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It is shown that piecewise deterministic dissipative quantum dynamics in a vector space with 
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1. Introduction 

One of  the most important characteristic features of  a quantum theory, as opposite 
to a pure classical theory, is that the set of pure states of  a quantum system is 
not a simplex. Consider a quantum system described in a complex Hilbert space 
~ .  Its pure states are described by rays { e i ~  : ~b E [0, 27r]} C 7-/, II~Plt = 1 or, 
equivalently, by one-dimensional orthogonal projections P-----I~P)0Pt- Let S be the 
set of all pure states. I f  /x is a probabilistic measure on S then, according to the 
standard, linear, quantum mechanics, only the density matrix p - - f s  P d l z ( P )  is 
observable, not the measure/~ itself. And yet, as demonstrated in [1], while searching 
for the dynamical mechanism of particle track creation and event generation, the 
measurement process introduces a mild non-linearity and leads to a unique random 
process on S- -provided  the quantum system is coupled, in an appropriate way, to a 
classical system. 1 This mild non-linearity is related to the "time-of-events" observable 
studied in [4], and calls for a careful re-examination of the fundamental axioms of 
quantum mechanism. In particular, i f  the Event Enhanced Quantum Theory (EEQT) 
developed by Blanchard and the present author will prove to be correct, then precise 
measurements of timing of  events may give us more information about the actual 
state of  the quantum system than it is usually assumed. 

The present paper, although stemming from the above ideas, deals with a pure 
formal aspect of EEQT--namely with a piecewise deterministic process (PDP) of 

I A similar approach has recently been discussed by A. Peres [2, 3]. 

[81] 
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jumps (sometimes also called state reductions) on the space of pure states in a space 
with indefinite metric. Spaces with indefinite metric are usually considered as too 
pathological for applications in quantum theory [5]. And yet within the formalism 
of EEQT, where none of the standard probabilistic axioms of quantum theory are 
required, and that because all the interpretation comes from a dynamical coupling 
between a classical and a quantum systems, it is possible to have a well:defined 
dynamics with all positive probabilities. The main goal of the present paper is to 
show, using the simplest possible model, that a continuous monitoring of several 
noncommuting observables leads to a piecewise deterministic random process, with 
positive transition probabilities, and with a fractal attractor set, also in the case of 
indefinite metric, when the state space is noncompact. 

In the present paper we will follow some of the ideas and notation developed 
in [6], though we will make an effort at presenting this paper as self-contained. 

We will start with a linear Linblad's type master equation for observables in a 
Krein space, with a particular kind of coupling between a quantum system and a 
finite-state classical system--cf. Eq. (6). We skip the possible unitary Hamiltonian 
part of the evolution, and we concentrate on the dissipative part alone. By Theorem 2 
in Section 3 the coupling generates a unique, piecewise deterministic process on the 
space of pure states of the total system. Next, we farther specify the coupling in 
such a way that we can take the trace over the classical system and get the effective 
piecewise deterministic process on the hyperboloid of pure states (of positive norm 
squared) of the quantum system alone---cf. PDP Algorithm in Section 3. We then 
examine in detail the particular case of Krein's space V1,1 when the space of pure 
states is isomorphic to the Poincar6 disk. 

We specify the coupling operators to be fuzzy projections as defined in Eq. (25), 
on a family of symmetrically distributed states on the disk (a selection of 33 points 
from the hyperbolic tiling with Schlafli symbol (3,8)--cf. Fig. 1). The plot of the 
sequence of 100 mln of quantum jumps generated by the PDP process suggests 
that there is a fractal attractor set. 

It should be mentioned that, according to the linear paradigm of quantum 
mechanics, mentioned at the beginning of this section, the patterns displayed in 
the figures, although mathematically unique, are physically unobservable. According 
to this paradigm, the only observable is the statistical matrix resulting from the 
integration of projections with respect to the measure. In our case, due to symmetry 
of the pattern, it is clear that this statistical state is a mixture of the maximal entropy 
state ½I, and the orthogonal projection on the eigenstate of a3 corresponding to 
the eigenvaine 1. It is worthwhile to notice that Lozinski et al. [7] recently studied 
iterated function systems on the space of statistical operators of a given quantum 
system. Their approach, even though different in spirit, has several areas of overlap 
with piecewise deterministic processes generated by EEQT. 
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2. Indefinite metric space 

Let V be a complex vector space of  finite dimension n with a nondegenerate 
sesquilinear form 0P, q~}.2 Let L(V) be the algebra of  all linear operators on V 
endowed with the star operation de fned  by {A~p, ~b} = (Tt, A'v). A ~ L(V) is said 
to be symmetric if A = A*. U ~ L(V) is said to be unitary if U* = U -1. 
Let 7-/(V) and L/(V) denote the set of  all symmetric and all unitary operators 
resp. Let i f (V)  be the set of  all J ~ H ( V ) ~ b l ( V )  such that the sesquilinear 
form (Tt, ~b)j -- 0P, J~b) is positive definite. We will assume that i f (V)  has at 
least two elements. This is equivalent to assuming that the scalar product 0P, ~b} 
is indeed indefinite, that is that there exists a basis { e l , . . . ,  ek, ek+l . . . . .  ek+l} such 
that (e~, e~) = g~, where 

{g~#} = d i ag (+ l  . . . .  , + 1 , - 1  . . . . .  - 1 )  (1) 

with k, l > 1. Whenever we will need to specify the signature of  V, we will use 
the notation V<k,l) for V. There is one-to-one correspondence between elements of  
J ( V )  and k-dimensional subspaces of  V on which (ap, q~} is positive definite. The 
group H(V) is isomorphic to U(k, l) and acts transitively on i f (V)  with the fixpoint 
group isomorphic to U(k) x U(1), thus 

U(k, l) SU(k, I) 
J(V) = - (2) 

U(k) x U(l) S (U(k) x U(l))" 

In particular, for k = I = 2 we get the Cartan symmetric domain A ( 2 ) - - - D 4  
S0(4 ,2 ) /S (0 (4 )  x O(2) ) ,  with Shilov boundary isomorphic to the compactified 
Minkowski space, while for k = l = 1 we get the Poincar6 disk A(1) - D1 --- 
SO(l,  2)/S0(2) whose Shilov boundary is a circle, with a physical interpretation 
of  it being a compactified, circular, time. 

Given J ~ i f (V)  we have positive-definite scalar product 0P, ~b)s -- (~,  J4~). Let 
us denote by A s the Hermitian conjugation with respect to this scalar product. We 
call A ~ £ ( V )  J - H e r m i t i a n  if A = A s. It is then easy to see that A ~ JA gives 
a one-to-one correspondence between symmetric and J - H e r m i t i a n  operators. 

DEHNITION 1. We will use the following notation: 

V+ = {Tz ~ V"  (7~, ~ )  _>_ 0, (3) 

/~+(V) = {a ~ / 2 ( V )  : AV+ C V+}. (4) 

For ~p ~ V+ we will write II~[[ for (4'~~,aP). 

Notice that A 6 £ + ( V )  if and only if IIA~PI] z > 0 for all ~p 6 V+. Each 
J 6 i f ( V )  is a difference of  two orthogonal, complementary projections: 

J ---- E - V ---- 2 E -  I, (5) 

2It should be noted that the term "Hilbert space" is usually reserved for a space with a positive definite 
scalar product. The term "Krein space" though less known, is more appropriate here. 
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where E = E * =  E 2 projects on a k-dimensional subspace on which (~, ¢) is 
positive definite, and F = F* = I - E projects on the complementary l-dimensional 
subspace, where (ap, ¢) is negative definite. 

3. Linblad's type semigroups and associated piecewise deterministic processes 
in V(k,l) 

It is well known that certain types of quantum dynamical semigroups [8, 9] 
are in one-to-one correspondence with piecewise deterministic Markov processes on 
the space of pure states of the algebra of observables of the system--cf. [10, 11] 
and references therein). By analyzing the proof of the existence and uniqueness 
theorems it is easy to see that these results extend to Vk,t provided the operators 
that implemen t the jumps are in /:+(V). 

THEOREM 2. Let S be a finite set. Let V = Vk,l, and let ~4 be the *-algebra 
.4 = ( ~ e s  £(V) .  A typical element of  ~4 is a sequence A = (Aa)~e8, A~ ~ £(V) .  
For each pair a, fl ~ S, ~ ~ fl, let there be given an operator gap ~ f.+(V). 
Consider semigroup of  linear maps dpt(A)~ -- exp(Lt) : ,4 ~ .A, t > O, with 
infinitesimal generator L defined by 

1 
L(A)~ = ~'-" -~__~g'~a~ g ~  - ~(A,~A~ + A,~A,~), (6) 

where 

The formula 

= ( 7 )  

f 
tr(PCt(A)~) = ~ J tr(A Q)dp(t; P, ot; Q, fl) (8) 

gives then one-to-one correspondence between semigroups Ct and piecewise deter- 
ministic Markov processes on 79+ × S with transition probabilities p(t; or, P; fl, dQ) 
described by the following algorithm: 
Suppose that at time to the system is described by a pair ( P E 79+, ot ~ S), with P 
being an orthogonal projection on a unit vector ap ~ V+. Choose a uniform random 
number p ~ [0, 1], and proceed with the continuous time evolution by solving the 
differential equation 

1 
~kt = exp ( -  ~Aa)lpt  (9) 

with the initial vector ~h until t = h, where tl is determined by 

liter I] 2 = p .  (10)  

Then jump. When jumping, change ot ~ fl with probability 

P~-*~ = [ I g ~ t l  ll2/0Pq, Aotl, b'tl) (11) 
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and, if p ~  ~ O, change 

apt I --+ apl = g~aptl/llg#aaptl II. 

Repeat the steps substituting tl, aPl, fl for to, apo, or. 

Proof: Algebraically, the proof goes, step by step, exactly the same way as in 
[10, 11] (cf. also [12] for the uniqueness), the only thing that we need to check 
is that positivity conditions required in the Hilbert space case also hold when the 
scalar product is indefinite. If f ( t )  -- Ilap, II 2, then the function f ( t )  is real analytic, 
with f ( 0 ) =  1 and f ( t ) _ - ( a p t ,  A,~apt). As long as f ( t ) >  0, that is as long as 
apt 6 V+, the derivative f ( t )  is nonpositive, because (apt, Aaapt) = ~ . ~  tlg=~aptll z, 
and g ~  c E+(V). Therefore f is monotonically decreasing from f (0 )  = 1 and 
either it never reaches the given value p 6 (0, 1), so the jump never happens, or, 
if it reaches the value p at a finite time tl, then ap,! 6 V+ and therefore, because 
g ~  ~ E+(V), the jump probabilities p ~ g  are non-negative. Finally, notice that 
whenever the denominator in Eq. (11) vanishes, this can happen only for discrete 
values of tl, thus on a set of measure zero. [] 

Here, as in [14] we will be interested in a special case of the above process 
that leads to simple iterated function systems with place-dependent probabilities, as 
discussed in [13]. Let N be a natural number, and let ,9 = 2 N be the set of all 
binary sequences of length N. Assume F_.+(V) ~ g ~  = gi ~ 0 when ot differs from 
/3 only at one, the i-th bit, otherwise g ~  = 0. Let 

N 

= E g * g i .  (12) A 
i=1 

If we take a trace over the index or, we end up with a piecewise deterministic 
process on P+ that can be described as follows. 

PDP ALGORITHM 1. Start, at time to, with a unit vector ap ~ V+. Choose a 
uniform random number p ~ [0, 1], and proceed with the continuous time evolution 
by solving the differential equation 

1 A ~t = e x p ( - ~  )apt (13) 

with the initial vector ap until t = tt, where tl is determined by 

Ilaptll 2 = p. 

Then jump. When jumping, change 

apq --+ apl = gi aptl / [Igi aPq II 

with probability N 

Pi(ap) = Ilgiap,1112/~ Ilgjapt~ I12. 
j=l 

Repeat the steps replacing to, apo with tl, aPl. 

(14) 

(15) 
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4. Example: Vl,lmthe Poinear6 disk 
As a simple example consider the case of  k = l = 1. Let us choose J o ~  i f ( V )  

and let el, e2 be an orthonormal basis in V diagonalizing J0. Thus (el, ea) = 
- (e2,  e2) = + l ,  V can be identified with C2-- the set of all column vectors 

(:1 a = , (16) 
2 

where al and a2 are complex numbers, J0 has now the matrix form 

o1) J0 = (17) 
0, 

while the positive definite scalar product (~,  ~b)j 0 is nothing but the standard 

(a, b) j  0 = albl  + a2b2, (18) 

where the bar in ~ stands for the complex conjugation of  the complex number c. 
Let us denote by A t the Hermitian conjugate matrix of  A. Using our previous 
notation A t = A J0, the most general J o - H e r m i t i a n  matrix, A = A t, is of  the form 

A = x ° I  + o-(x), (19) 

where 
O-(X) = x l o ' I  q- X2O-2 -[- X2O-3 (20) 

(0 10) trl = o'x = , (21) 
1, 

(0o) o2 = o-y = , (22) 
i, 

and o-i are the Pauli matrices: 

(1, o) 
o-3 = o-z = ( 2 3 )  

0, 1 

and x ~, /.t = 0, 1, 2, 3, are real numbers. Note that now J0 is represented by o'3. 
It follows that the most general symmetric (with respect to ( , )) operator on V 
is of  the form 

ff3(X 0 -~- O'(X)) = X 3 --  ix2o-1 q- ixlo- 2 q- X0O-3, (24) 

where x u are real. In other words, moving between symmetric and J - H e r m i t i a n  
operators is accomplished by the "Wick rotation" x 1 ~ - i x 2 ,  x 2 ~ i x  1 in the 
parameters x 1, x 2. 
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4.0.1. Fuzzy projections 

In our toy model the state of the system is represented by a unit vector q~ ~ V+. 
Proportional vectors describe the same state, therefore it is better to represent states 
by one-dimensional orthogonal projections P on positive subspaces. The set of all 
states will be denoted by 7v+. Quantum jumps will be implemented by operators 
in /~+(V). In this paper, as in [14], we will be interested in fuzzy projections of 
the form 

Q(J, E) = ½(I + E J), (25) 

which have the above property. Notice that for E = 1 we have Q(J, 1 ) =  ½(I + 
( 2 E s -  I))  = E j ,  and thus Q(J, 1) is a sharp projector• Notice that in V1,1 we have 
Q(J, 1) ~ 7~+ because in this case maximal positive subspaces are one-dimensional. 
We want to know for which values of E, Q(J, ~.) is in/2+(V).  For this it is enough 
to calculate the trace of Q(J, 1)Q(J ' ,  E)Q(J, 1), and to find the conditions on E 
which guarantee its positivity for all J ~ i f (V) .  Let us use the representation using 
J0 and the Pauli matrices as above. 

DEFINITION 3. For all m = (m0, ml, m2), n = (no, nl, n2) E ~3 set (m.  n) = 
mono - m l n l  - m 2 n 2 .  Let 7- /= {m = (mo, m l ,  m2) : ( m .  m)  = 1, mo > 0}. 

LEMMA 4. Each J E i f (V )  is uniquely representable in the form 

J = J (m)  = ~(m) = motr3 - im2crl + imla2, (26) 

where m ~ 7-[. 

Proof: J must be symmetric, therefore J = x 3 - ix2~rl + ixltr 2 + x°tr3, with 
x jz real. j2  = I implies then that x 3 = 0 and (x°) 2 - (xl) 2 - ( x 2 )  2 = 1. NOW, 
(~p, J ~ )  = (ap, JoJ~)Jo,  therefore, for (~, J ~ )  to be non-negative for all ~,  
JoJ = craJ = x ° "-~-x lo ' l  "-[-X20"2 must be positive in the standard sense. That means 
x ° > 0 .  [] 

DEFINITION 5. We will write Q(m, ~) for Q(J(m) ,  E), i.e. 

Q(m, ~) = 1(I + Ec~(m)), 

or, explicitly, in a matrix form 

1 ~ 1 + ¢m0 E(ml -- im2)~ 
! 

Q(m, E) = ~ E( -ml  + im2) 1 - Emo )] 

Note that Tr(Q(m, ~)) = 1. 

THEOREM 6. 
(i) For each m, r ~ 7-[, E ~ R we have 

Q(m, ~)Q(r)Q(m,  E) = ),(~, m, r)Q(r ' ) ,  

(27) 

(28) 

(29) 
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where 

and 

1 +42  + 2 4 ( m . r )  
~.(4, m, r) = (30) 

4 

r '  (1 - 42)r q- 24(1 + 4 ( m .  r ) )m 
= ~ 7-/. (31) 

1 + E 2 -~- 24 (m. r) 

(ii) The fuzzy projections Q(m, 4) map V+ into V+ if and only if 4 >_ O. 

Proof: (i) Follows by inspection, or by applying the "Wick rotation" to the formulae 
in [14]. 
(ii) Let A-----A* be a linear operator on V which maps V+ into V+, then we 
must have (A~p, A~p) = (~, A2~) > 0 for all ap ~ V with (~t, ~t) = 1. Observe that 
0P, A2~p) = Tr(EA2E) = Tr(AEA), where E is the orthogonal projection on ~O. 
Since 

)~(4, m, r) = Tr(Q(m,  4 ) Q ( r ) Q ( m ,  4)), (32) 

it is enough to analyze the behaviour of  the function )~. The unitary group of  V 
acts on i f (V)  transitively by its natural action: J ~-~ UJU*. As the phase of  the 
unitary operator cancels out, we can restrict ourselves to the special unitary group, 
in our case SU(1, 1). We have 2 : 1 homomorphism U w-~ A(U) of SU(1, 1) onto 
S O (2, 1) given by 

UJ(m)U* = J ( A m ) .  (33) 

The function )~ in Eq. (30) is SO(2,  1)-invariant. Therefore to analyze its 
behaviour we can always make an S0(2,  1) transformation so that r = (1 ,0 ,0 ) ,  
then, as a function of  m e 7-/, we get 4Z(m, 4) = 1 + 42 + 24m0, which is bounded 
from below only when 4 > 0. If  4 > 0, then )~(m, 4), with m ~ ~ ,  attains minimum 

equal to ~ at m = (1 ,0 ,0 ) .  [] 

4.1. Poinear6 disk model 

The hyperboloid i f ( V ) ~  79+ is isomorphic to the Poincar6 disk D 

D = {z c C: lz l  < 1} (34) 

by the isomorphism: 

J ( m )  = b ( m )  = m0tr3 + imla2 - im2al ¢~ z, (35) 

where ml q- ira2 = 2z/(1 - Iz12). 
The action of  the unitary group SU(V)  on i f ( V )  is isomorphic to the action 

of  SU(1, 1) on the Poincar6 disk D via fractional transformations: A : z 
(allZ q- a l2 ) / (a21z  -}- a22), the isomorphism being given by A = a2Ucr2. 

5. Piecewise deterministic process on 79+ 

As an example consider the piecewise deterministic process described by Eqs. 

(9)-(15), with gi = J~Q(m[i] ,  E), i = 1, 2 . . . . .  N. In [14], where we were 
r - , , . - -  
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studying quantum jumps on the complex projective space P C ( l ) ~  S 2, we could 
neglect completely the continuous part of evolution of the state vector, as given by 
Eq. (9), and that because we could choose symmetrically distributed configuration 
of fuzzy projections Q(n[i], E) in such a way that  )-~i Q(m[i], E) 2 = const. I due 
to ~ i  re[i] = 0. Such a choice is not possible in our case, with sphere replaced by 
the positive hyperboloid, because vectors on the positive hyperboloid cannot balance 
to the zero vector. Given a sequence m [ 1 ] , m [ 2 ] , . . . , m [ N ] ,  ( m [ i ] , m [ i ] ) =  1, we 
have 

N 

re[i] = N c  mc, (36) 
i=1 

where c is a constant c > 0 and mc is the centroid vector of unit length square 
(me, me) = t. The EEQT algorithm, as described, for instance in [10], tells us 
that when the quantum jumps are implemented by operators gi then time evolution 
between jumps is implemented by 

2t xT~N 
~p(t) = R(t)~r(O) = e - ~  ~.i=t a(m[il,E)e ~(0).  (37) 

Due to the fact that ~(mc)2 = I, the exponential is easily calculated, 

R (t) = e-  ~ ~1+'2~ [cosh(Ect) - sinh(ect)~ (mc)[. (38) 

We will choose our configuration so that mc = (1,0, 0), thus 8 ( m c ) =  03, or, in 
the matrix form (e: /  39, 
It is easy to see that when Q(r) is the projection on ~(0),  Q ( r ) =  I~(0))(~(0)1, 
then 

1lTt(t) II 2 = Tr(R(2t) Q(r)), (40) 

which can be easily calculated from the explicit matrix formulae above, 

p( t )  -- II~P(t)II 2 = exp ( - t ( 1  + ~2)) (cosh(2Ect) - m0 sinh(2Ect)). (41) 

For e > 0 and m0 > 1 the function p( t )  is monotonically decreasing from p(to) = 1 
to p ( t l ) =  0, where to = 0 and h = (log((m0 + 1 ) / ( m 0 -  1)))/4Ec. In numerical 
simulations of the PDP process the time of jump is calculated by selecting a 
uniformly distributed random number p ~ (0, 1), and then numerically solving the 
equation p( t )  = p. One convenient method of doing it is by introducing the variables 
y = exp(4Ect) and s = (1 + E2+ 2Ec)/4~c, and solving numerically the equation 
2 p y S +  y ( m o -  1 ) -  (m0 + 1 ) =  0 for y. To illustrate the resulting iterated function 
system we took N = 33 points ra[i] from a hyperbolic tiling with Schlafli symbol 
(8, 3) and plot the results of 100 mln jumps for two E = 0.75 and E --- 1.75. 

Figures 2 and 3 show the results of the iteration process for two different 
values of the fuzziness parameter E = 0.75, and E = 1.75 (for E = 1.0 the fuzzy 
projections are sharp). Due to the fact that our process is a hybrid one--i t  has 
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Fig. 1. 33 points from the hyperbolic tiling of the Poincar6 disk with Schlafli symbol (8, 3). 

jumps with place-dependent probabilities, as in iterated function systems, but it also 
has dissipative parts of a continuous evolution with a random time length, and also 
due to the fact that the Poincar6 disk is non-compact, there are no ready to use 
theorems that we could apply in order to ascertain the existence and uniqueness of 
the invariant measure, as it was done in the case of positive definite metric [14]. Our 
numerical simulations suggest a conjecture that the probabilities of getting outside 
a bounded region decrease fast enough with the dimension of this region, so that 
the attractor set and the invariant measure supported by this set are well defined. 

6. Concluding remarks 

In the present paper a model nonunitary quantum system in a Krein's space V1,1 
is analyzed. The model is described via a quantum dynamical semigroup and, from a 
computational point of view, as a generalization of classical iterated function system. 
It has been shown that with a careful treatment, within the general framework 
of EEQT, a continuous monitoring of several noncommuting observables can be 
modelled by a piecewise deterministic random process (with positive jump-time 
distribution and positive transition probabilities) also in the case of a quantum 
system whose pure states are represented by vectors in indefinite metric space. 
The formalism described in Sections 2 and 3 applies to an arbitrary Krein space, 
in particular, when appropriate care is taken, also to infinite-dimensional spaces 
arising naturally in explicitly covariant theories of spinor and vector relativistic 
wave equations. In the present paper we have chosen the simplest case of the 
two-dimensional space VI,1 mainly because, in this case, it is easy to visualize the 
resulting fractal structure on the Poincar6 disk. 
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Fig. 2. Hyperbolic quantum fractal • = 0.75. Gray scale of a given pixel i is proportional to log((1 +ni)/nmax), 
where ni is the number of jumps to the area covered by the pixel. In particular the black color area is never 
visited (or is visited with a negligible probability). 

Fig. 3. Hyperbolic quantum fractal • = 1.75. 
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The main difference between the case of C P  1 = S 2, studied in [14], and the 
indefinite metric case studied in the present paper, comes from the fact that, in 
the latter case, the space of pure states V+ is noncompact and has no centroid. 
This implies a nontrivial continuous, nonunitary drag between jumps. This drag is 
represented by straight line segments towards the detectors in Figures 2 and 3. 
In realistic models such drag would be superimposed on the continuous, unitary 
Hamiltonian evolution. 
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