled
us to perform continuous observations of individual atoms. Quantum opticians were among
the first to propose and to look for the philosophical consequences of stochastic algorithms
reproducing a given master equation (ME). It soon became apparent that not all is in the
equations. As we have illustrated in section 3 there are infinitely many different algorithms
that, after averaging, lead to the same ME. Yet, in each case, Nature chooses only one of
them. Our position is that the only way to have all in the equation is by admitting explicitly
the classical nature of part of the experimental set-up—according to Bohr’s philosophy. We
interpret the results of the present paper as confirming that this is, indeed, the case.

One may ask what are the possible implications of EEQT in general, and of the
uniqueness theorem in particular? One of the simplest applications that is already worked
out is in the solution of Mielnik’s ‘waiting screen problem’ [43]. As shown in [11] the long
standing problem of the time of arrival observable in quantum theory (cf [44] for a recent
review) finds a simple solution within EEQT. Moreover, in [45] a relativistic formulation
of the event generating algorithm has been given. The uniqueness theorem of the present
paper applies also to this relativistic generalization—provided time is replaced by proper
time.

Our results may be compared to those obtained by Diosi [26]. As noted in the
introduction his ‘ortho-process’, using only the quantum master equation, although canonical
(in cases where there is no infinite-dimensional degeneracy) isnot unique. It is, however,
interesting to observe that if the method by Diosi is generalized and extended to a hybrid
classical+ quantum system then his prescription coincides with our process. This is not a
surprise because, as we have proven in this paper, our processis a unique one for the total
system.

That is all fine and good, but the natural question arises: whatis classical? There
are several options possible when answering this question. First of all the theory may be
considered as phenomenological—then we choose as classical that part of the measurement
apparatus (or observer) whose quantum nature is simply irrelevant for the given problem.
Second, we may think of superselection quantities [46, 47] as truly classical variables. Some
of them may play an important role in the dynamics of the measurement process—this
remains for a while just a hypothesis. It is to be noted that Jibu and Yasue (cf [48],
especially the last section ‘Quantum measurement by quantum brain’ puts forward a similar
hypothesis in relation to the possible role of microtubules in the quantum dynamics of
consciousness.

Finally, a careful reader certainly noticed that in the formalism of EEQT one never really
needsC to be aclassical system. It can be a quantum system as well. What is important
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is that the the Liouville evolution preserves the diagonal ofC. Thus the end product of
the decoherence program [49–51] can be directly fed into the EEQT event engine. The
uniqueness result above will be immediately relevant in this case also.
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Appendix

A.1. Proof of theorem 3

At first we show that∀x ∈ E
L(Px) = [A(P )](x) (18)

whereL is the generator ofTt , A is the generator ofSt andP : x → Px.

Let x ∈ CPα0. In H = ⊕mα=1Hα let us choose any orthonormal basis{eα,iα }α=1,...,m
iα=1,...,nα

, for
which eα,iα ∈ Hα. Obviously, for anyPx ∈ AT ∗〈eα,iα |L(ρ)|eβ,iβ 〉 = 0 for α 6= β and the
same is true for [A(P )](x). So it is enough to evaluate the(β, iβ, jβ)th matrix elements of
both sides of equation (18):

〈eβ,iβ |[A(P )](x)|eβ,jβ 〉 =
∑
α 6=α0

Tr(PxWα0αW
∗
α0α
)
〈eβ,iβ |W ∗α0α

PxWα0α|eβ,jβ 〉
Tr(PxWα0αW

∗
α0α
)

−
∑
α 6=α0

Tr(PxWα0αW
∗
α0α
)〈eβ,iβ |Px |eβ,jβ 〉

+〈eβ,iβ |
(
− i[Hα0, Px ] − 1

2

{
Px,

∑
α 6=α0

Wα0αW
∗
α0α

}
+Px Tr

(
Px
∑
α 6=α0

Wα0αW
∗
α0α

))
|eβ,jβ 〉 = 〈eβ,iβ |W ∗α0β

PxWα0β |eβ,jβ 〉

+δα0β〈eβ,iβ |
(
− i[Hα0, Px ] − 1

2

{
Px,

∑
α 6=α0

Wα0αW
∗
α0α

})
|eβ,jβ 〉. (19)

On the other hand, theβth component ofL(Px)

(L(Px))β =
∑
k

(Vk)
∗
α0β
Px(Vk)α0β + δα0β −

(
i[Hα0, Px ] + 1

2

{
Px,

∑
k,α

(Vk)βα(Vk)
∗
βα

})
= W ∗α0β

PxWα0β + δα0β

(
− i[Hα0, Px ] − 1

2

{
Px,

∑
α 6=α0

Wα0αW
∗
α0α

})
(20)

where the last equality holds owing to assumptions (a) and (b) above. Taking the(β, iβ, jβ)th
matrix element of (20) we see that it coincides with (19), thus, due to arbitrariness of
(β, iβ, jβ), we have proved equation (18).
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Let F denote the finite-dimensional space of functions generated byx → 〈ψ |Px |φ〉. It
is clear thatF = {f : f (x) = Tr(APx), A ∈ AT }. So dimF = dim AT . We show thatF
is the null space for kerπ . Let f (x) =∑i,j 〈ψi |Px |ψj 〉 and letµ0 ∈ ker π . Then

µ0(f ) =
∫
µ0(dx) f (x) =

∑
i,j

〈ψi |
∫
µ0(dx) Px |ψj 〉 = 0.

Moreover, because(A〈ψi |P |ψj 〉)(x) = 〈ψi |L(Px)|ψj 〉 we have thatA : F → F and so
St : F → F . This implies thatUt : ker π → ker π sinceUtµ(f ) = µ(Stf ). Let Ût be the
quotient semigroup. Then

lim
t→0

1

t
[Ût (Px)− Px ] = lim

t→0

1

t
[π(Utδx)− Px ]

= lim
t→0

1

t

(∫ ∫
P(t, z,dy) δx(dz) Py − Px

)
= (AP )(x) = L(Px)

so Ût andTt have the same generator and thus coincide. By proposition 1Ut is associated
with Tt . �

A.2. Proof of theorem 4

At first we show the following lemma.

Lemma 1. (Vk)αα = 0 ⇒ ∀α ∈ {1, . . . , m} ∀x, y ∈ CPα such thatPx⊥Py the equality
Tr[PyL(Px)] = 0 is satisfied.

Proof. Let x, y ∈ CPα andPx⊥Py . Then

Tr[PyL(Px)] = −i Tr(Py [Hα, Px ])+
∑
k

Tr[Py(V
∗
k PxVk)αα]

−1

2

∑
k

Tr[Py{Px, (VkV ∗k )αα}] =
∑
k

Tr[Py(V
∗
k PxVk)αα].

But

(V ∗k PxVk)αα = (Vk)∗ααPx(Vk)αα = 0

so the assertion follows. �
We are now in position to show that the diffusion part is necessarily zero.

Lemma 2. T ij (x) ≡ 0 for everyi, j .

Proof. Because

B[Tr(PyP )](x) = Tr[PyL(Px)]

so, by the above lemma, for everyα and everyx, y ∈ CPα such thatPy⊥Px we have that
B[Tr(PyP )](x) = 0. Let us denote the functionz → Tr(PyPz) by fy(z). Then, becusefy
is a smooth function,

(B0fy)(x) =
∫
CPα

µ0(x, dz) fy(z)+
∑
ij

T ij (x)(∂i∂jfy)(x)+
∑
i

V i(x)(∂ify)(x).

Becausefy possesses a minimum at pointx, so
∑

i V
i(x)(∂ify)(x) = 0 and we arrive at∫

CPα
µ0(x, dz)fy(z)+

∑
ij

T ij (x)(∂i∂jfy)(x) = 0.
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But (∂i∂jfy(x)) and(T ij (x)) are positive matrices so, by Schur’s lemma,(T ij (x)∂i∂jfy(x))

is also a positive matrix. It follows that∑
ij

T ij (x)∂i∂jfy(x) = 0.

Now let us introduce a chart at pointx, say,x = [(1, 0, . . . ,0)], (U0, φ0) such that

U0 =
{

[(z0, z1, . . . , zn−1)] : zi ∈ C,
∑
i

|zi |2 = 1, z0 6= 0

}
φ0[(z0, z1, . . . , zn−1)] =

(
z1

z0
, . . . ,

zn−1

z0

)
= (x1, y1, . . . , xn−1, yn−1)

where xi = Re(zi/z0), yi = Im(zi/z0). Then φ0(x) = 0 ∈ R2(n−1). Let us choose
y = [(0, 1, 0, . . . ,0)]. It is clear thatPy⊥Px and so

n−1∑
i,j=1

[
T ijx,x(x)

∂2(fy ◦ φ−1
0 )

∂xi∂xj
(0)+ 2T ijx,y(x)

∂2(fy ◦ φ−1
0 )

∂xi∂yj
(0)+ T ijy,y(x)

∂2(fy ◦ φ−1
0 )

∂yi∂yj
(0)
]
= 0.

But for everyj > 2 we have

∂2(fy ◦ φ−1
0 )

∂x2
j

(0) = lim
h→∞

1

h

[
∂(fy ◦ φ−1

0 )

∂xj
(0, . . . , xj = h, 0, . . . ,0)− ∂(fy ◦ φ

−1
0 )

∂xj
(0)

]
= 0.

In the same way we prove that for everyj > 2

∂2(fy ◦ φ−1
0 )

∂y2
j

(0) = 0.

By positivity of the matrixD2(fy ◦ φ−1
0 )(0) we obtain that

T 11
x,x(x)

∂2(fy ◦ φ−1
0 )

∂x2
1

(0)+ 2T 11
x,y(x)

∂2(fy ◦ φ−1
0 )

∂x1∂y1
(0)+ T 11

y,y(x)
∂2(fy ◦ φ−1

0 )

∂y2
1

(0) = 0.

Let λ be an embeddingλ : CP 1→ CPα given by

λ[(z0, z1)] = [(z0, z1, 0, . . . ,0)].

It is clear thatx = λ(n0) andy = λ(n) for some uniquen0,n ∈ CP 1 = S2. Let ψ0 be a
chart atn0 given by

ψ0 : CP 1− {n} → C ψ0(m) = p ◦ φ0 ◦ λ(m)
wherep = Cn→ C is the projection onto the first coordinate. So we may write that

a11(n0)
∂2(fn ◦ ψ−1

0 )

∂q2
1

(0)+ 2a12(n0)
∂2(fn ◦ ψ−1

0 )

∂q1∂q2
(0)+ a22(n0)

∂2(fn ◦ ψ−1
0 )

∂q2
2

(0) = 0

wherea11(n0) = T 11
x,x(x), a

12(n0) = T 11
x,y(x), a

22(n0) = T 11
y,y(x) and q1(m) = x1(λ(m)),

q2(m) = y1(λ(m)). Let us change the chartψ0 onto spherical coordinates(θ, ϕ),
0 6 θ 6 π , 0 6 ϕ 6 2π in such a way thatθ(n0) = π/2, ϕ(n0) = 0, i.e.n0 = (1, 0, 0)
andθ(n) = π/2, ϕ(n) = π , i.e.n = (−1, 0, 0). Because

fn(m) = Tr(PnPm) = 1
2(1+ 〈n,m〉) = 1

2(1− sinθ cosϕ)

so

∂2fn

∂θ∂ϕ
(n0) = 0

∂2fn

∂θ2
(n0) = ∂2fn

∂ϕ2
(n0) = 1

2
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which implies thatã11(n0) = ã12(n0) = ã22(n0) = 0, whereãij are the coefficients in the
chart(θ, ϕ). But it is equivalent to

T 11
x,x(x) = T 11

x,y(x) = T 11
y,y(x) = 0.

Changingy = [(0, 1, 0, . . . ,0)] into y = [(0, 0, 1, 0, . . . ,0)] we obtain that

T 22
x,x(x) = T 22

x,y(x) = T 22
y,y(x) = 0

and so on. Thus, by the positivity,T ij (x) = 0 for everyi, j . Becausex was arbitrary the
assertion follows. �

From the above lemma we conclude that the generatorB is the closure of

B0u(x) = V (x)u+
∫
E

µ0(x, dy) u(y)− µ0(x, E)u(x).

Lemma 3. Let X be a tangent vector toCPα at pointPx . ThenPx +X > 0⇔ X = 0.

Proof. BecauseX ∈ TxCPα so PxX + XPx = X. This implies thatPxXPx = 0 and
P⊥x XP

⊥
x = 0, whereP⊥x = I − Px . Therefore, in a basisPxH ⊕ P⊥x HX is of the form(

0 X∗

X 0

)
. SoPx +X is a positive matrix if and only ifX = 0. �

Lemma 4. B0 = A|C∞ .

Proof. BecauseA andB are generators of semigroups which are associated withTt , for
everyx ∈ E we have that [(B − A)P ](x) = 0. Let x ∈ CPα0. Then

V (x)P +
m∑
α=1

∫
CPα

µ0,α(x, dy) Py − µ0(x, E)Px −
∑
α 6=α0

cα(x)Pxα + c(x)Px − v(x)P = 0

whereµ0,α(x, dy) denotes the restriction ofµ0(x, dy) ontoCPα. It is an operator valued
equation so it has to be satisfied for everyα separately. So for anyα 6= α0 we get∫

CPα
µ0,α(x, dy) Py = cα(x)Pxα

which implies thatµ0,α(x, dy) = cα(x)δ(xα)(dy). For α0 we have∫
CPα0

µ0,α0(x, dy) Py − µ0(x, E)Px + c(x)Px + V (x)− v(x) = 0.

Let us introducea(x) = c(x)− µ0(x, E) andw(x) = V (x)− v(x). Then taking the trace
of the above equation we obtaina(x) 6 0. Let us assume thata(x) < 0. This implies that

1

|a(x)|
∫
CPα0

µ0,α0 (x, dy) Py = Px − 1

|a(x)|w(x).

The left-hand side of the above equation gives a positive operator andw(x) ∈ TxCPα0 so,
by lemma 3,w(x) = 0. Thus we arrive at the contradiction becauseµ0,α0(x, {x}) = 0. So
a(x) = 0 and we obtain that∫

CPα0

µ0,α0(x, dy)Py + w(x) = 0.

Evaluating the trace we get thatµ0,α0(x,CPα0) = 0. Because it is a positive measure it
vanishes on every Borel subset ofCPα0. Sow(x) = 0 too and henceA|C∞ = B0. �

BecauseB is the closure ofB0 andC∞(E) is a core forA, D(A) = D(B) andA = B.
This ends the proof of theorem 4. �
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