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the integral of Λ(x) over the whole space.1 The evolution of the wave function between
flashes is given by the evolution operator

Wt = e−
1
2 Λ(R3)t−iHt . (1)

After each flash, assuming that the flash happened at the point X, the wave function
“collapses”:

ψ 7→ Λ(X)1/2ψ
‖Λ(X)1/2ψ‖ . (2)

The joint probability distribution of the first n flashes to happen at space–time points
(T1,X1), . . . ,(Tn,Xn) is postulated to be (cf. Ref. [1, Eq. (11)]:

P
(
X1 ∈ d3x1,T1 ∈ dt1, . . . ,Xn ∈ d3xn,Tn ∈ dtn

)
=

∥∥Kn(0,x1, t1, . . . ,xn, tn)ψ
∥∥2 d3x1 dt1 · · ·d3xn dtn , (3)

where Kn is an operator-valued function defined by

Kn(t0,x1, t1, . . . ,xn, tn) =

Λ(xn)1/2Wtn−tn−1Λ(xn−1)1/2Wtn−1−tn−2 · · ·Λ(x1)1/2Wt1−t0 . (4)

The flashes are supposed to be objective space–time events. Tumulka writes:

“It is tempting to regard the collapsed wave function ψt as the ontology,
but I insist that the flashes form the ontology.”

THE E–MODEL

From F-model to E-model

The E–model can be thought of as a natural and far reaching extension of the F–
model. The concept of a “flash” is replaced by that of an “event”, with the idea that
the model can be applied to more general systems than systems of particles in space–
time. For instance it may used in quantum cosmology and applied there to the whole
universe. The Big Bang may be such an “event”, accompanied by some kind of a wave
collapse, possibly with phase transition. As in the F-ontology, so here events are thought
to be objective and therefore they can be recorded. It is, in principle, possible to analyze
the recorded data and to analyze the past history of the events. It is possible to adjust
the quantum evolution at each given time t, depending on the observed events till the
time t. Moreover, as we will see, it costs us nothing to allow for phase transitions

1 A similar object has been introduced in Ref. [5], but care must be taken when comparing objects denoted
by the same symbols in Refs. [1] and [5]. Λ1/2(a) of [1] corresponds to the operator of multiplication by
the function fa(·) of [5], while Λ(R3) of Ref. [1] corresponds to the operator denoted simply by Λ in [5]
- cf. [5, Eq. (19)].
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that can accompany some of the events. Formally such a phase transition may involve
change of the Hamiltonian, or even change of the underlying Hilbert space. Last but
not least, we will allow for some sample histories to have no events at all - this may
happen for instance when an elementary particle passes through a particle detector. It
may well happen that it will cause no detection event at all, due to the limited detector
sensitivity. While the F-model has been constructed with the purpose of reproducing
and generalizing the GRW spontaneous localization mechanism, the E-model extends
the formal framework of the F-model and enhances it, allowing for a wider scope of
applications, beyond just space–time collapses. The fact that we allow for dependence of
the current evolution on the past history of events may suggest that we are going beyond
the Markovian models. But this is not the case. It is enough to introduce the recording
medium as a part of the system, and then the evolution becomes Markovian again,
while at the same time adding flexibility and allowing for a wider scope of applications.
We will now introduce the E-model in its full generality, and later on describe how
the F-model becomes a particular case of the F-model, and how the flash rate density
postulate (3) of Ref. [1] can be derived (rather than postulated) from a simple and natural,
Lindblad’s type, Master equation.

The formal structure of the E-model

Let S be a set. Heuristically S is to be thought of as “the set of all the potential states
of the event recording medium”. S may have any cardinality required, but for the sake
of simplicity we will assume in this Section that S is a finite set. Generalization to more
complicated case (such as, for instance, the GRW model, or the F-model of Ref. [1])
is straightforward: it requires replacing sums by integrals etc. Elements of S will be
denoted by Greek letters α,β , etc. For every α ∈ S let there be given a Hilbert space Hα .
In most of the applications (when there are no phase transitions) all Hilbert space Hα can
be identified: Hα ≡ H, ∀α ∈ S. For each α ∈ S let Hα(t) be a self-adjoint Hamiltonian
operator acting in Hα . For the sake of generality we allow Hα to depend explicitly
on time t ∈ R. We define an “event” to be an ordered pair (α,β ), α 6= β , α ,β ∈ S.
Thus, heuristically, an event is defined as a “change of state of the event recording
medium” – a natural definition. The final piece of data consists in associating to each
event α → β a transition operator Gβα : Hα −→ Hβ . For convenience we will extend
the definition of Gαβ to the case of “non-events”, β = α by putting Gαα

.= 0, ∀α. In
Ref.[1] an event is a flash at X ∈ R3, and the associated jump (or “collapse”) operator
is Λ(X)

1
2 . Here the transition operators are the primitive objects, while the positive

operators Λ are composite. The relation between G-s and Λ-s is many–to–one. It is
important to notice that it is, in general, not necessary for these transition (or “jump”)
operators to be positive, and we will allow for this more general case in our model.
As with the Hamiltonians Hα , so with the jump operators, we can allow Gβα(t) to
depend explicitly on time. Assuming the initial state is described by a vector ψα ∈ Hα ,
the sample history will be piecewise deterministic: there will be a continuous evolution
ψα(t) between jumps, interrupted with a sequence of transitions αk → αk+1 at discrete
times Tk, accompanied by quantum jumps Hαk 3ψk(Tk)→ψk+1(Tk)∈Hαk+1 . Averaging
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over these discrete, random jumps, the initial pure state ψα will evolve continuously into
a mixture state with components in different Hαk . Let ρ = {ρα}, ρα ≥ 0∀α, Tr(ρ) =
∑α Tr(ρα) = 1, be the density matrix of our system. Then we postulate the following
evolution equation as the basic equation for the E–model:

dρα
d t

=−i[Hα ,ρα ]+∑
β

Gαβ ρβ G?
αβ −

1
2
{Λα ,ρα}, (5)

where
Λα = ∑

β
G?

βαGβα , (6)

and Gα ,Hα may depend explicitly on t. By taking the trace and summing over α we
find that Tr(ρ) is conserved. Moreover, Eq. (5) is of Lindblad’s type, thus positivity is
preserved as well. While Eq. (5) describes the average behavior of a statistical ensemble,
a typical sample history is described by a simple piecewise deterministic Markov process
described in what follows. Let us introduce the following notation:
For each α ∈ S and each pair t0 < t of time instants, let Wα(t, t0) be the unique solution
of the differential equation:2

Ẇα(t, t0) =
(
−iHα(t)− 1

2
Λα(t)

)
Wα(t, t0), (7)

with the initial condition Wα(t, t0)|t=t0 = Iα , the identity operator on Hα . For each t ∈R,
β 6= α , ψ ∈ Hα , let

pα→β (ψ, t) =
〈ψ|Gβα(t)?Gβα(t)ψ〉

〈ψ,Λα(t)ψ〉 =
‖Gβα(t)ψ‖2

∑γ ‖Gγα(t)ψ‖2 . (8)

The sample path of the unique piecewise deterministic Markov process reproducing Eq.
(5) is then described as follows:

Given on input t0,α0, and ψ0 ∈Hα0 , with ‖ψ0‖= 1, it produces on output
t1,α1 and ψ1 ∈Hα1 , with ‖ψ1‖= 1.

1) Choose uniform random number r ∈ [0,1].
2) Propagate ψ0 in Hα0 forward in time:

ψ(t) = Wα(t, t0)ψ0 (9)

until t = t1, where t1 is defined by3

‖ψ(t1)‖2 = r. (10)

2 We disregard possible complications coming from the necessity of taking care of the domains of
definition of the involved generators
3 Note that, as can be seen from the equation (7), due to non–negativity of the operators Λα(t), the norm
of ψ(t) is a monotonically decreasing function of t.
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3) Select the new state α1 ∈ S, among the states α 6= α0, using the probability
distribution pα0→α (ψ(t1), t1) .
4) Set

ψ1 = Gα1α0(t1)ψ(t1)/‖Gα1α0(t1)ψ(t1)‖ ∈ Hα1 (11)

. Goto 1) replacing α0 with α1, t0 with t1 and ψ0 with ψ1.

The sample history of an individual system is described by a repeated application of the
above algorithm, using its output as the input for each next step.

As a Corollary we easily get the following joint distribution of the first n events:

P
(
α1,T1 ∈ dt1, . . . ,αn,Tn ∈ dtn

)
=

∥∥Kn(α0, t0,α1, t1, . . . ,αn, tn)ψ0
∥∥2 dt1 · · · dtn , (12)

where Kn is an operator-valued function on (S× time)n+1, Kn : Hα0 → Hαn , defined by

Kn(α0, t0,α1, t1, . . . ,αn, tn) =
Gαnαn−1(tn)Wαn−1(tn, tn−1)Gαn−1αn−2(tn−1)Wαn−2(tn−1, tn−2) · · · Gα1α0(t1)Wα0(t1, t0) .

(13)

The derivation of Eq. (12) from the Markov process is straightforward. According to
step 1) the process resulting in the first jump is an inhomogeneous Poisson process with
rate function

λ (t) =
〈Wα0(t, t0)ψ0|Λα0(t)Wα0(t, t0)ψ0〉
〈Wα0(t, t0)ψ0|Wα0(t, t0)ψ0〉 . (14)

The probability of surviving without any event until t1 is ‖Wα0(t1, t0)‖2, and the proba-
bility of an event during the time interval t1 and t1 +dt is λ (t1)dt, so that the probability
that the first jump will occur between t1 and t1 +dt1 is

‖Wα0(t1, t0)‖2×λ (t1)dt = 〈Wα0(t1, t0)ψ0|Λα0(t1)Wα0(t1, t0)ψ0〉dt.

Now, the probability of a transition α0 → α1 at t1 is

pα0→α1(t1,Wα0(t1, t0)ψ0) =
‖Gα1α0(t1)Wα0(t1, t0)ψ0‖2

〈Wα0(t1, t0)ψ0|Λα0(t1)Wα0(t1, t0)ψ0〉 ,

and so the probability that the first event will happen between t1 and t1 +dt, and will be
accompanied by the transition α0 → α1 is the product

〈Wα0(t1, t0)ψ0|Λα0(t1)Wα0(t1, t0)ψ0〉dt× ‖Gα1α0(t1)Wα0(t1, t0)ψ0‖2

〈Wα0(t1, t0)ψ0|Λα0(t1)Wα0(t1, t0)ψ0〉 =

= ‖Gα1α0(t1)Wα0(t1, t0)ψ0‖2dt. (15)

Repeating the steps, starting now with

ψ1 =
Gα1,α0(t1)Wα0(t1, t0)ψ0

‖Gα1,α0(t1)Wα0(t1, t0)ψ0‖
leads to equations (12) and (13).
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FROM E–MODEL TO F–MODEL

A sequence of specializations leads from the E–model described above to the F–model
of Ref. [1]:

1. The set S is specialized to be the set of all finite sequences {x1, . . . ,xn}, xi ∈ R3. If
α and β are two such sequences, then Gβα 6= 0 only if β can be obtained from α
by adding one space point at the end: α = {x1, . . . ,xn} and β = {x1, . . . ,xn,xn+1}.
An event α → β is then interpreted as a “flash” at xn+1.

2. Assume that all Hilbert spaces are identical Hα = H, that there is only one, time–
independent Hamiltonian Hα(t) = H, and that the transition operators do not de-
pend neither on the initial point α ∈ S, nor on time t: Gα ,α0(t) = Gα(t). Notice then
if this is the case, then Λα(t) = ∑β G?

β Gβ ≡Λ does not depend neither on the index
α nor on time t. The operators Wα(t, t0) do not depend on α , they depend only on
the difference t− t0 and are given by Wα(t, t0) = W(t− t0), where

Wt = e(−iH− 1
2 Λ)t

. Notice that, with these assumptions, introducing ρ = ∑α ρα , the Master equation
(5) can be now summed over α and leads to the evolution equation for ρ:

dρ
d t

=−i[H,ρ ]+∑
β

Gβ ρ,G?
β −

1
2
{Λ,ρ}, . (16)

3. With α = {x1, . . . ,xn} let us furthermore assume that Gα depends only on the last
element of the sequence G{vx1,...,xn} = Gxn. Assume, moreover, that the operators
Gx are non–negative.

With the above specializations, identifying G2
x of the E–model with Λ(x) of the F-

model, and replacing the sum in Eq. (12) by the integral, we recover the joint probability
distribution, and thus the flash generating process of Ref. [1].

CONCLUDING REMARKS

Tumulka begins his paper [1] discussing the flash ontology with the following statement:

John S. Bell concluded from the quantum measurement problem that “ei-
ther the wave function, as given by the Schrödinger equation, is not everything
or it is not right” [7]. Let us assume, for the purpose of this paper, the second
option of the alternative [...]

But, in fact, the flash ontology, and to even greater extent the event ontology discussed
above require the first option as well: the wave function is not everything. Flashes, and
more generally and more distinctively, events form a separate ontology.
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Possibility of a chaotic behavior

In general the operators Λ(x) of Ref. [1] do not have to form a commutative family.
They commute for a GRW model, where they are all functions of the standard quantum–
mechanical position operator of the particle. But, for instance, Bassi et al. [4] suggested
models in which the transition operators can be functions of the position and momen-
tum operators. Cases with non–commuting transition operators have been studied nu-
merically within a simple class of E–models - cf. Ref [6], where it was shown that the
resulting patterns of events may show a chaotic, fractal–like behavior.

Taming the energy increase

While I was demonstrating a computer simulation of the flash generating process
during the recent conference in honor of GianCarlo Ghirardi’s 70th birthday, Roderich
Tumulka pointed to me that the average time distance between subsequent flashes seems
to be getting smaller and smaller. I did not notice it before, so after the conference
has ended I wrote a specialized computer program to investigate just this phenomenon.
Lo and behold, Tumulka was right. It is only then that I have discovered that the
phenomenon is known to the experts, and that the recent paper of Bassi at al. [4] emerged
from the discussion of this phenomenon, and from the attempt to provide a cure for the
possible infinite increase of the velocity of the particle as measured by the frequency of
flashes. The cure seems to consist of mixing space and momentum localizations. Such
a generalization is available within the E–model. Replacing space by phase space, and
replacing multiplication operators by Gaussian functions of x, as in GRW model, with
Wigner quantized Gaussian functions of the position x and the momentum p may lead
to a model along the lines indicated in [4]. Wigner’s quantization does not preserve
positivity, but positivity of the transition operators is not required in the E–model. The
fact that the resulting operators will then form a non–commuting family may lead to an
extra chaotic behavior of the observed trajectories.

Quantum Field Theory

Generalization of the proposed framework to the case of many particles (whether
distinguishable or not), and then further to quantum field theory, is straightforward as it
has been shown in Refs. [5] and [1].
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