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Abstract. Positive matrices in SL(2, C) have a double physical interpretation;
they can be either considered as “fuzzy projections” of a spin 1/2 quantum
system, or as Lorentz boosts. In the present paper, concentrating on this
second interpretation, we follow the clues given by Pertti Lounesto and, using
the classical Clifford algebraic methods, interpret them as conformal maps of
the “heavenly sphere” S2. The fuzziness parameter of the first interpretation
becomes the “boost velocity” in the second one. We discuss simple iterative
function systems of such maps, and show that they lead to self–similar fractal
patterns on S2. The final section of this paper is devoted to an informal
discussion of the relations between these concepts and the problems in the
foundations of quantum theory, where the interplay between different kinds of
algebras and maps may enable us to describe not only the continuous evolution
of wave functions, but also quantum jumps and “events” that accompany
these jumps.1
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1. Introduction

Let B3 = {q ∈ R3 : q2 ≤ 1} be the unit ball in R3 and let S2 = {p ∈ R3 : p2 = 1}
be the unit 2–sphere, that is the boundary of B3. Every q ∈ R3 determines a map
φq : S2 → S2 through the formula:

φq(p) .=
(1− q2)p + 2(1 + q · p)q

1 + q2 + 2q · p
. (1)

1Paper dedicated to the memory of Pertti Lounesto
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Formula (1) came naturally when discussing quantum jumps of a state of a spin
1
2 particle [1]. 1 During the 6-th ICCA Conference, Pertti Lounesto [2] conjec-
tured that the maps φq, q ∈ B3, are conformal maps in that they preserve angles
between vectors tangent to the sphere S2, and he checked it numerically on ran-
domly chosen tangent vectors using CLICAL [3]. Interesting patterns arise when
the transformation φq is iterated, that is applied many times, using different, sym-
metrically distributed q’s. For instance, taking eight vectors qi, i = 1, 2, . . . , , 8,
pointing from the origin to the eight corners of a cube inscribed in the unit sphere,
all qi’s of length, say, ‖qi‖ = 0.74, we get the pattern shown in Fig. 1.

1.1. Iterated maps. Hausdorff distance, contractions, and attractor set

Let (X, d) be a complete metric space. In our examples X will be a compact subset
of the real plane R2 or a 2–dimensional sphere S2 = {(x, y) ∈ R2 : x2 + y2 = 1},
which is also a complete metric space when endowed with the geodesic distance
function d(x, y) being the arc length along the great circle connecting x and y.
Let H(X) be the set of all non–empty compact subsets of X. A distance h(Y, Z)
(Hausdorff metric) between any two sets Y, Z ⊂ X can be defined as follows. First
define the distance between any point x ∈ and any Y ∈ H(X) by

d(x, Y ) = {min d(x, y) : y ∈ Y }.

Then, for any X,Y ∈ H(X) define the distance d(Y,Z) from set Y to set Z by the
formula

d(Y, Z) = max{d(y, Z) : y ∈ Y }.
The formula for d(Y,Z) is not symmetric in Y and Z. Therefore one defines the
Hausdorff distance h(Y, Z) as the max of the two:

h(Y, Z) = max(d(Y,Z), d(Z, Y )).

It can be shown that h(Y,Z) is a metric on H(X). The definition of the Hausdorff
distance is not very intuitive. There is an intuitive way to understand it: two sets
are within Hausdorff distance r from each other if and only if any point of one
set is within distance r from some point of the other set. From the fact that X is
also a complete metric space it can be then shown that H(X) endowed with the
Hausdorff metric is a complete metric space, and therefore every Cauchy sequence
Yn ∈ H(X) has a limit in H(X). This property is crucial in proving the existence
of attractor sets in studies of iterated function systems. A map f : X → X is a
contraction if there exists a constant s, 0 < s < 1, called the contraction factor,
such that d(f(x), f(x′)) < s · d(x, x′) for any two different points x, x′ ∈ X. The
so called Contraction Map Theorem states that in a complete metric space every
contraction map f has a unique fixed point x0, i.e. such that f(x0) = x0. Moreover,
for any initial point x ∈ X the sequence xn = f (n)(x), where f (n) = f ◦ f ◦ . . . ◦ f
(n times), converges to x0. Let now f1, f2, . . . fn be contraction maps fk : X → X,

1Notice that the formula makes also sense if q2 > 1, but in this case the φq is equivalent to the

map φq/q2 followed by the inversion in the plane perpendicular to q.
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Figure 1. Quantum fractal based on eight vertices of a cube in-
scribed in the unit sphere S2. 100,000,000 points obtained by a
random choice of the initial point, followed by the application of
randomly chosen conformal maps, with place–dependent probabil-
ities pi given by the formula (11), from among eight maps defined
by unit vectors ni–s situated at the eight vertices of a cube. View
from above one of the vertices. Other closest three vertices are
located at 60, 180 and 240 degrees. The dark areas are those that
are (almost) never visited. The white areas are those that are fre-
quently visited. The pattern shows distinct self–similarity - circles
with circles. The details of algorithm are described in Sec. 3

k = 1, 2, . . . n, with contraction factors sk.. Then we can define a map F acting on
subsets Y ⊂ X by the formula:

F (Y ) = f1(Y ) ∪ f2(Y ) ∪ . . . ∪ fn(Y )

where Y ∈ H(X) and fk(Y ) is the image of the set Y under the map f.2 It can
be shown that F restricts to a map F : H(X) → H(X), and that this map is a

2F is called the Hutchinson operator.
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contraction with the contraction factor s = max(s1, . . . , sk). It follows from the
Contraction Mapping Theorem that F has a unique fixed point, in that there is a
unique compact subset Y0 ⊂ X with the property that

Y0 =
n⋃
k=1

fk(Y0).

This set Y0 is called an attractor set for the Iterated Function System consisting
of the family (f1, . . . , fn). Finding a numerical approximation to the attractor set
needs lot of computation. Even when we start with a one–point set, its image under
F (k+1) may have nk points. In cases like that moving to probabilistic algorithms
may drastically reduce the need for computing resources. Quantum theory, that
is probabilistic in nature, offers naturally examples of Iterated Function Systems
with probabilities assigned to the maps fi. Such a system is called “IFS with
probabilities” [4, Ch. 9.1]. The simplest example is provided by three affine maps
with Sierpinski triangle as the attractor set.

1.2. The Sierpinski triangle

Figure 2. Sierpinski triangle. The attractor set of three non–
commuting affine contractions.

An affine transformation of R2 is of the form x 7→ Ax+ b, where A is a 2× 2
matrix and x, b ∈ R2. It is often convenient to represent such a transformation as
a 3× 3 matrix

Ã =
(
A a
0 1

)
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acting on R2 embedded in R3 as follows:(
x
1

)
7→

(
A a
0 1

) (
x
1

)
=

(
Ax+ a

1

)
.

An affine transformation Ã is a contraction if for each 0 6= x ∈ R2 we have that
‖Ax‖ < ‖x‖. Consider now three affine transformations Ã[i], i = 1, 2, 3 defined
by

Ã[i] =

0.5 0 x[i]
0 0.5 y[i]
0 0 1


where x[1] = y[1] = 0, x[2] = 0.5, y[2] = 0, x[3] = 0.25, y[3] = 0.5. The trans-
formations Ã[i] do not commute. For instance Ã[2]Ã[1]− Ã[1]Ã[2] is a translation
by 0.25 in the x direction. They are also contractions, and they map the square
X = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, into itself (cf. [4][Ch. 3.7]). The probabilistic
algorithm goes as follows: one starts with an arbitrary initial point x0 and applies
to it one of the three transformations fi, selected randomly, each with the proba-
bility pi = 1/3. One gets a new point x1. Then one of the transformations, again
selected randomly, is applied to x1 to produce x2, etc. Each point is being plotted.
The result of 100,000 transformations is presented in Fig. 2.

2. Möbius Transformations of S2

2.1. Notation

We denote by E(r,s) the real vector space Rn, n = r+s, endowed with the quadratic
form q(x) of signature (r, s). En = E(n,0) is the standard n–dimensional Euclidean
space. The Clifford algebra of E(r,s) is denoted by C(E(r,s)), and the Clifford
map E(r,s) 3 x 7→ φ(x) ∈ C(E(r,s)) satisfies φ(x)2 = q(x)I. x and φ(x) are
often identified. The principal automorphism of C(E(r,s)) is denoted by π and is
determined by π(x) = −(x), x ∈ E(r,s), while the principal anti–automorphism τ
is determined by τ(x) = x. Their composition ν is also denoted as ν(a) = ã and
is the unique anti–automorphism satisfying x̃ = −x for all x ∈ E(r,s). C(n) (resp
R(n)) will denote the algebra of complex (resp. real) matrices n× n.
The Pauli spin matrices σ0, σ1, σ2, σ3 are given by

σ0 =
(

1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

We have

X =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

thus det(X) = (x0)2 − x2, and therefore an isomorphism of the Minkowski space
E(1,3) with the 2 × 2 hermitian matrices X = X?. The inverse map X 7→ (xµ) is
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given be xµ = 1
2 (Tr)(σmuX). It is easy to verify that the Pauli matrices satisfy

the following relations:
σ?µ = σµ,

σkσl = iεklmσm,

1
2
Tr(σµσν) = δµν ,

1
2
Tr(σkσlσm) = iεklm,

1
2
Tr(σjσkσlσm) = δjkδlm + δjmδkl − δjlδkm,

where µ, ν = 0, 1, 2, 3, and j, k, l,m = 1, 2, 3. The map E3 3 x 7→ σ(x) = x1σ1 +
x2σ2 +x3σ3 is a Clifford map from E3 to C(2), and C(2), as a real algebra, can be
considered as the Clifford algebra of E3.

2.2. SL(2,C) as the group of Möbius transformations of S2

We will be interested in the particular case of n = 2, in which case the con-
nected component of identity of the conformal group Conf(R2) is isomorphic to
the ortochronous Lorentz group SO+(3, 1). If we identify S2 with the compacti-
fied complex plane C ∪∞, then conformal transformations form Conf+(R2) can
be conveniently realized by complex homographies C 3 z 7→ az+b

cz+d ([5][Exercise
2.13.1]. For our purposes it will be more convenient to use the group Spin(1, 3)
realized as Sp(2,C) ≈ SL(2,C). We will start with describing the isomorphism of
Spin(1, 3) to SL(2,C) following the simple method given by Deheuvels in [7][Ch.
X.6]

Every Hermitian 2× 2 matrix X can be uniquely represented as

X = xµσµ,

with xµ real, and where σµ are the Pauli matrices. For every 2×2 matrix A define
AX .= CAtC−1, where At is the transposed matrix and

C =
(

0 −1
1 0

)
.

Then A 7→ AX is an anti–involution of the algebra C(2) and we have

AXA = AAX = det(A)I

for all A ∈ C(2). In particular, A ∈ SL(2,C) if and only if AX = A−1. Notice
that the anti–automorphisms A 7→ A? and A 7→ AX commute. Their composition
denoted by A 7→ Ã = CĀC−1 is an involutive automorphism of the real algebra
C(2), and it coincides with the automorphism A 7→ Ã if C(2) is considered as
the Clifford algebra of E3 with the Clifford map x 7→ σ(x). Notice that for A ∈
SL(2,C) we have Ã = A?. It follows that the map x 7→ φ(x) defined by

φ(x) =
(

0 X
XX 0

)
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is a Clifford map from E1,3 into the algebra C(4) od complex 4× 4 matrices. It is
shown in [7][Théorème X.6] that SL(2,C) can be identified then with the group
Spin(1, 3) ⊂ C(4) via the mapping

SL(2,C) 3 A 7→
(
A 0
0 Ã

)
.

The action Spin(1, 3) on E(1,3) can be then easily computed in terms of SL(2,C)
matrices: (

A 0
0 Ã

) (
0 X
XX 0

) (
A−1 0
0 Ã−1

)
=

(
0 X ′

X ′X 0

)
,

where X ′ = AXÃ−1 = AXA?. If X = xµσµ then the map is accomplished by a
Lorentz matrix Λ(A)µν via

x′µ = Λ(A)µν x
ν .

Note: It is sometimes convenient to parametrize GL(2,C) by complex Minkowski
space coordinates aµ ∈ C, via A = aµσµ. It easily follows that A ∈ SL(2,C) if and
only if a2 = (a0)2 − a2 = 1. Using the formulas of section 2.1 we can express the
components of the Lorentz matrix Λ(A)µν through the complex coordinates aµ of
A as follows:

Λ0
0 = |a0|2 + |a|2,

Λ0
j = 2<(ā0aj) + iεjkla

kāl = Λj0,

Λjk = (a · ā) δjk + 2<(aj āk) + 2=(ā0al) εjkl.

In order to describe explicitly the action of SL(2,C) on S2 it is convenient to
embed S2 in E(1,3) via x0 = 1 section of the light–cone x2 = 0. That is we identify
S2 with the boundary of the unit ball S2 = {x ∈ R3 : x2 = 1} = {x = (x0,x) ∈
E(1,3) : x0 = 1, x2 = 0}. Given a unit vector x ∈ S2 ⊂ R3, we associate with it the
null vector x = (1,x) ∈ E(1,3), and therefore the matrix

X = σ0 + xiσi =
(

1 + x3 x3 − ix2

x3 + ix2 1− x3

)
.

The matrix X is positive and of determinant zero. The SL(2,C) transformed
matrix

X ′ = AXA? (2)

is also positive and of determinant zero. Therefore it represents another future
oriented, null vector x′, that corresponds to a unique vector x′ ∈ S2. In our ap-
plication we will be interested in special conformal transformations of S2, namely
those generated by “pure boosts” of SL(2,C). By the polar decomposition theo-
rem every matrix A ∈ SL(2,C) can be uniquely decomposed into a product of a
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unitary and a positive matrix - both of determinant one. Unitary matrices repre-
sent three–dimensional rotations, while positive matrices represent special Lorentz
transformations (boosts).3 The most general form of a positive SL(2,C) matrix is

P (n, α) = c(I + ασ(n)), (3)

where n ∈ S2 is a unit vector (the boost direction), and 0 < α = v/c < 1 is
the “boost velocity”. 4 Sometimes we will simply write P (q), instead of P (n, α),
putting q = αn :

P (q) = (I + σ(q)). (4)
In the limit of α = 1, which corresponds to “the velocity of light” P degenerates
into a projection operator, and we have P (x) = X, where X represents the null
vector x = {xµ} = (1,x), x ∈ S2. Since P (q) = P (q)?, the action of the boosts
P (q) on vectors x ∈ S2 given by the Eq. (2) can be found from the formula:

P (q)P (x)P (q) = λ(q,x)P (x′). (5)
A straightforward calculation gives

λ(q,x) =
1 + q2 + 2q · x

4
, (6)

x′ =
(1− q2)x + 2(1 + q · x)x

1 + q2 + 2q · x
. (7)

Therefore we recover the formula (1) as coming from the special conformal trans-
formation in the group Spin(1, 3). The crucial point in the above is to notice
that S2 is the one–point compactification of E2 (the Riemann sphere), and that
E(3,1) = E(2+1,0+1), so that Spin(1, 3) = Spin(3, 1) is the covering group of the
conformal group for E2 and S2.

2.3. The geometrical meaning of the coefficient λ(q,x)
The numerical coefficient λ(q,x) in formula (5) is not important for the trans-
formation x 7→ x′. Yet in the studies of iterated function systems not only the
transformations themselves, but also the probabilities assigned to the transforma-
tions play an important role. For instance in Ref.[6, Chapter 6.3, p. 329] we find
that for affine contractions it is advisable to choose the probabilities of maps to
be proportional to the determinants of their linear parts. In our case the maps are
Möbius transformations of S2, and they are not contractions. In fact these maps
contract some regions while expanding other regions. Is there a “natural” choice of
probabilities, and can we use the place dependent factors λ(q,x) for determining
the natural choice of probabilities? The answer is “yes”, though the exact formula

3It is important to notice that the isomorphism of Spin(1, 3) and SL(2, C) is not a natural one. It
depends on a chosen Lorentz frame. Therefore the splitting of a group element into the product

of a pure rotation and a boost also depends on the chosen Lorentz frame.
4The constant c should be chosen to be c = (1/

√
(1 − α2)), to assure that the determinant is

one, but we will put c = 1, because the constant factor cancels out anyway when going to the

induced action on S2.
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is not at all evident. In [9] it is shown that by choosing λ(q,x)’ as the relative
probabilities of Möbius transformations (7), the iterated function system leads to
a Markov semigroup that is linear. Moreover, denoting by dS the rotation invari-
ant area element of S2, we find that this area changes as the result of the Möbius
transformation (7) according to the formula:

dS′

dS
(x) =

(1− q2)2

(1 + q2 + 2q · x)2
. (8)

To visualize the mapping, let us assume that q = αn, and that the vector n is
along the z axis: n = (0, 0, 1). Then all the region of the sphere above the critical
value of z = −α is contracted into the region of the sphere above z = α, and the
region of the sphere below z = −α is expanded into the region of the sphere below
z = α. The relative probability λ(q,x) of choosing the Möbius map determined
by q = αn is highest, λmax = (1 + α)2, for x parallel to n and has the minimum,
λmin = (1 − α)2 for x antiparallel to n. At the critical value of z = −α, we have
λ = 1− α2, which is the geometrical mean of λmax and of λmin.

3. Quantum Fractals

In order to implement an IFS with Möbius maps of the type that we have discussed,
we need N unit vectors ni, i = 1, . . . , N, and N constants αi, 0 < αi < 1. Each
vector ni determines the direction, while each constant αi determines the velocity
of the Lorentz boost that implements the Möbius transformation φqi

of S2 :

φqi(p) .=
(1− q2)p + 2(1 + qi · p)qi

1 + q2 + 2qi · p
, (9)

with qi = αini.. The probability pi(x) of selecting the map φi = φqi is then given
by:

pi(x) =
λ(qi,x)∑N
j=1 λ(qj ,x)

. (10)

Inspecting formula (6) we see that the denominator
∑N
j=1 λ(qj ,x) simplifies es-

sentially if all αi are the same: αi = α, i = 1, . . . , N, and the vectors ni average
to zero:

∑N
i=1 ni = 0. In this case the formula for probabilities pi(x) simplifies to:

pi(x) =
1 + α2 + 2αni · x

N(1 + α2)
. (11)

3.1. Pseudocode for generation of Möbius IFS

In order to implement the IFS described above we first need to choose a set of
unit vectors ni, and a value of the constant α. For instance, to create the picture,
like that in Fig. 1, we have chosen α = 0.71, and the vectors ni as pointing to the
eight vectors of the cube inscribed into the unit sphere, with one of the vertices at
the north pole:
n1 = (0, 0, 1), n2 = (2

√
2/3, 0, 1/3), n3 = (−2

√
2/3, 0, 1/3),
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n4 = (−
√

2/3,−
√

2/3, 1/3), n5 = (
√

2/3,
√

2/3,−1/3),
n6 = (

√
2/3,−

√
2/3,−1/3), n7 = (−2

√
2/3, 0,−1/3), n8 = (0, 0,−1). The follow-

ing pseudocode describes now the generation of an IFS with Möbius transforma-
tions:

(select initial x)
x← x0

(choose imax, for instance)
imax← 10000000
icount← 0
while icount < imax do
icount← icount+ 1
(select one of the maps Φi)
(first initialize probability)
p← 0
(initialize maps counter)
i← 0
(choose a random number 0 < r < 1)
r ← random(1)
repeat
i← i+ 1
p← p+ pi(x)

until p > r
(the map φi is now selected, apply it)
x← φi(x)

end while

To create a graphic representation, such as in Fig. 1, we project the upper hemi-
sphere onto the plane (x, y), and divide the unit square of this plane into rx × ry,
for instance 600×600, rectangular cells, each cell being represented by one pixel on
the screen. We associate a counter c[ix][iy] with each of the cells (ix, iy), initialize
all counters to 0, and count points x = (x, y, z) that fall into the cell:

deltax ← 2.0/rx; deltay ← 2.0/ry
ix← round((x− (−1.0))/deltax); iy ← round((y − (−1.0))/deltay)
(increase counter c[i][j] by one:)
c[ix][iy]← c[ix][iy] + 1

The next thing is to convert the values of the counters into grayscale tones. Here
it is convenient to make grayscale proportional to log(c[i][j]) rather than directly
to c[i][j], so as to be able to discern more details. In this case it is necessary to
initialize the counters to the starting value of 1, rather than to 0. That is how Fig.
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1 was created.5 Fig. 3, was created using a similar method, for six vertices of the
regular octahedron, and using α = 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, but with the help
of CLUCalc Visual Calculator, developed by Christian B.U. Perwass [10].

Figure 3. Quantum Fractal created with six vertices forming a
regular octahedron, for α = 0.4, 0.5, . . . , 0.9.

4. From Quantum Fractals to Clifford Algebras and Beyond

There are several deficiences of the standard quantum theory. For instance:
1. Need for external interpretation of the formalism
2. Need for an “observation”
3. Two kinds of evolution: deterministic one, formalized by the Schrödinger

equation and “projection postulate” of not so clear status (what constitutes
a measurement?)

4. Dubious role of time in Quantum Mechanics
5. Paradoxes, like that of Schrödinger cat
6. Impossibility of computer simulation of Reality (wave packet motion is not

the only reality we want to explain)
It is striking that the concept of an “event” - which was of crucial importance
in creating special and general theories of relativity finds no place in quantum
formalism:
5It is advisable to skip first 100 − −1000 points, so that the point x sets well on the attractor

set, but in practice the difference is undetectable with the eye.
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1. Barut [11], Bell [12, 13], Chew [14], Haag [15, 16], Shimony [17], Stapp [18, 19,
20, 21] and others stressed the inadequacy of the Standard Quantum Theory
for describing real-time events

2. New technology enabled us to make continuous observations of individual
quantum systems. These experiments give us time series of data - thus se-
ries of events and not only the expectation values (they may be ultimately
computed)

3. What we observe are “events”. What we need to find and to explain are
regularities in time series of events.

Einstein, Podolsky and Rosen [22] concluded that “the description of reality as
given by a wave function is not complete.” John Stewart Bell, one of the most
renowned theoretical physicists, [23] argued: “Either the wave function, as given
by the Schrödinger equation, is not everything, or it is not right.(...) If, with
Schrödinger, we reject extra variables, then we must allow that his equation is not
always right. I do not know that he contemplated this conclusion, but it seems to
me inescapable.” One year before his untimely and premature death, Bell wrote
these insightful words in the paper that was his contribution to the Conference
“62 Years of Uncertainty” held in Erice, Italy [13]:

The first charge against “measurement”, in the fundamental ax-
ioms of quantum mechanics, is that it anchors there the shifty
split of the world into “system” and “apparatus”. A second charge
is that the word comes loaded with meaning from everyday life,
meaning which is entirely inappropriate in the quantum context.
When it is said that something is “measured” it is difficult not
to think of the result as referring to some preexisting property of
the object in question. This is to disregard Bohr’s insistence that
in quantum phenomena the apparatus as well as the system is es-
sentially involved. If it were not so, how could we understand, for
example, that “measurement” of a component of “angular mo-
mentum”. . . in an arbitrarily chosen direction. . . yields one of a
discrete set of values? When one forgets the role of the appara-
tus, as the word “measurement” makes all too likely, one despairs
of ordinary logic.... hence “quantum logic”. When one remembers
the role of the apparatus, ordinary logic is just fine.

In other contexts, physicists have been able to take words
from everyday language and use them as technical terms with no
great harm done. Take for example the “strangeness”, “charm”,
and “beauty” of elementary particle physics. No one is taken in
by this “baby talk”.... as Bruno Touschek called it. Would that it
were so with “measurement”. But in fact the word has had such
a damaging effect on the discussion, that I think it should now be
banned altogether in quantum mechanics.
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Bogdan Mielnik [24], analyzing the “screen problem” - that is the event of a quan-
tum particle hitting the screen - noticed that “The statistical interpretation of the
quantum mechanical wave packet contains a gap”, which he specified as “The miss-
ing element of the statistical interpretation: for a normalized wave packet ψ(x, 0)
one ignores the probability of absorption on the surface of the waiting screen. The
time coordinate of the event of absorption is not even statistically defined.” John
Archibald Wheeler [25] wrote: “no elementary phenomenon is a phenomenon until
it is a recorded phenomenon.” Eugene Wigner [26] (see also [27] for an overview
of Wigner’s position) noticed that “there may be a fundamental distinction be-
tween microscopic and macroscopic systems, between the objects within quantum
mechanics’ validity and the measuring objects that verify the statements of the
theory.” Brian Josephson [28] suggested that ‘the observer’ is a system that, while
lying outside the descriptive capacities of quantum mechanics, creates observable
phenomena such as wave function collapse through its probing activities. Better
understanding of such processes may pave the way to new science.”

Motivated by these and other similar conclusions of many authors I decided
to look for a “way out of the quantum trap”. While the real solution may need a
radical departure from the present scheme of thinking about “Reality”, possible
paths towards a better formalism than the standard one have been investigated
by many authors, mainly along two lines. One is so called “Bohmian mechanics”,
conceived originally by Louis de Broglie as “the theory of the double solution” [29],
and then reformulated and developed by David Bohm [30] (see also [31, 32] for
more recent reviews, and [33] for an interesting historical overview). The other is
known as the GRW (Ghirardi–Rimini–Weber) or “spontaneous localization model”
(see [34, 35]). In [36, 37] the GRW model has been generalized so as to apply not
only to quantum mechanics, but also to quantum field theory (see also [38] for a
recent comparison between the two approaches).

A further generalization of spontaneous localization theories has been de-
scribed in [39], where a general formal structure of quantum theories that incorpo-
rate the concept of events has been formulated. This latter generalization enables
us to define precisely the very concepts of “measurement” and “experiment”, along
the paths suggested by John Bell, and to model simultaneous measurements of
several non–commuting observables, in spite of the warnings of standard quantum
mechanical textbooks claiming that such measurements contradict the very prin-
ciples of quantum mechanics. As this subject is directly related to the main topic
of this paper (the Möbius transformations φp, φq commute, only if p and q are
parallel or antiparallel) , some introduction into the subject is given below.

The standard quantum theory, as formalized, for instance, by John von Neu-
mann [40], was based on postulates, and on mathematical consequences derived
from these postulates. The postulates were to a large extent arbitrary, and other
systems of postulates have been proposed and discussed in the literature. Also the
physical interpretation of the mathematical results is not unambiguous.

One of the most celebrated consequences of the quantum formalism is the so
called Heisenberg’s uncertainty principle. Formally it states that in any quantum
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state the product ∆2
ψ(x) × ∆2

ψ(px) of the mean square deviation from the mean
values of the same components of the position and of the momentum variables are
bounded from below by ~2/4. This formal result was, unfortunately, interpreted as
an “impossibility of a simultaneous measurement of the position and momentum”,
and, more generally, of any pair of complementary, non–commuting observables.
I say “unfortunately”, because while it is true that non–commuting operators do
not have, in general, a joint probability distribution, it has little to do with the
possibility or impossibility of performing their simultaneous measurements; the
main reason being that the concept of a “measurement” is not defined within the
formal framework of the standard quantum theory.

To define the measurement an extension or a revision of the quantum theory
is needed. The simplest extension is by using an algebraic formulation but, at the
same time, abandoning the standard interpretation scheme. Let A be an involutive
algebra over R or C, (for instance a C∗ or a von Neumann algebra), and let Z be
its center. When Z is trivial (that is when it consists of scalars only), then A is
called a factor [41, Chapter V.1]. A general algebra can be, essentially uniquely,
decomposed into a direct integral (or a direct sum) of factors [41, Theorem 8, p.
452]:

Theorem 1. Let A be a von Neumann algebra on a separable Hilbert space. Then
A is algebraically isomorphic to a direct integral of factors∫

X

A(t) dµ(t).

Connes’ comment on this decomposition theorem is worth quoting:

“This theorem of von Neumann shows that the factors already
contain what is original in all of the von Neumann algebras: they
suffice to reconstruct every von Neumann algebra as a ‘general-
ized’ direct sum of factors.”

Although formally correct, the statement above is, at the same time, misleading.
Every separable Hilbert space is a direct sum of one–dimensional spaces. But that
does not mean that one–dimensional spaces contain what is original in all Hilbert
spaces. For instance non–commutativity shows up only when the dimension of
the Hilbert space is greater than one, and canonical commutation relations, so
important in physics, can be realized only when the dimension of the Hilbert
space is infinite; similarly with algebras.

In quantum theory it is usually assumed that the relevant algebras are factors.
But, to include the “events”, to describe “measurements”, we need to go beyond
that; we need to use more general algebras, with a non–trivial center. This step
allows us, at the same time, to describe simultaneous “measurement” of several
non–commuting observables. While there is no joint probability distribution, the
process is well defined and leads to chaos and to fractal–like patterns, as seen, for
instance, in Fig. 3 (see [42] for a comprehensive discussion of this issue).
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The crucial issue here is illustrated by the double role of the maps φq (1). On
hand they are represented as belonging to the group Spin(1, 4) and therefore they
are (inner) automorphisms of the Clifford algebra C(E(1,4)). On the other hand
they are represented as linear, positivity preserving, transformations (see Eq. (2))of
the complex algebra C(2) of 2×2 complex matrices. The maps X 7→ X ′ in Eq. (2)
are not automorphisms, therefore they do not map central elements into central
elements (even if the center is trivial in this particular case), yet they preserve
positivity. It is positivity that is important in physical applications, because it
relates to the positivity of probabilities.

Quantum mechanics has been, originally, formulated as a theory over the
field of complex numbers. But there is no reason why it has to be so. The fields of
real numbers and of quaternions lead to theories that are much like the standard
quantum theory, except that the domains of application of these alternatives are
not yet known.

The statistical interpretation of the standard quantum mechanics is based on
the idea that the complex lines in a complex Hilbert space describe “pure states”
of the system. But it does not have to be so. Other schemes are possible; any
positive cone can serve as a statistical figure, and the probabilistic interpretation
can result from dynamics (like in the simple IFS system discussed in this paper
and in [39], see also [43] for a different approach to “Quantum Iterated Function
Systems”), rather than be postulated. This opens the way towards generalization
of the quantum mechanical framework and to a possible unification of quantum
theory with relativity, a unification that has been sought for more than 70 years.
Clifford algebras, and closely related CAR algebras (Canonical Anticommutation
Relations), and their generalizations, provide one possible path. But there is also
another path, going beyond algebras based on binary operations. First steps in
this promising new direction have been taken by Frank D. Smith [45] and Yaakov
Friedman [46] (see also [47] for the relevant mathematical background)
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