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Abstract. Using the Clifford algebra formalism we extend the quantum jumps
algorithm of the Event Enhanced Quantum Theory (EEQT) to convex state
figures other than those stemming from convex hulls of complex projective
spaces that form the basis for the standard quantum theory. We study quan-
tum jumps on n-dimensional spheres, jumps that are induced by symmetric
configurations of non-commuting state monitoring detectors. The detectors
cause quantum jumps via geometrically induced conformal maps (Möbius
transformations) and realize iterated function systems (IFS) with fractal at-
tractors located on n-dimensional spheres. We also extend the formalism to
mixed states, represented by “density matrices” in the standard formalism,
(the n-balls), but such an extension does not lead to new results, as there
is a natural mechanism of purification of states. As a numerical illustration
we study quantum fractals on the circle (one-dimensional sphere and penta-
gon), two–sphere (octahedron), and on three-dimensional sphere (hypercube-
tesseract, 24 cell, 600 cell, and 120 cell). The attractor, and the invariant
measure on the attractor, are approximated by the powers of the Markov
operator. In the appendices we calculate the Radon-Nikodym derivative of
the SO(n + 1) invariant measure on Sn under SO(1, n + 1) transformations
and discuss the Hamilton’s “icossian calculus” as well as its application to
quaternionic realization of the binary icosahedral group that is at the basis
of the 600 cell and its dual, the 120 cell.

As a by-product of this work we obtain several Clifford algebraic results,
such as a characterization of positive elements in a Clifford algebra C(n+1) as
generalized Lorentz “spin–boosts”, and their action as Möbius transformation
on n-sphere, and a decomposition of any element of Spin+(1, n + 1) into a
spin–boost and a spin–rotation, including the explicit formula for the pullback
of the SO(n + 1) invariant Riemannian metric with respect to the associated
Möbius transformation.

Keywords. Quantum fractals, Event Enhanced Quantum Theory, quantum
jumps, Clifford algebra, Möbius transformation.
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1. Introduction

“The accepted outlook of quantum mechanics (q.m.) is based entirely on its the-
ory of measurement. Quantitative results of observations are regarded as the only
accessible reality, our only aim is to predict them as well as possible from other
observations already made on the same physical system. This pattern is patently
taken over from the positional astronomer, after whose grand analytical tool (an-
alytical mechanics) q.m. itself has been modelled. But the laboratory experiment
hardly ever follows the astronomical pattern. The astronomer can do nothing but
observe his objects, while the physicist can interfere with his in many ways, and
does so elaborately. In astronomy the time–order of states is not only of para-
mount practical interest (e.g. for navigation), but it was and is the only method
of discovering the law (technically speaking: a hamiltonian); this he rarely, if ever,
attempts by following a single system in the time succession of its states, which
in themselves are of no interest. The accepted foundation of q.m. claims to be
intimately linked with experimental science. But actually it is based on a scheme
of measurement which, because it is entirely antiquated, is hardly fit to describe
any relevant experiment that is actually carried out, but a host of such as are for
ever confined to the imagination of their inventors.”

So wrote Ervin Schrödinger fifty years ago [1]. Today the standard scheme
of q.m. is as antiquated as it ever was, and provides no answer to the most funda-
mental questions such as “what is time?”, and how to describe events that happen
in a single physical system, such as our Universe.1 The present paper follows the
line of ideas developed in a series of papers that has led to the Event Enhanced
Quantum Theory (EEQT), as summarized in [3], and recently extended in [4], but
we now go beyond that framework. While, following von Neumann, we keep the
algebraic structure as one of the most important for the mathematical formalism
of q.m., and we propose to dispose of the concept of “observables” and of “expec-
tation values” at the fundamental level. We also dispose of the concept of “time”,
understood as a “continuous parameter”, external to the theory. Our philosophy,
concerning “time” is that of the German social philosopher Ernest Bloch:

“Zeit ist nur dadurch, daß etwas geschieht und nur dort wo etwas
geschiecht.”

So, time is only then , when something happens, and only there where something
happens. Therefore the primary concept is that of an event , and of the process
- that is a sequence of events. Time, as a continuous, global variable, comes in
only in the limit of a large number of events. The primary process is that of
“quantum jumps”. It is an irreversible process in an open system, and every system
in which the “future” is only “probable”, rather than determined, is necessarily

1Nowadays the defenders of the “antiquated scheme” of q.m. go as far as to assign “crackpot

index” to those who question this scheme. So, for instance, 10 points (on the scale of 1–50), are
assigned for each claim that quantum mechanics is fundamentally misguided, and another 10

points for arguing that while a current well-established theory predicts phenomena correctly, it

doesn’t explain “why” they occur, or fails to provide a “mechanism” [2].
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an open system. The mathematical formalism of the standard quantum theory is
based on complex Hilbert spaces and Jordan algebras of self–adjoint operators.
It involves interpretational axioms for expectation values and eigenvalues of self–
adjoint operators as “possible results of measurements”, yet it does not provide a
framework for defining the measurements [5, 6]. In view of these considerations,
Gell-Mann would certainly score a high crackpot index [2] for this statement [7,
p. 165]:

“Those of us working to construct the modern interpretation of
quantum mechanics aim to bring to an end the era in which Niels
Bohr’s remark applies: ‘If someone says that he can think about
quantum physics without becoming dizzy, that shows only that
he has not understood anything whatever about it’.”

The same can be said about the last paragraph of Schrödingers paper [1], where
he wrote

“We are also supposed to admit that the extent of what is, or
might be, observed coincides exactly with what quantum mechan-
ics is pleased to call observable. I have endeavored to adumbrate
that it does not. And my point is that this is not an irrelevant issue
of philosophical taste; it will compel us to recast the conceptual
scheme of quantum mechanics.”

The need for an open–minded approach is well noted by John A. Wheeler, who
ends his book “Geons, Black Holes & Quantum Foam” [8] with the following quote
from Niels Bohr’s friend Piet Hein:

I’d like to know
what this whole show

is all about
before it’s out.

Alain Connes and Carlo Rovelli [9] proposed to explain the classical time param-
eter as arising from the modular automorphism group of a KMS state on a von
Neumann algebra over the field of complex numbers C.2 But their philosophy ap-
plies, at most, to equilibrium states, while “quantum foams” before the Planck
era are certainly far from equilibrium. David Hestenes [10, 11] proposed to under-
stand the role of the complex numbers in quantum theory in terms of the Clifford
algebra. This is also our view. L. Nottale, in his theory of “scale relativity” [12]
proposed an alternative idea, where the complex structure arises from a stochastic
differential equation in a fractal space–time. We think that our approach may serve
as a connecting bridge between fractality, the nontrivial topology of dodecahedral
models of space–time, as discussed by J–P. Luminet et al. [13] (cf. also [14]), and
the late thoughts of A. Einstein [15, p. 92], who wrote:

2Cf. also I. and G. Bogdanov, Avant le Big Bang : La création du monde , second, revised and

extended edition, (LGF, Paris 2006), where a similar idea, based on a KMS equilibrium state is

discussed in a broader, philosophical framework
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“To be sure, it has been pointed out that the introduction of
a space-time continuum may be considered as contrary to na-
ture in view of the molecular structure of everything which hap-
pens on a small scale. It is maintained that perhaps the success
of the Heisenberg method points to a purely algebraical method
of description of nature, that is to the elimination of continuous
functions from physics. Then, however, we must also give up, by
principle, the space-time continuum. It is not unimaginable that
human ingenuity will some day find methods which will make it
possible to proceed along such a path. At the present time, how-
ever, such a program looks like an attempt to breathe in empty
space.”

The present paper is a technical one. It fills the empty space with discrete
structures, and it deals with the discrete random aspects of quantum jumps gen-
erated by the algebraic structure of real Clifford algebras of Euclidean spaces, and
of their conformal extensions. The jumps are generated by Möbius transforma-
tions and lead to iterated function systems with place dependent probabilities,
thus to fractal patterns on n–spheres. Our ideas are close to those of W. E. Baylis,
who also noticed [16] the similarities between the Clifford algebra scheme and the
formal algebraic structure of q.m. Our results concern the case of the signature
(1, n + 1). With some adaptation, the methods and the ideas developed in the
present paper should be also applicable to the “hyperbolic quantum formalism”,
such as developed in recent papers by A. Khrennikov [17].

In Sec. 2 we introduce our notation, which is kind of a mixture of that used
by Deheuvels [18] on one hand, and of Gilbert and Murray [19] on the other. In
Proposition 1 we recall the vector space isomorphism between the Clifford algebra
and the exterior algebra, and in Proposition 2 we define the trace functional, and
list its properties that are important for applications to quantum probabilities.
In Sec. 3 we review the necessary concepts and results from the monograph by
Gilbert and Murray [19], and discuss in details the algebra isomorphism between
C+(1, n + 1) and the algebra R(2, C(n + 1)). The main results of this section are
given in Theorem 1.

In Sec. 4 we use the Clifford algebra approach to discus Möbius transfor-
mations of the spheres Sn, as well as their natural extensions to their interiors
Bn+1. The key concept here is that of “positivity”. In Propositions 3 and 4 we
characterize the positive elements of the Spin+ group, and in Corollary 1 we prove
the polar decomposition of any element of the Spin+ group into a product of a
positive spin–boost and of a unitary spin–rotation. In Theorem 3 we describe the
action of Spin+(1, n + 1) as the two–fold covering group of the group of Möbius
transformations of Sn, and give the explicit formula for the action of spin–boosts
on Sn (cf. Eq. (4.37)). We also calculate the Radon-Nikodym derivatives of the
transformed surface area and the volume (cf. Eqs. (4.42), (4.43)). In subsection
4.2 we discuss the stereographic projection, and we use the exponential form of
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the spin–boosts in order to describe their (singular) action on Rn rather than on
Sn.

In Sec. 5 we discuss iterated function systems (IFS) of conformal maps and
introduce the important concept of the Markov operator, which is later being used
in our numerical simulations (cf. Sec. 6). Proposition 5 of this section is important
in applications to quantum theory. One of the most important features of the
standard, linear, quantum mechanics is the fact that “observables” are restricted to
bilinear functions on pure states. Therefore different mixtures of pure states leading
to the same “density matrix” are claimed to be experimentally indistinguishable.
In our Proposition 5, and in Corollary 2, we show that if the probabilities of
the iterated function systems of Möbius transformations are given by geometrical
factors derived from the maps themselves (cf. Eqs. (4.37),(5.59)), and also satisfy
the additional balancing condition (5.58), then the Markov operator restricts to
the space of functions on Sn given by the trace on the Clifford algebra, thus leading
to a linear Markov semi-group. Corollary 3 gives the explicit form of the Markov
operator for the case when the IFS of Möbius transformations is endowed with
geometrical probabilities given by Eq. (5.59).

Sec. 6 contains the results of the numerical simulations of IFS of Möbius
transformations that lead to “quantum fractals”. We study quantum fractals on
the circle (one-dimensional sphere and pentagon), two–sphere (octahedron), and
on three-dimensional sphere (hypercube-tesseract, 24 cell, 600 cell, and 120 cell).
The last section contains the summary and conclusions and also points out some
open problems.

In the Appendix 1, which is of independent interest, we discuss the Möbius
transformation in terms of the group SO+(1, n+1) and derive the Radon–Nikodym
derivative formula for a general SO+(1, n+ 1) transformation. Appendix 2 repro-
duces the original Hamilton’s paper of 1856 introducing the “icossian calculus”,
while in Appendix 3 we discuss its application to quaternionic realization of the
binary icosahedral group that is at the basis of 600 cell and its dual, the 120 cell.

2. Notation

We will denote by R the field of real numbers, and by R∗ the multiplicative
group R \ {0}. Let V be an n–dimensional real vector space endowed with a non–
degenerate quadratic form Q of signature (r, s), r+s = n. That is V admits an or-
thonormal basis ei, with Q(e1) = . . . = Q(er) = 1, Q(er+1) = . . . = Q(en) = −1.
Let C = C(V,Q) the Clifford algebra of (V,Q). The even and the odd parts of C are
denoted as C+ and C− respectively. We shall consider R and V as vector subspaces
of C, so that v2 = Q(v) ∈ C, v ∈ V.

The principal automorphism of C is denoted by π and is determined by π(v) =
−v, v ∈ V, while the principal anti–automorphism τ, denoted also as τ(a) =
aτ , is determined by vτ = v, v ∈ V. Their composition ν is the unique anti–
automorphism satisfying ν(v) = −v for all v ∈ V. We will denote by ∆ the norm
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function ∆ : C −→ C, defined by

∆(a) = aνa. (2.1)

We recall that, cf. [19, 5.14–5.16], if ∆(a),∆(b) ∈ R, then ∆(ab) = ∆(a)∆(b),
∆(π(a)) = ∆(τ(a)) = ∆(aν) = ∆(a) and, for all λ ∈ R, ∆(λa) = λ2∆(a). More-
over, if ∆(a) ∈ R∗, then a is invertible, and a−1 = (1/∆(a))aν . In particular, if
∆(a) ∈ R, then also aaν = ∆(a).

We denote by Spin+(V,Q) the group:

Spin+(V,Q) = {g ∈ C+(V,Q) : ∆(g) = 1, gV g−1 = V }. (2.2)

Every element g ∈ Spin+(V,Q) is a product of an even number of positive unit
vectors (i.e. vectors v ∈ v such that Q(u) = +1) and an even number of negative
unit vectors (i.e. v ∈ V such that Q(u) = −1) – cf. [18, Definition IX.4.C]. The
map σ : Spin+(V,Q) → SO+(V,Q), σ(g) : v 7→ gvg−1 is a two–fold covering
homomorphism from Spin+(V,Q) onto SO+(V,Q), the connected group of “proper
rotations”, that is orthogonal transformations of (V,Q) of determinant one, which
preserve the orientation of maximal negative subspaces of V.3

We denote by R(n) (resp. R(n, C) = C ⊗ R(2)) the algebra of n× n matrices
with entries from R (resp. from C).

2.1. Vector space isomorphism between the Clifford and the Grassmann algebra

Let us recall that, as a vector space, Clifford algebra is naturally graded and
isomorphic to the exterior algebra. In particular we have the following result :

Proposition 1. Let ei, i = 1, 2, . . . , n be an orthonormal basis for V, and let eI :
I = (i1, i2, . . . , ip), 1 ≤ i1 < i2 < . . . < ip ≤ n be defined as the Clifford products
eI = ei1ei1 . . . eip , with eI = 1 for I = ∅. Then the set {eI} of 2n vectors in C is a
linear basis of C, the subspaces Cp generated by eI , I = (i1, . . . ip) are independent
of the choice of the orthonormal basis ei, and C is the direct sum of vector subspaces
Cp :

C =
n⊕
k=0

Cp (2.3)

Moreover, for each p = 0, . . . , n the skew–symmetric map αp from V ×V × . . . ×V
(p times) to C given by:

αp(x1, x2, . . . , xp) =
1
p!

∑
σ

(−1)σxσ1xσ2 . . . xσp,

determines an isomorphism of the vector subspace Λp V of the exterior algebra ΛV
onto Cp that sends ei1 ∧ . . . ∧ eip ∈ Λp V to ei1 . . . eip ∈ Cp ⊂ C.

Proof. cf. [18, Theoreme VIII.10] �

3The group Spin+ is denoted simply as Spin in Refs [18],[20, 2.4.2], and as Spin0 in [19]. The

case of (r, s) = (1, 1) is special, as in this case the group Spin+ has two disconnected components
– cf. Ref [18, p. 369].
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Of particular interest for us will be the subspace C0 ⊕ C1 ⊂ C of paravectors .
We will denote this subspace by V 1 and endow it with the quadratic form Q1

defined by

Q1(x0, v) = (x0)2 − v2, x0 ∈ R, v ∈ V. (2.4)

If Q is of signature(r, s), then Q1 has signature (s+ 1, r).

2.2. The trace

We denote by Φ the linear functional on C assigning to each element a ∈ C its scalar
part Φ(a) = a0 ∈ C0 in the decomposition (2.3). Then the following proposition
holds:

Proposition 2. The functional Φ has the following properties:

(i) Φ(1) = 1,

(ii) Φ(aτ ) = Φ(a), ∀a ∈ C,

(iii) Φ(ab) = Φ(ba), ∀a, b ∈ C,

(iv) (a, b)
df
= Φ(aτ b) is a nondegenerate, symmetric, bilinear form on C, that is

positive definite if the original quadratic form on V is positive definite. We
have Φ(a) = (1, a) = (a, 1), ∀a ∈ C.

(v) (ab, c) = (b, aτ c) = (a, cbτ ), ∀a, b, c ∈ C.

Proof. (i) and (ii) follow immediately from the definition. In order to prove (iii)
notice that if {ei}, i = 1, . . . , n is an orthonormal basis in V, {eI}, I = {i1 <
. . . < ip} is the corresponding basis in C, and a =

∑
I aIe

I , b =
∑
I bIeI are

the decompositions of a and b in the basis eI , then Φ(ab) =
∑
I aIbIΦ(eIeI) =

Φ(ba). From the very definition of the scalar product (a, b) it follows that (a, b) =
Φ(aτ b) = Φ((aτ b)τ ) = Φ(bτa) = (b, a). Moreover, we have (eI , eJ)=0 if I 6= J,
and also (eI , eI) = ei1

2 . . . eip
2 = (−1)s(I), where s(I) is the number of negative

norm square vectors in I. In particular eI is orthonormal with respect to the
scalar product in C, and so (iv) holds. We have (ab, c) = Φ((ab)τ c) = Φ(bτaτ c) =
Φ(aτ cbτ ) = (a, cbτ ), which establishes (v). �

Remark 1. It is easy to see that Φ(a) = (1/2n)tr(L(a)), where L(a) is the left
multiplication by a acting on C : L(a)b = ab, and the trace is taken over C, see
e.g. [21, p. 601] for a general discussion. Because of this property Φ will be called
a trace.

We will call an element a ∈ C positive , which we will write a ≥ 0, if a = aτ

and (v, av) ≥ 0 for all v ∈ C. Equivalently, a ≥ 0 if and only if a is of the form
a = bτ b, for some b ∈ C (cf. e.g. [22, 7.27]). If a is positive and a 6= 0, we will write
a > 0. If a ≥ 0, then, in particular, Φ(a) = (1, a1) ≥ 0 and, if a > 0 then Φ(a) > 0.
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3. Algebra Isomorphism Between C+(V 1, Q1) and R(2, C(V, Q))

It is a well known fact (see e.g. Ref. [19, 6.13]) that the algebras C+(V 1, Q1) and
R(2, C) are isomorphic. For the purpose of the present paper it is useful to have a
description of this isomorphism in some details.

Notation: In what follows we will use the notation C=C(V,Q), and C1 =C(V 1, Q1).

Let the map A : C × C → R(2, C) be defined by

A(a, b) =
{(

a b
π(b) π(a)

)
: a, b ∈ C

}
, (3.5)

and let γ : V 1 → R(2, C) be the linear map given by

γ(x0, v) =
(

0 x0 + v
x0 − v 0

)
=
(

0 x0 + v
π(x0 + v) 0

)
. (3.6)

Then γ is evidently the Clifford map, γ(x0, v)2 = Q1(x0, v)I, and therefore it
extends to a unique algebra homomorphism, which we will denote by the same
symbol γ, from C1 to R(2, C). We will define now the following maps, and study
their properties:

C × C Im(A)

C1 R(2, C)

C1+ C

-A

?
Ã= γ̃−1◦A

QQ
A

?QQs

��3

-γ

Q
Q

Q
QQs

ψ

��
γ̃

?
pr11

6

-ψ+

The map pr11 : R(2, C) → C assigns to each matrix in R(2, C) its top–left entry.
For instance pr11(A(a, b)) = a. Im(A) is the set of all matrices of the form (3.5).
We will not distinguish between the maps A : C × C → R(2, R) and A : C × C →
Im(A), which differ only by the canonical inclusion Im(A) → R(2, C). But we will
distinguish between γ : C1 → R(2, C) and γ̃ : C1 → Im(A). The latter map is an
algebra isomorphism, therefore γ̃−1 : Im(A) → C1 is well defined. The map ψ is
defined as ψ = pr11 ◦ γ̃, and is an algebra isomorphism, and ψ+ is its restriction
to C1+

. We will use the notation Ã(a, b) for γ̃−1(A(a, b)).

Theorem 1. (i) Let us realize the Clifford algebra C(1,−1) as the matrix algebra
R(2) using the following basis

f0 =
(

0 1
−1 0

)
, f1 =

(
0 1
1 0

)
, f01 =

(
−1 0
0 1

)
, (3.7)

so that we have

f2k
0 = 12, f

2k+1
0 = f0, f

2k
1 = (−1k)12, f

2k+1
1 = (−1)kf1. (3.8)
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Let {e0 ∈ R, ei ∈ V, i = 1, . . . , n+ 1}, be an orthonormal basis of V 1. Then,
in terms of this basis the map γ : C1 −→Mat(2, C) reads:

γ(1) = 12 ⊗ 1C
γ(e0ei1 . . . ei2k

) = (−1)kf0 ⊗ ei1 . . . ei2k
,

γ(e0ei1 . . . ei2k+1) = (−1)kf01 ⊗ ei1 . . . ei2k+1 ,

γ(ei1 . . . ei2k
) = (−1)k12 ⊗ ei1 . . . ei2k

,

γ(ei1 . . . ei2k+1) = (−1)kf1 ⊗ ei1 . . . ei2k+1 .

(ii) ker(ψ) = C1−, and ψ restricts to the algebra isomorphisms ψ+ from C1+ onto
C. In terms of the basis we have:

ψ+(1C1) = 1C ,
ψ+(ei1 . . . ei2k

) = (−1)kei1 . . . ei2k
,

ψ+(e0ei1 . . . ei2k+1) = (−1)kei1 . . . ei2k+1 .

 (3.9)

(iii) With the notation as above, we have

A(a, b)A(a′, b′) = A(a′′, b′′), where a′′ = aa′ + bπ(b′), b′′ = ab′ + bπ(a′). (3.10)

The principal involution π and the principal anti–involution τ of C1 can be
expressed through their corresponding operations in C as

π(Ã(a, b)) = Ã(a,−b), (3.11)

τ(Ã(a, b)) = Ã(ν(a), τ(b)). (3.12)

The even subalgebra C1+ of C1 can then be identified with the set of all A(a, b),
with b = 0, that is, using the map pr11, with C.

(iv) Denoting by Φ1 (resp. ∆1), and Φ (resp. ∆) the trace (resp. norm function)
of C1 and C respectively, we have

Φ1 = Φ ◦ ψ, (3.13)

∆1(ã) = ∆(ψ+(ã)), ∀ ã ∈ C1, (3.14)

(ã, b̃) = (π(ψ+(ã)), ψ+(b̃)), ∀ã, b̃ ∈ C1. (3.15)

(v) g̃ ∈ Spin(V 1, Q1) if and only if g = ψ+(g̃) satisfies
a) ∆(g) = 1, and
b) gV 1gτ = V 1.

Proof. (i) and (ii) follow by a straightforward calculation.
(iii) By a straightforward matrix multiplication we get from (3.5) that

A(a, b)A(a′, b′) = A(a′′, b′′), where a′′ = aa′ + bπ(b′), b′′ = ab′ + bπ(a′). (3.16)

It follows that the range (image) of the map A is an algebra and, because it has
the right dimension 2 × dim(V ), the Clifford map γ extends to the isomorphism
of C1 onto Im(A). It is also clear that the even subalgebra of C1 is represented by
the matrices A(a, 0), while the odd subspace is represented by matrices A(0, b).
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It follows from the very definition that π and τ defined by (3.11) and (3.12) are
involutions, and that π(ψ(w)) = ψ(−w), τ(γ(w)) = γ(w) for w ∈ V 1. Therefore we
need to show that π, defined by (3.11), is an automorphism, and that τ, defined by
(3.12), is an anti–automorphism. (Notice that although, by abuse of the notation,
we denote by the same symbol π the main automorphisms of C and C1, the meaning
is always clear from the context.)

Let C be the matrix4: C =
(

1 0
0 −1

)
, then

CA(a, b)C−1 = A(a,−b), (3.17)

therefore the formula (3.11) defines an involutive automorphism of C1, and, since
it reverses the signs of vectors, it defines the principal involution of C1.

Proving that τ is an anti–automorphism of C1 follows by a straightforward
calculation using (3.5) and the properties of π and τ on C.

(iv) follows from (i)–(ii). Finally, (v) follows from (ii) and (iv) – (cf. also Ref.
[19, Theorem 6.12]). �

From now on we will assume that (V,Q) is an (n+1)– dimensional Euclidean
space, that is that Q has the signature (n+ 1, 0).

4. Möbius Transformations of Sn and their Extensions to B̄n+1

Remark 2. In chapter 2 of reference [20], Pierre Anglès gives an explicit con-
struction of covering groups of the conformal group of a standard regular pseudo-
euclidean space endowed with a quadratic form of signature (p,q), together with
a geometrical construction of this conformal group and shows explicitly that this
group is isomorphic to PO(p + 1, q + 1), by using a wider Clifford algebra asso-
ciated with a pseudo-euclidean regular standard space endowed with a quadratic
form of signature (p+ 1, q+ 1) -cf., for example, [20, 2.4.2.5.2]. By using his table
given in [20, 2.4.2.4], one can characterize the elements of the conformal group
of the sphere Sn stereographically projected onto En. We follow another algebraic
method, considering the particular case of signature (n, 0).

Let (V,Q) be an (n+ 1)– dimensional Euclidean space, n > 0. Vectors in V
will be denoted by bold symbols: x,y, etc. The bold symbol n will be reserved for
unit vectors. We will denote by Bn+1 the open unit ball Bn+1 = {x ∈ V : x2 < 1},
by B̄n+1 its closure B̄n+1 = {x ∈ V : x2 ≤ 1}, and by Sn its boundary, the unit
sphere Sn = {n ∈ V : n2 = 1}. We will denote by C the Clifford algebra C(V,Q),
by Spin+ the group Spin+(V,Q), and by Spin1+ the group ψ+(Spin+(V 1, Q1)),
described by the conditions a) and b) in Theorem 1, (v). Following Ref. [19] we
define the Clifford group Γ(V ) as

Γ(V ) = {w1 . . . wk : wj ∈ V 1, ∆(wj) 6= 0}.

4Cf. also [18, Xh. VIII.6, p. 310], where the matrix C is used to define an anti–involution of the

algebra C(2).
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It is evident that this group is closed under π, τ, ν.
We will describe the action of Spin1+ on the unit sphere Sn, and on its

interior Bn+1. As the main tool we will use the special class of elements of C, that
are called transformers .

4.1. Transformers

Following Gilbert and Murray [19, 5.21] we define a transformer to be any element
a of C with the property that for every element w ∈ V 1 there exists another
w′ ∈ V 1 such that

aw = w′π(a). (4.18)
The set T of all transformers is a multiplicative semigroup. Moreover we have the
following important result proven in [19, 5.24–5.29]:

Theorem 2. The set of all transformers T is closed under the principal automor-
phism π. Moreover, for every a ∈ T , ∆(a) ∈ R, and if ∆(a) 6= 0, then also aτ ∈ T .
The set of all invertible transformers coincides with Clifford group Γ(V ). �

Lemma 1. If a is an invertible transformer, then for every w ∈ V 1 we have

σa(w)
df
= awaτ ∈ V 1. (4.19)

Proof. We first notice that τ(w) = w, ∀w ∈ V 1. Applying τ to both sides of
the defining equation (4.18) we get waτ = aνw′. Multiplying by a from the left,
we get awaτ = aaνw′. But since ∆(a) = ∆(π(a)) = aνa = aaν ∈ R, we get
awaτ = ∆(a)w′ ∈ V 1. �

Motivated by the above lemma we define the subsets M,M+ ∈ C as follows:

M = {a ∈ C : aV 1aτ ⊂ V 1}. (4.20)
M+ = {a ∈M : a > 0, Φ(a) = 1} (4.21)

Definition 1. We define the following important subsets of T and of M+:

G = {a ∈ T : ∆(a) = 1}, (4.22)
GR = {a ∈ G : aaτ = 1}, (4.23)
G+ = {a ∈ G : a ≥ 0}, (4.24)

M1+ = {a ∈M+ : ∆(a) > 0}, (4.25)
M̄1+ = {a ∈M+ : ∆(a) ≥ 0}, (4.26)
M0+ = {a ∈M+ : ∆(a) = 0}. (4.27)

Notice that, by the Theorem 2, G is invariant under both π and τ. It is sometimes
denoted as Spin0(V ), and the map σ (cf. 4.19) is a two–fold covering homomor-
phism: G 7→ SO+(V 1, Q1) – cf. [19, 6.12]. Thus G is nothing but Spin1+

. GR leaves
the subspace V ⊂ V 1 invariant and σ, when restricted to GR, is a two–fold covering
homomorphism of SO(V,Q). The elements of G+, that will be studied in our paper
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in some details, will be called spin–boosts . M is a multiplicative semigroup, and
G ⊂ M. We will show that M0+ is naturally isomorphic to the unit sphere Sn,
while M1+ (resp. M̄1+) corresponds to the open unit ball Bn+1 (resp its closure
B̄n+1).

Lemma 2. Let a ∈ V 1, a 6= 0, 1, Φ(a) = 1, ∆(a) ≥ 0. Then a > 0, and a is of the
form a = 1 + αn, 0 < α ≤ 1, n ∈ V, n2 = 1. If ∆(a) > 0, then

√
a =

1√
1 + ε2

(1 + εn), where ε =
1−

√
1− α2

α
. (4.28)

If ∆(a) = 0, then α = 1, a = 1 + n, and
√
a = 1√

2
a.

Proof. Since a ∈ V 1, a = x0 + x, x0 ∈ R, x ∈ V. Since Φ(a) = x0, and ∆(a) =
(x0)2 − x2, it follows that x0 = 1, x2 ≤ 1. Let us write a as a = 1 + αn, 0 <
α ≤ 1, n2 = 1. Consider first the case of ∆(a) = 1 − α2 > 0, i.e. α < 1. Let

b
df
= 1√

1+ε2
(1 + εn), where ε = 1−

√
1−α2

α . Then bτ = b, and, by simple algebra,
we get 0 < ε < 1, bτ b = b2 = a. Thus a > 0. But now b has the same form as a
(up to a positive multiplicative factor), therefore also b > 0. Then b =

√
a follows

from the uniqueness of a positive square root of a positive element. If ∆(a) = 0,
i.e. a = 1 + n, then a2 = (1 + n)2 = 1 + 2n + n2 = 2a, and therefore a > 0, and√
a = a/

√
2. �

The following proposition characterizes explicitly the sets M0+,M1+,M̄1+.

Proposition 3. Let P : V ⊃ B̄n+1 → V 1 ⊂ C be the map

P (x) = 1 + x, x ∈ B̄n+1. (4.29)

Then P is a bijection P : B̄n+1 → M̄+
1 , P (Sn) = M0+, and P (Bn+1) = M+

1 .

Proof. If x = 0, then P (x) = 1, which is evidently in M̄+
1 . Let us therefore

assume 0 < x2 ≤ 1. With a = P (x), we have a = aτ , Φ(a) = 1, ∆(a) = 1−x2 ≥ 0,
therefore, by Lemma 2, a > 0. Moreover, by a simple calculation, we find that if
w = y0 + y ∈ V 1, then

awa = y0(1 + x2) + 2(x · y) + (1− x2)y + 2(y0 + (x · y))x ∈ V 1. (4.30)

Therefore a ∈ M̄+
1 . To show that P is a surjection onto M̄1+, let a be an arbitrary

element in M̄1+. Then a2 = a(1 + 0)a must be in V 1. Let us therefore write
a2 = y0 + y. Now y0 = Φ(a2) > 0, and ∆(a2) = ∆(a)2 ≥ 0, Therefore, we
can write a2 = y0(1 + αn), α ≤ 1. Then it follows from Lemma 2 that a2 has
a square root in V 1 and, because of the uniqueness of the square root, a itself
must be in V 1. But, since Φ(a) = 1, and ∆(a) ≥ 0, it follows that a = 1 + x,
x2 ≤ 1. This shows that P is a bijection. The remaining statements follow from
∆(P (x)) = ∆(1 + x) = 1− x2. �

The following proposition and its corollary describe the set of spin–boosts
G+, and the Iwasawa–type decomposition of G.
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Proposition 4. m ∈ G+ if and only if m is of the form

m =
1 + αn√
1− α2

, n ∈ Sn, 0 ≤ α < 1. (4.31)

An equivalent form is that of

m = exp
(η

2
n
)
, α = tanh(η/2), η > 0. (4.32)

Proof. The sufficient condition: With m, n, and α as in (4.31), it follows from the
Proposition 3 that 1 + αn > 0. On the other hand ∆(m) = 1, thus m ∈ G+. On
the other hand, since n2 = 1, is easy to calculate the exponential in (4.32), the
result being:

exp
(η

2
n
)

= cosh(η/2) + sinh(η/2)n. (4.33)

It is then easy to see that by setting α = tanh(η/2), η > 0, we recover (4.31).
The necessary condition. We can assume that m 6= 1. Suppose m ∈ G+, then
Φ(m) > 0, and thus m/Φ(m) ∈ M+

1 . It follows from the Lemma 5 that m is
proportional to 1+αn, 0 < α < 1, n2 = 1. Then, from ∆(m) = 1 it follows that
the proportionality coefficient is 1/

√
1− α2. �

Corollary 1. G = G+GR. Every element g ∈ G has a unique decomposition into the
product

g = mu, m ∈ G+, u ∈ GR. (4.34)

Proof. Let g ∈ G. If g = 1, then there is nothing to prove, as we take m = 1, u = 1.
Let us therefore assume g 6= 1. Using the Polar Decomposition Theorem (cf. e.g.
[22, p. 153]), g can be written, in a unique way, as g = mu, where m2 = ggτ > 0,
and uuτ = uτu = 1. We need to show that m ∈ G+ and u ∈ GR. Now, since
G is invariant under τ, it follows that m2 = ggτ ∈ G+. Therefore, by (i), m2

can be written as m2 = exp(ηn/2) and, from the uniqueness of the square root,
m = exp(ηn/4). Therefore m ∈ G+. It follows that u = m−1g ∈ G, and so
u ∈ GR. �

Remark 3. The decomposition given in (4.34) corresponds to the well known de-
composition of Lorentz transformations into “boosts” and “space rotations.” The
special case of n = 2, and SO+(1, 3), though not at the Clifford algebra level, is
treated in details in Ref. [23]

Let us now describe the action of the group G on B̄n+1. We will need the
following lemma, which is the result of a simple, though somewhat lengthy, calcu-
lation in the Clifford algebra C.

Lemma 3. If m = P (αn)/
√

1− α2 ∈ G+, then for all x ∈ B̄n+1 we have

P (αn)(1 + x)P (αn) = (1 + α2 + 2α (n · x))(1 + x′), (4.35)

m(1 + x)m =
1 + α2 + 2α(n · x)

1− α2
(1 + x′), (4.36)
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where

x′ =
(1− α2)x + 2α(1 + α (n · x))n

1 + α2 + 2α (n · x)
. (4.37)

�

Before stating the next theorem let us notice that if x2 ≤ 1, then P (x) =
1 + x > 0. If g ∈ G, then also gP (x)gτ > 0 and, therefore, Φ(gP (x)gτ ) > 0. Since
G ⊂M, and since M is a multiplicative semigroup, it follows that gP (x)gτ ∈M,
and therefore gP (x)gτ/Φ(gP (x)gτ ) ∈ M̄1+.

We also recall the definition of a conformal transformation (see e.g. Ref. [24,
Ch. 3.7]

Definition 2. A diffeomorphism φ of a Riemannian manifold (M,G) is called a
conformal transformation if there is a function ρ > 0 on M such that

(φ∗G)αβ = ρ2Gαβ .

If n = dim(M) ≥ 3 then the group of conformal transformations of M is a Lie
group of dim ≤ (n+1)(n+2)

2 , and for the spheres Sn, that are of particular interest
in our paper, the upper limit is reached – cf. e.g. [25, Note 11, p. 309] and also
references in [20, Ch. 2].

Remark 4. The case of n = 2 is exceptional, as in this case every complex an-
alytic transformation of the complex plane generates a conformal transformation
on the Riemann sphere. In this case it is better to deal with the subgroup of all
conformal transformations of S2, called “Möbius transformations.” These are the
transformations of Sn that preserve cross–ratios

d(u, x)d(v, y)
d(u, v)d(x, y)

, u, v, x, y ∈ Sn,

where d is the natural distance on Sn. More information about various, equivalent
definitions and properties of Möbius transformations of Sn and of Bn+1 can be
found, for example, in Refs. [26, Ch. 4] and [20, Ch. 2].

Theorem 3. (i) Let for each g ∈ G, let φg : B̄n+1 → B̄n+1 be defined by

φg(x) = P−1

(
σg(P (x))

Φ(σg(P (x)))

)
. (4.38)

Then g 7→ φg is a homomorphism from G onto a group of transformations of
B̄n+1.

(ii) If m ∈ G+ is written as in (4.31): m = (1 + αn)/
√

1− α2, then the Möbius
transformation φm is explicitly given by the formula:

φm(x) =
(1− α2)x + 2α(1 + α (n · x))n

1 + α2 + 2α (n · x)
, x ∈ B̄n+1. (4.39)

(iii) When restricted to the unit sphere Sn, φ is a two–fold covering homomor-
phism from G onto the group of Möbius transformations of Sn.
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(iv) For m = (1 + αn)/
√

(1− α2) ∈ G+, the map φm : Sn 3 x 7→ x′ ∈ Sn, given
by (4.37), is conformal with the conformal factor

ρ =
(1− α2)

(1 + α2 + 2α(n · x))
. (4.40)

That is, if G = (Gαβ) is the natural Riemannian metric on the unit sphere
then

(φ∗mG)αβ =
(1− α2)2

(1 + α2 + 2α(n · x))2
Gαβ . (4.41)

Thus φm does not, in general, preserve the canonical, SO(V )–invariant, vol-
ume form dS of Sn. Denoting by dS′ the pullback5 φ∗m(dS) of dS by φm, for
every x ∈ Sn we have:

dS′

dS
(x) =

(
1− α2

1 + α2 + 2α(n · x)

)n
. (4.42)

If the map (4.37) is applied to the ball B(n+1) (rather than to its boundary
Sn), and if dV denotes the standard Euclidean volume form of V 1, then

dV ′

dV
=
(

1− α2

1 + α2 + 2α(n · x)

)n+2

. (4.43)

Remark 5. It is easy to see that our definition of conformal (Möbius) transforma-
tions of Sn is equivalent to one given by Pierre Anglès in Ref. [20, 2.4.1,2.4.2.1]. In
particular M0+ can be identified with P (Q1−{0}) in the notation of Ref. [20]. But
we do not need the stereographic projection that distinguishes the vector en+1 ∈ V.

Remark 6. The transformations φg : B̄n+1 → B̄n+1, defined in (4.38) are also
called Poincaré extensions of those restricted to Sn – cf. [26, Ch. 4.4, 4.5].

Proof. (i) That φg is a group homomorphism follows directly from the defining
formula. In order to show that each φg maps Sn onto Sn, we first notice that
from ∆(P (x)) = 1 − x2, it follows that x ∈ Sn if and only if ∆(P (x)) = 0. If
∆(P (x)) = 0, then, since ∆(g) = ∆(gτ ) = 1, also ∆(gP (x)gτ ) = ∆(g)2∆(P (x)) =
∆(P (x)) = 0, thus φg(Sn) j Sn. In fact, since g−1 = gν ∈ G, we have that
φg(Sn) = Sn.
(ii) Follows from (4.36).
(iii) Let us show that φ so restricted to Sn has kernel Z2. We first notice that if
g ∈ kerφ then gτ ∈ kerφ. Indeed, from the very definition of φ it follows that
g ∈ kerφ if and only if g(1 + n)gτ is proportional to 1 + n for all n ∈ Sn :

g(1 + n)gτ = λ(1 + n).

5Let us recall that if φ : M −→ N is a C1 map between differentiable manifolds M and N, and if

ω is a k–form on N, then its pullback φ∗(ω) is the k–form on M defined by φ∗(ω)(ξ1p, . . . , ξkp) =

ω(dφp(ξ1p), . . . , dφp(ξkp)) for all ξ1p, . . . , ξkp ∈ Tp(M), p ∈ M where dφp : TpM −→ Tφ(p)N is

the derivative of φ at p. For a composition of maps we have (φ ◦ψ)∗ = ψ∗ ◦ φ∗ – cf. e.g. [27, Ch.

XVI.20].



216 Arkadiusz Jadczyk AACA

By applying π to both sides of this equation, we get

π(g)(1− n)gν = λ(1− n).

Now, multiplying by gτ from the left, and by g from the right, and taking into
account the fact that ∆(g) = gνg = ∆(gτ ) = gτπ(g) = 1, we find gτ (1 − n)g =
(1/λ)(1 − n), and, since n ∈ Sn is arbitrary, gτ ∈ kerφ. Now, assuming that
g ∈ kerφ, let g = mu be the decomposition of g into a spin–boost m ∈ G+ and
a rotation u ∈ GR. Then gτ = uτm ∈ kerφ, and, since the kernel of a group
homomorphism is a group, we get m2 = ggτ ∈ kerφ, i.e. φm2(x) = x, x ∈ Sn.

Let us write m2 as m2 = (1 + αn)/
√

1− α2 and, since we have assumed that
dim(V ) ≥ 2, we can choose for x a unit vector in V, orthogonal to n. Then, from
(4.37) we get

x = φm2(x) =
(1− α)2x + 2αn

1 + α2
,

which is possible only for α = 0, i.e. if m2 = 1. But then, from the uniqueness
of the square root, m = 1, and so g = u. Now, u(1 + x)uτ = (1 + x) implies
uxuτ = x, which extends, by simple scaling to all x ∈ V. Since uτπ(u) = ∆(uτ ) =
∆(u) = 1, the last equation can be rewritten as ux = xπ(u), and it follows from
[19, Lemma 5.25] that u ∈ R. Then, since ∆(u) = 1, we get u2 = 1, so that u = ±1.
That the homomorphism φ is surjective, as its image is a connected Lie group of
conformal transformations of dimension equal to that of Spin+(1, n + 1), that is
(n+ 2)(n+ 1)/2 - cf. Definition 2 and Remark 4.
(iv) Let us endow V with an orthonormal basis e1, . . . , en+1, and the corresponding
coordinates x1, . . . , xn+1. Let G = (Gij = δij) be the natural Riemannian metric
in V. From (4.37) it is then easy to compute G∗ij = (φ∗mG)ij = ∂x′k

∂xi
∂x′l

∂xj δkl. The
result is

G∗ij = ρ2

(
δij +

4α2(x2 − 1)
f2

ninj −
2α
f

(nixj + njxi)
)
. (4.44)

where

f = 1 + α2 + 2α(n · x), ρ =
1− α2

f
. (4.45)

If v = (vi) and w = (wi) are vectors tangent to Sn, so that (v · n) = (w ·
n) = 0 then, when computing G∗ijv

iwj , the two last terms vanish, and we obtain
G∗ijv

iwj = ρ2Gijv
iwj , which proves (4.41). (4.42) follows immediately from (4.41).

It is also easy to calculate the determinant of the matrix G∗. It has eigenvalue equal
to ρ2 on the whole (n − 1)– dimensional subspace orthogonal to n and x, while
the product of its two eigenvalues in the subspace spanned by n and x is equal to
ρ4. So the determinant is ρ2(n+1), and the square root of the determinant is ρn+2,
which proves (4.43).6 �

6The same way one gets (4.43) also for x‖n. An alternative method of proving (4.42) and (4.43),

using (n + 1)– dimensional polar coordinates can be found in a previous version of this paper,

available as an arxiv preprint [29]
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4.2. Stereographic projection

In order to get a better insight into the geometrical nature of our transformations,
and also to understand why, in (4.32), following Ref. [20], we have used η/2, rather
than just η as the parameter of the exponential, it is instructive to discuss the
action of our transformations on the stereographic projection of the sphere Sn. As
before, we fix the vector n ∈ Sn, and let sn be the stereographic projection from
Sn onto the hyperplane through the origin of V, orthogonal to n, with the origin
at n. Explicitly, we have

sn(x) =
x− (n · x)n
1− (n · x)

, x ∈ Sn. (4.46)

Indeed, the vector sn(x) is on the straight line connecting n and x, and is orthogo-
nal to n, which two properties uniquely characterize the stereographic projection.
Let us recall now the action of φm on Sn. From the formula (4.37) we have:

x′ =
(1− α2)x + 2α(1 + α (n · x))n

1 + α2 + 2α (n · x)
. (4.47)

Let us compare now sn(x′) with sn(x). By a straightforward calculation we obtain:

(n · x′) =
2α+ (1 + α2)n · x
1 + α2 + 2α(n · x)

, (4.48)

1− (n · x′) =
(1− α)2(1− (n · x))
1 + α2 + 2α(n · x)

, (4.49)

x′ − (n · x′)n =
(1− α2)(x− (n · x)n)

1 + α2 + 2α(n · x)
, (4.50)

and therefore

sn(x′) = x′−(n·x′)n
1−(n·x′) = (1−α2)(x−(n·x)n)

(1−α)2+(1−α2)(n·x)

= 1−α2

(1−α)2
x−(n·x)n
1−(n·x) = 1+α

1−α sn(x).
(4.51)

Now, since α = tanh(η/2), we have

1 + α

1− α
=

cosh(η/2) + sin(η/2)
cosh(η/2)− sinh(η/2)

=
2 exp(η/2)

2 exp(−η/2)
= exp(η),

and therefore

sn(x′) = eηsn(x), (4.52)

so that the family of Möbius transformations gn(ε), when parametrized by η =
2 arctanh(α), act as a one–parameter group of uniform dilations on the stereo-
graphic projection sn(Sn) = Rn.
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5. Iterated Function Systems of Conformal Maps

Let S be a set, let {wi : i = 1, 2, . . . , N} be a family of maps wi : S −→ S,

and let pi(x), i = 1, 2, . . . , N be positive functions on S satisfying
∑N
i=1 pi(x) =

1, ∀x ∈ S. The maps wi and the functions pi(x) define what is called an iterated
function system (IFS) with place dependent probabilities - cf. [30]. Starting with
an initial point x0 we select one of the transformations wi with the probability
distribution pi(x0). If wi1 is selected, we get the next point x1 = wi1(x0), and
we repeat the process again, selecting the next transformation wi2 , according to
the probability distribution pi(x1). By iterating the process we produce a random
sequence of integers i0, i1, . . . and a random sequence of points xk = wik(xk−1) ∈
S, k = 1, 2, . . . . In interesting cases the sequence xk accumulates on an “attractor
set” which has fractal properties. Instead of looking at the points of S we can take
a dual look at the functions on S. Let F(S) be the set of all real–valued functions
on S. F(S) is a vector space, and each transformation w : S → S induces a linear
transformation w? : F(S) → F(S) defined by (w?f)(x) = f(w(x)), x ∈ S, f ∈
F(S).

5.1. Markov operator

Given an iterated function system {wi, pi( . )} on S one naturally associates with
it a linear Markov operator (sometimes called also the transfer operator) T ∗ :
F(S) → F(S) defined by

(T ∗f)(x) =
N∑
i=1

pi(x)(w∗i f)(x) =
N∑
i=1

pi(x)f(wi(x)). (5.53)

There is a dual Markov operator T∗, acting on measures on S. Suppose S has a
measurable structure, wi and pi( . ) are measurable, and let F(S) be the space of
all bounded measurable functions on S. Let M(S) be the space of all finite mea-
sures on S. Then T∗ : M(S) →M(S) is defined by duality: (T∗µ, f) = (µ, T ∗f),
where (µ, f) .=

∫
fdµ. Since T ∗(1) = 1, where 1(x) = 1, ∀x ∈ S, we have that∫

dT∗µ =
∫
dµ and, in particular, T∗ maps probabilistic measures into probabilis-

tic measures. In many interesting cases the sequence of iterates (T∗)kµ converges,
in some appropriate topology, to a limit µ∞ = limk→∞(T∗)kµ, that is independent
of the initial measure µ, and which is the unique fixed point of T∗. The support
set of µ∞ is then the attractor set mentioned above.

Let µ0 be a fixed, normalized measure on S, and assume that the maps w−1
i

map sets of measure µ zero into sets of measure µ zero. Then, for any finite k, the
measure T?kµ0 is continuous with respect to µ0 and therefore can be written as

T?
kµ0(r) = fk(r)µ0(r). (5.54)

The sequence of functions fk(r) gives a convenient graphic representation of the
limit invariant measure. In our case, as it follows from the formula (5.54), the
maps wi are bijections, and the functions fk can be computed explicitly via the
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following recurrence formula:

fk+1(r) =
N∑
i=1

pi
(
w−1
i (r)

) dµ0

(
w−1
i (r)

)
dµ0(r)

fk
(
w−1
i (r)

)
. (5.55)

5.2. Conformal maps

In this section the set S is either the sphere Sn, or the closed ball B̄n+1, and the
maps w are of the form (4.37), and are determined by vectors αn ∈ B(n+1). Let
us choose one α, 0 < α < 1, and N unit vectors ni ∈ Sn, so that we have N maps

wi(x) =
(1− α2)x + 2α(1 + α(ni · x))ni

1 + α2 + 2α(ni · x)
, (5.56)

as in Proposition 4. In our case we have an additional structure in the set S and
in the maps wi, namely the one stemming from the Clifford algebra realization.
First of all to each x ∈ Sn we have associated the idempotent 1

2P (x), where
P (x) = (1 + x), and then we have a special class of functions on S, namely the
functions of the form:

fa(x) = (P (x), a), a ∈ C, x ∈ B̄(n+ 1). (5.57)

We denote by L the vector space of these functions. Notice that functions in L
separate the points x ∈ B̄(n+1). Indeed, for x,y ∈ B̄(n+1) we have fy(x) = x ·y/2,
thus our statement reduces to: for any two different vectors x1,x2 one can always
find another vector y such that x1 · y 6= x2 · y, which is evident. 7

Proposition 5. With the notation as in the beginning of this section, let 0 < α < 1,
ni ∈ Sn, i = 1, 2, . . . N and wi as in (5.56). Suppose that

1)
N∑
i=1

ni = 0, (5.58)

2)

pi(x) =
1 + α2 + 2α(ni · x)

Z(α)
, (5.59)

where

Z(α) =
N∑
i=1

(1 + α2 + 2α(ni · x)) = N(1 + α2),

then the Markov operator T ∗ of the iterated function system {(wi, pi)} maps the
space L into itself: T ∗ : fa 7→ fV (a), where

V (a) =
1

N(1 + α2)

N∑
i=1

P (αni) aP (αni). (5.60)

7The space L is (n+ 2)–dimensional, as it is clear that fa(x) = 0, ∀ a ∈ Cp ⊂ C, p > 1.
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Proof. From (4.36) it follows that if
∑
i ni = 0, then Z .=

∑
i(1+α2+2α(ni ·x)) =

N(1 + α2)/(1 − α2) is a constant, independent of x. From the very definition of
the Markov operator, as well as from (5.57), (4.35) it follows then that

(T ∗fa)(x) =
∑
i

pi(x)fa(wi(x)) =
∑
i

pi(x)Φ(aP (wi(x)))

=
∑
i

pi(x)Φ
(
a

1− α2

(1 + α2 + 2α(ni · x))
P (αni)P (x)P (αni)

)
=

∑
i

pi(x)
(1− α2)

1 + α2 + 2α(ni · x)
Φ (P (αni)aP (αni)P (x))

=
1

Z(α)

∑
i

Φ (P (αni)aP (αni)P (x)) = fV (a)(x).
�

The Markov operator T ∗ acts on measures, while its dual T ∗ acts on functions
on S. Every probabilistic measure µ on S determines an algebra element P (µ)
defined by:

P (µ) =
∫
S

P (x) dµ(x) = 1 +
∫
S

x dµ(x) = P

∫
S

x dµ(x)

 , (5.61)

so that automatically Φ(P (µ)) = 1. P (µ)/2 is an idempotent if and only if µ is
concentrated at just one point on the boundary Sn. In general there are infinitely
many measures µ giving rise to the same algebra element P (µ). The process of
integration on one hand leads to simplification (linearization) but, on the other
hand, it also leads to the loss of information.

Corollary 2. Under the assumptions 1) and 2) of Proposition 5, if µ1 and µ2 are
two probabilistic measures on S such that P (µ1) = P (µ2) = P, then P (T ∗µ1) =
P (T ∗µ2) = V (P ), where V (P ) is given by the formula (5.60), with a replaced by
P.

Proof. Because functions fa, a ∈ C separate the elements of C, it is enough to show
that fa(P (T ∗µ)) = fa(V (P (µ))) for all a ∈ C. Now, from the very definition of
the functions fa, fa(x) = Φ(aP (x)), and from the linearity of the trace functional
Φ, it follows that (fa, µ) .=

∫
fa(x)dµ(x) = Φ(aP (µ)), and so fa(V (P (µ)) =

Φ(aV (P (µ))) = Φ(V (a)P (µ)) = fV (a)(P (µ)) = fa(P (T ∗µ)). �

Corollary 3. Under the assumptions 1) and 2) of Proposition 5, the Markov oper-
ator recurrence formula (5.55) is explicitly given by

fk+1(r) =
(1− α2)n+2

N(1 + α2)

N∑
i=1

fk
(
w−1
i (r)

)
(1 + α2 − 2α(ni · x))n+1 , (5.62)

where

w−1
i (r) =

(1− α2)r− 2α(1− α(ni · r))ni
1 + α2 − 2α(ni · r)

. (5.63)
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Proof. Follows directly by a somewhat lengthy calculation using (5.55), (5.56),
(5.59), and (4.43). �

Remark 7. Iterated function systems for mixed states have been discussed by
 Lozinski et al. in Ref. [31], while S lomczynski [32] discussed Markov operators
and dynamical entropy for general IFS–s on state spaces. In these references the
probability distributions assigned to the maps were generic rather than derived ge-
ometrically, as is the case in this paper.

6. Examples

6.1. S1 – Polygon

As the first example we consider the circle S1, and unit vectors ni pointing to the
vertices of a regular polygon. For an illustration we choose the pentagon. Fig. 1
shows the plot of log10(f7 + 1.0), the 7–th iteration of the Markov operator – see
(5.62), for α = 0.58.

6.2. S2

S2, the Riemann sphere, is the same as the complex projective line P 1(C) - the
space of pure quantum states of the simplest non–trivial quantum system, namely
spin 1/2. Examples of quantum fractals on S2, based on Platonic solids, has been
given elsewhere (cf. [33], and references therein). Here we give just one example,
namely the octahedral quantum fractal. Fig. 2 shows the 7–th power of the Markov
operator: log10(f7 + 1), - cf. (5.62) for α = 0.5, plotted on the projection of the
upper hemisphere of S2. The emergence of circles on the plot is rather surprising
and not well understood.8

6.3. S3 – regular polytopes

There are six regular polytopes in four dimensions: self–dual pentachoron (or 4
simplex), 16 cell (or cross–polytope, or hexadecochoron), dual to it 8 cell (or hy-
percube or tesseract), self–dual 24 cell (or icositetrachoron), 600 cell (or hexa-
cosichoron), and its dual 120 cell (or hecatonicosachoron) - cf. Fig. 3 and Fig. 8.
In our examples of four dimensional quantum fractals we skip the first one. The
pentachoron (the four dimensional equivalent of the tetrahedron) leads to rather
trivial and uninteresting fractal pattern.

8The algorithm for generating conformal quantum fractals on S2 has been included in the CLU-

Calc software by Christian Perwass. A video zooming on a quantum fractal based on the regular
octahedron, α = 0.42, can be seen on the CLUCalc home page: http://www.clucalc.info/
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6.4. S3 – 16 cell.

Quaternions of the form a+bi+cj+dk, a, b, c, d ∈ Z form the so called Lipschitz
ring. The unit quaternions of this ring form a group of order 8 - the binary dihedral
group D4. Its eight elements, {±1,±i,±j,±k} form the four-dimensional regular
polytope, the so called cross–polytope , with Schläfli symbol {3, 3, 4}. It has 16
tetrahedral cells, each of its 24 edges belongs to 4 cells.

Visualization of quantum fractals that live in four dimensions is difficult. Here
we generate 10,000,000 points of the iterated function system described in Sec 5.2,
with ni being the 8 vertices of the 16 cell, α = 0.5, and with probabilities given
by (5.59). We plot the three dimensional projections of those 16742 points which
fall into the slice of S3 with the fourth coordinate 0.5 < x4 < 0.51 - see Fig. 4.

This pattern, generated by the IFS of conformal maps with place-dependent
probabilities should be compared with the plot of the fourth approximation to the
density of the limiting invariant measure - Fig. 4. Due to the recursive nature of
the formula (5.62) the computation time of fk grows exponentially with k. With
each level new details appear in the graph, at the same time the probability peaks
get higher (as in Fig. 6). To present more details in the graph, we are plotting
log10(f4(r) + 1), rather than the function f4(r) itself. Notice that for each k, the
integral of fk(r) over the sphere S3, with the natural SO(4) invariant measure, is
constant and equal to the volume of S3.

6.5. S3 – 8 cell.

Dual to the 16 cell is the 8 cell, also known as cross polyhedron hypercube , or
tesseract . Its 16 vertices are the unit quaternions 1

2 (±1,±i,±j,±k). Its Schläfli
symbol is {4, 3, 3}, which means that its cells are {4, 3} - that is cubes, each face
belongs to 2 cells, and each edge belongs to 3 cells. The hypercube is built of two
3 dimensional cubes, their edges being connected along the fourth coordinate. The
projection of the hypercube is shown in Fig. 3.

We choose 16 unit vectors ni pointing to the vertices of the hypercube. Fig.
5 shows the plot of f5, the 5–th iteration of the Markov operator (given by (5.62)),
for α = 0.60, restricted to the section x3 = 0.8, projected onto (x1, x2) plane.

6.6. S3 – 24 cell.

Quaternions of the form a + bi + cj + dk, a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1
2

form a ring, called the Hurwitz ring . Its additive group is the F4 lattice. The
unite quaternions of this ring form a group, the binary tetrahedral group T24,
isomorphic to the group SL(2, 3) - with generators the same as for SL(2, 5), - cf.
(8.79), except that the multiplications are carried in Z3. 24 cell has Schläfli symbol
{3, 4, 3}, which means that its 24 cells are octahedrons, with each edge belonging
to three cells [34, p. 68]. Each of its 16 vertices is common to 6 cells - cf. Fig. 3.
Fig. 6 shows the plots of log(fk+1) for k = 2, 3, 4, for x4 = 0.5, and α = 0.6. With
each power of the Markov operator more details of the limit measure appear.
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6.7. S3 – 600 cell.

Here we provide an example of a quantum fractal on S3, based on the regular
polytope in four dimensions, namely the 600 cell, with Schläfli symbol {3, 3, 5}.
The vertices of the 600 cell are given in the Appendix 8.3. (cf. also [34, p. 74–
75].) Fig. 3 shows a two dimensional projection of the 600 cell as viewed from the
direction of the center of one of its cells, while Fig. 7 (top) shows the more perfect
(all 120 vertices can bee seen) Coxeter’s projection. The inner ring, consisting of
30 vertices is on the torus. We show the functions log10(f1 + 1) and log10(f2 + 1)
plotted at the surface of this torus. The 30 highest peaks that can be seen on the
bottom plots are located at the vertices.

6.8. S3 – 120 cell.

The last example is the 120 cell, with 600 vertices. Fig. 8 (top) shows a particular
projection of this polytope, with one of its 120 octahedral cells plotted in bold. Be-
low is the plot of log10(f2+1), for α = 0.9, at the upper hemisphere circumscribing
this cell.

7. Summary and Conclusions

In the standard formulation of the quantum theory the imaginary unit i plays
an important yet somewhat mysterious role: it appears in front of the Planck
constant ~, and provides a one–to–one formal correspondence between Hermitian
“observables” and anti–Hermitian generators of one–parameter groups of unitary
transformations. In particular it is necessary in order to write the time evolution
equation for the wave function, with the energy operator (the Hamiltonian) defin-
ing the evolution. But the imaginary “i” is not needed for quantum jumps. In a
theory where quantum jumps are the driving force of the evolution, the real alge-
bra structure, with a real trace functional suffices. In the present paper we have
studied the simplest case of real Clifford algebras of Euclidean spaces and demon-
strated that from the algebra and from the geometry a natural family of iterated
function systems of conformal maps leads to fractal structures and pattern forma-
tion on spheres Sn. In this way we open a way towards algebraic generalizations
of quantum theory that are based on discrete, algebraic structure, as expressed in
the late Einstein’s vision quoted in the Introduction.

Among the open problems we would like to point out particularly the follow-
ing ones.

7.1. Existence and uniqueness of the invariant measure

While numerical simulations (see the next section), suggest that for the class of
iterated function systems discussed in this paper, the attractor set and the invari-
ant measure exists and is unique, we are not able to provide a mathematical proof.
Even if the spheres Sn and balls Bn+1 are compact, the Möbius transformations of
these spheres are non-contractive. The question of existence and uniqueness of in-
variant measures for non-contractive iterated function systems has been discussed
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in the mathematical literature [35, 36, 37], yet none of the sufficient conditions
seems to be easily applicable to our case. Apanasov has a whole book devoted to
conformal maps, yet we find that his criteria, esp. Theorem 4.16 of Ref. [37], are
abstract and difficult to apply. Therefore the problem of existence and uniqueness
of the invariant measure for IFS–s discussed in the present paper remains open at
this time.

7.2. Fractal dimension as a function of the parameter ε.

Anticipating a positive answer to the above problem, the next important question
is the exact nature of the fractal attractor as a function of the parameter ε. The
numerical simulations seem to suggest that the fractal dimension of the attractor
of our IFSs on Sn decreases, starting from n, for ε = 0. Yet our attempt to
determine its behavior, even for the simplest case of S1, met an obstacle. We tried
to calculate the correlation dimension for the pentagon case, described in Example
1. To this end we generated N = 10, 000, 000 points, using the algorithm of Sec.
5, and plotted, on the log–log scale the function C(N, r), where r is the distance
between two points, and C(r) is the relative number of pairs, out of N points,
within this distance. More precisely, the correlation dimension D is defined as

D = lim
r→0

log(C(r))/ log(r), (7.64)

where

C(r) =
1
N2

lim
N→∞

N∑
i,j

Θ(|r − |xi − xj |), (7.65)

Θ being the unit step function. For the standard Cantor set the correlation dimen-
sion algorithm gives the correct fractal dimension, namely D = 0.63 ≈
log(2)/ log(3). For the pentagon, with ε = 0.58, (cf. Fig. 1) we get a reasonable
straight line with the slope D ≈ 0.9, but with ε = 0.925, when the expected fractal
dimension should be close to zero, we get a staircase. It is not clear whether this
is due to numerical artifacts, or is it a pointer towards the possible multifractality
of quantum fractals for high values of ε.

8. Appendices

8.1. The boosts in SO(1, n+ 1)
Let eµ, µ = 0, 1, 2, . . . , µn+1, e0 = 1 ∈ R, ei ∈ V, i = 1, 2, . . . n+1 be an orthonor-
mal basis in V 1. Then the two–fold covering homomorphism Λ : G → SO+(1, n+1),
g 7→ Λ(g), can be written as geµgτ = Λνµ, or, more explicitly:

ge0g
τ = Λ0

0e0 + Λi ei, geig
τ = Λ0

ie0 + Λjiej . (8.66)

If x ∈ V 1 is written in terms of the basis eµ, x =µ eµ, then x′ = gxgτ = x′µeµ is
given by x′µ = Λµνx

ν . It is then easy to see that the map φg : Sn → Sn, given by
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(4.38), when written in terms of the representing its matrix Λ(m) ∈ SO+(1, n+1),
is

φΛ(x)i = x′i/x′0 =
Λi0 + Λijx

j

Λ0
0 + Λ0

jx
j
, i, j = 1, 2, . . . , n+ 1 (8.67)

where x2 =
∑n+1
i (xi)2 = 1.

Proposition 6. The map φΛ : Sn −→ Sn given by:

φΛ(x)i = x′i/x′0 =
Λi0 + Λijx

j

Λ0
0 + Λ0

jx
j
, i, j = 1, 2, 3, (8.68)

transforms the normalized Sn invariant measure dS on Sn into a new measure
dS′ = φ∗Λ(dS), where φ∗Λ(dS) is the pullback, (or the “inverse image”, cf. e.g. [27,
Ch. 16.20.8]) of dS by φΛ. For x ∈ Sn we have

(φ∗Λ(dS)) (x) =
1

(Λ0
0 + Λ0

i xi)
n dS(x). (8.69)

To prove (8.69) we will need a couple of lemmas.

Lemma 4. Let r be a real number, and let fr : SO+(1, n+1)×Sn −→ R be defined
as

fr(Λ,x) =
(
Λ0

0 + Λ0
ix
i
)r
. (8.70)

Then fr has the following cocycle property:

fr(ΛΛ′, · ) = φ∗Λ′ (fr(Λ, · )) fr(Λ′, · ). (8.71)

Proof. It is enough to consider the case r = 1. We set, during the course of this
proof, f1 = f. We have

f(ΛΛ′,x) = (ΛΛ′)00 + (ΛΛ′)0 ixi

= Λ0
0Λ

′0
0 + Λ0

iΛ
′i

0 + Λ0
0Λ

′0
ix
i + Λ0

kΛ
′k
ix
i

= Λ0
0

(
Λ′00 + Λ′0ix

i
)

+ Λ0
k

(
Λ′k0 + Λ′kix

i
)

=
(
Λ′00 + Λ′0ix

i
)(

Λ0
0 + Λ0

k

Λ′k0 + Λ′kjx
j

Λ′00 + Λ′0jxj

)
= f(Λ′,x)f(Λ, φΛ′(x)). �

Lemma 5. Let m ∈ G+, and let Λ = Λ(m) ∈ SO+(1, n + 1) be the matrix repre-
senting m. Then (8.69) holds for Λ.

Proof. It is enough to consider the case of m 6= I. Let us write m in the form
m = 1√

1−α2 , 0 < α < 1, n2 = 1, as in (4.31). From (4.36), and the general formula
gxµeµg

τ = xµΛ(g)νµe
µ it follows that Λ0

0 + Λ0 ixi is the coefficient in front of e0
on the right hand side of (4.36), which is (1+α2 +2α(n ·x))/(1−α2). Comparing
now (4.42) and (8.69) we see that the two formulas coincide. �
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Proof of Proposition 6. Let g ∈ G and let gtau = mu be the decomposition of gτ

into a spin–boost and a rotation as in (4.34), so that g = uτm. Let R = Λ(uτ ).
Since R ∈ SO(n+ 1), and dS is rotation invariant, we have φ∗R(dS) = dS. Notice
that (8.69) can also be written as

dS′ = f−n(Λ(g), · ) dS. (8.72)

Now,

φ∗Λ(g)(dS) = φ∗Λ(muτ ) = φΛ(m)(φ∗R(dS)) = φ∗Λ(m)(dS) = f−n(Λ(m), · ) dS, (8.73)

where we have used Lemma 5.
Now, from the definition (8.70) of the cocycle fk we have that f(R−1, · ) = 1, ∀R ∈
SO(n+ 1). Therefore

f−n(Λ(m), · )=f−n((R−1R)Λ(m), · )=f−n(R−1(RΛ(m)), · )=f−n(R−1Λ(g), · ),
and from Lemma 4, and the rotational invariance of f−n mentioned before, we find
f−n(R−1(Λ(g)), · ) = φ∗Λ(g)(f−n(R

−1, · )f−n(Λ(g), · ) = f−n(Λ(g), · ). This proves
that the formula (8.72) for a general Λ ∈ SO+(1, n + 1), which is the same as
(8.69). �

8.2. Hamilton’s Icosian Calculus

Hamilton’s “Icosian Calculus” dates back to his communication to the Proc. Roy.
Irish Acad. of November 10, 1856 [38, p.609], followed by several papers, the last
one in 1863. According to the contemporary terminology Hamilton proposes a
particular presentation of the alternating group A5 - the symmetry group of the
icosahedron.

Account of the Icosian Calculus
Communicated 10 November 1856.

Proc. Roy. Irish Acad. vol. vi (1858), pp. 415-16.

Sir William Rowan Hamilton read a Paper on a new System of Roots of Unity,
and of operations therewith connected: to which system of symbols and operations,
in consequence of the geometrical character of some of their leading interpretations,
he is disposed to give the name of the “ICOSIAN CALCULUS”. This Calculus
agrees with that of the Quaternions, in three important respects: namely, 1st that
its three chief symbols ι, κ, λ are (as above suggested) roots of unity, as i, j, k are
certain fourth roots thereof: 2nd, that these new roots obey the associative law of
multiplication; and 3rd, that they are not subject to the commutative law, or that
their places as factors must not in general be altered in a product. And it differs
from the Quaternion Calculus, 1st, by involving roots with different exponents;
and 2nd by not requiring (so far as yet appears) the distributive property of
multiplication. In fact, + and− , in these new calculations, enter only as connecting
exponents, and not as connecting terms: indeed, no terms, or in other words, no
polynomes, nor even binomes, have hitherto presented themselves, in these late
researches of the author. As regards the exponents of the new roots, it may be
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mentioned that in the principal system - for the new Calculus involves a family of
systems-there are adopted the equations,

1 = ι2 = κ3 = λ5, λ = ικ; (A)

so that we deal, in it, with a new square root, cube root, and fifth root, of positive
unity; the latter root being the product of the two former, when taken in the
order assigned, but not in the opposite order. From these simple assumptions (A),
a long train of consistent calculations opens itself out, for every result of which
there is found a corresponding geometrical interpretation, in the theory of two of
the celebrated solids of antiquity, alluded to with interest by Plato in the Timaeus;
namely the Icosahedron, and the Dodecahedron: whereof the angles may now be
unequal. By making λ4 = 1, the author obtains other symbolical results, which
are interpreted by the Octahedron and the Hexahedron. The Pyramid is, in this
theory, almost too simple to be interesting: but it is dealt with by the assumption,
λ3 = 1, the other equations (A) being untouched. As one fundamental result of
those equations (A), which may serve as a slight specimen of the rest, it is found
that if we make ικ2 = µ, we shall have

µ5 = 1, µ = λιλ, λ = µιµ;

so that this new fifth root mu has relations of perfect reciprocity with the former
fifth root lambda. But there exist more general results, including this, and others,
on which Sir W. R. H. hopes to be allowed to make a future communication to the
Academy: as also on some applications of the principles already stated, or alluded
to, which appear to be in some degree interesting.

8.3. The Binary Icosahedral Group

Putting R = ι, S = κ, T = λ4, we can equivalently write Hamilton’s equations
(A) (Sec. 8.2) as

R2 = S3 = T 5 = RST = 1. (8.74)

Removing the last equality we get the code for the binary icosahedral group:

R2 = S3 = T 5 = RST. (8.75)

It is evident from the definition that Z = RST is a central element of the group,
and it can be shown [39, p. 69 and references therein] that Z is of order 2: Z2 = 1.
This group if order 120, denoted as 2.A5, and it is a double cover of the icosahedral
group A5. The group has a particularly simple representation in terms of the
quaternions. Let

φ =
1 +

√
5

2
= 1.61803 . . . , Φ =

−1 +
√

5
2

= φ−1 = 0.61803 . . . , (8.76)

be the Golden Ratio and its inverse, respectively. Consider the group G consisting
of 120 elements given by Table 1 below:
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Table 1. 120 vertices of the 600 cell

2× 4 = 8 elements of the form (±1, 0, 0, 0), (0,±1, 0, 0),
(0, 0,±1, 0), (±0, 0, 0,±1)

24 = 16 elements of the form (± 1
2 ,±

1
2 ,±

1
2 ,±

1
2 )

3!× 23 = 96 elements that are even permutations of elements

of the form 1
2 (±φ,±1,±Φ, 0).

These 120 elements form a group of unit icossians (cf. Appendix 8.2) that
is a finite subgroup of the group Spin(3). For generators R,S we can take, for
instance9,

S1 =
1
2
(1− Φi− φk), T1 =

1
2
(Φ− i− φj), R1 = S1T1 = −i, (8.77)

or an inequivalent set

S2 =
1
2
(1 + φi+ Φj), T2 =

1
2
(−φ− i− Φk). R2 = S2T2 = −i. (8.78)

In both cases we have RST = −1, but the two sets of generators are geometrically
inequivalent (they are related by an outer automorphism of G), the angle between
S1 and T1 is π/5 while the angle between S2 and T2 is 3π/5.

The binary icosahedral group is isomorphic to SL(2, 5), the group of unimod-
ular 2 × 2 matrices over the field Z5, as can be seen by taking for the generators
R,S, T the matrices:

R =
(

0 1
−1 0

)
, S =

(
1 −1
1 0

)
, T =

(
−1 0
−1 −1

)
. (8.79)

Fig. 3 shows the vertices of the 600 cell as viewed from the direction of the
center of one of its cells. There is another realization of the 600 cell as a polytope,
due to Coxeter [40, p.247], where all of the 120 vertices are organized on four
different tori within the sphere S3. Let

a =
√

(1 + 3−1/25−1/4φ3/2)/2 ≈ 0.947274,

b =
√

(1 + 3−1/25−1/4φ−3/2)/2 ≈ 0.770582,

9One can check that there are 120 possible choices of triples of quaternionic generators R,S, T

satisfying (8.75).
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c =
√

(1− 3−1/25−1/4φ−3/2)/2 ≈ 0.637341,

d =
√

(1− 3−1/25−1/4φ3/2)/2 ≈ 0.320426,

let θ = π/30, and let the four families, each of 30 vertices, be given by:

a[k] = {a cos(kθ), a sin(kθ), d cos(11kθ), d sin(11kθ)},

b[k] = {d cos(kθ), d sin(kθ), −a cos(11kθ), −a sin(11kθ)},
(8.80)

where
k = 0, k < 60, k = k + 2,

and
a[k] = {b cos(kθ), b sin(kθ), c cos(11kθ), c sin(11kθ)},

b[k] = {c cos(kθ), c sin(kθ), −b cos(11kθ), −b sin(11kθ)},
(8.81)

where
k = 1, k ≤ 60, k = k + 2.
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9. Figures

Figure 1. Pentagon. 7–th power of the Markov operator applied
to f = 1.

Figure 2. Octahedron – {3,4}. 7–th power of the Markov oper-
ator, α = 0.5.
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Figure 3. a) 16 cell - {3,3,3}. 8 vertices, 24 edges, 32 triangu-
lar faces, 16 tetrahedral cells. b) 8 cell or Hypercube - {4,3,3}.
16 vertices, 32 edges, 24 square faces, 8 cubic cells. c) 24 cell -
{3,4,3}. 24 vertices, 96 edges, 96 triangular faces, 24 octahedral
cells. d) 600 cell - {3,3,5}. 120 vertices, 720 edges, 1200 trian-
gular faces, 600 tetrahedral cells. The graphics were generated
by choosing the tetrahedral cell with vertices t0 = (1, 0, 0, 0),
t1 = (φ,Φ, 0, 1)/2, t2 = (φ, 0, 1,Φ)/2, t3 = (φ, 1,Φ, 0)/2, and
choosing the unit vector f1 in the direction of the center of this
cell (t0 + t1 + t2 + t3)/4. The second unit vector f1 was chosen
in the direction of f0 ∗ t1, (the quaternionic product). Then the
frame (f0, f1, f2 = (0, 0, 1, 0), f3 = (0, 0, 0, 1)) was orthonormal-
ized to (e0, e1, e2, e3) via Gram-Schmidt procedure, and the 720
edges of the 600 cell have been projected onto (e2, e3) plane.



232 Arkadiusz Jadczyk AACA

Figure 4. 16 cell – {3,3,4}. Generated 10,000,000 random points
of the IFS system of conformal maps with α = 0.5. Plotted are
16742 points whose fourth coordinate is in the slice 0.5 < x4 <
0.51. The picture is superimposed on the projection of the edges
of the 16 cell. Below: Plotted the fourth power of the Markov
operator, more precisely of the function log10(f4(r) + 1), with f4
function defined in (5.62), calculated for α = 0.5 and x4 = 0.5.
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Figure 5. Hypercube – {4,3,3}. 5th power of the Markov op-
erator, (5.62), with α = 0.6, computed at the section x4 = 0.8.
Plotted is the log10((f5) + 1).
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Figure 6. 24 cell – {3,4,3}. Markov operator levels 2,3 and 4, for
α = 0.6, plotted at x4 = 0.5.
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Figure 7. 600 cell - {3,3,5}. Top: Coxeter’s projection. Below
1st and 2nd powers of the Markov operator, for α = 0.6 plotted
at the surface of the most inner torus.
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Figure 8. 120 cell – {5,3,3}. 600 vertices, 1200 edges of length
(1− φ)/

√
(2), 720 pentagonal faces, 120 dodecahedral cells. One

of its dodecahedral cells in bold. Below the 2nd power of the
Markov operator, for α = 0.9, plotted at the upper hemisphere of
this particular cell.
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Figure 9. Correlation dimension plots for the pentagon, for α =
0.58, and α = 0.925. Plotted is the function log(C(r)), defined
in (7.65), versus log(r). The slope of the graph should give the
correlation dimension D – (7.64). For ε = 0.58, (cf. Fig. 1) we
get a reasonable straight line with the slope D ≈ 0.9, but with
ε = 0.925, when the expected fractal dimension should be close
to zero, we get a staircase.
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