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On Conformal Infinity and
Compactifications of the Minkowski Space

Arkadiusz Jadczyk

Abstract. Using the standard Cayley transform and elementary tools
it is reiterated that the conformal compactification of the Minkowski
space involves not only the “cone at infinity” but also the 2-sphere
that is at the base of this cone. We represent this 2-sphere by two ad-
ditionally marked points on the Penrose diagram for the compactified
Minkowski space. Lacks and omissions in the existing literature are de-
scribed, Penrose diagrams are derived for both, simple compactification
and its double covering space, which is discussed in some detail using
both the U(2) approach and the exterior and Clifford algebra meth-
ods. Using the Hodge � operator twistors (i.e. vectors of the pseudo-
Hermitian space H2,2) are realized as spinors (i.e., vectors of a faithful
irreducible representation of the even Clifford algebra) for the conformal
group SO(4, 2)/Z2. Killing vector fields corresponding to the left action
of U(2) on itself are explicitly calculated. Isotropic cones and corre-
sponding projective quadrics in Hp,q are also discussed. Applications to
flat conformal structures, including the normal Cartan connection and
conformal development has been discussed in some detail.

Keywords. Compactification, Minkowski space-time, Conformal spinors,
Twistors, SU(2), SU(2,2), U(2), SO(4,2), Null geodesics, Penrose dia-
gram, Conformal infinity, Conformal group, Conformal inversion, Hodge
star, bivectors, Grassmann manifold, Clifford algebra C�(4, 2) .

1. Introduction

The term compactification can have several different meanings. Given a man-
ifold M we may try to embed it into a compact one and take its closure. Or,
we can attach to M ideal boundary points or boundary components so as to
obtain a compact space. In physics compactification of space-time can be used
either in order to study its conformal invariance, or to study its asymptotic
flatness, or its singularities. In the available literature the differences between
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these different approaches are not always made clear and the mathematical
language involved is not always as precise as one would wish.

This paper is a compromise between being completely self-contained
and a typical specialized article. We use techniques of algebra and geometry
but we avoid twistor notation of Penrose school which can be confusing to
many mathematicians. The paper is aimed at mathematicians interested in
mathematical properties of Minkowski space related to projective geometry,
and at mathematical physicists interested in the subject. Relativists will find
next to nothing of interest for them in the material below (perhaps except of
a warning about how errors can easily propagate). They have their own aims
and techniques and, as a rule, are usually not interested in generalizations
going beyond four space-time dimensions.

In section 2 we review the conformal compactification M̃ = U(2) of the
Minkowski space M. We are following there the elegant and simple method
of A. Uhlmann [1] by using 2× 2 matrices and the Cayley transform. We are
also investigating in some detail the structure of the “light cone at infinity”,
that is the set difference M̃ \M and point out that it consists not only of the
(double) light cone, but also of a 2-sphere that connects the two cones – a fact
that was known to Roger Penrose [2, p. 178]. This fact was not always realized
by other authors writing on this subject even when they quoted Penrose (cf.
e.g., Sec. 3). Additionally, as a complement to this particular representation
of M̃, in Appendix A, we calculate vector fields on M corresponding to one-
parameter subgroups of U(2) acting on itself by left translations.

In section 3, as an educational example, we discuss in some detail the
faulty argument and the missing 2-sphere in [3]. In particular we reproduce
a crucial part of reasoning used in [3] and point out the omission explicitly.
Similar omissions, this time taken from [14] and also from recent papers on
conformal field theory, are discussed in section 3.2.

In section 4, geometrical representation of the conformal compactifi-
cation M̃ is discussed using the cylinder representation of Einstein’s static
universe – the standard representation in general relativity. This leads to a
two-dimensional diagram – a version of the Penrose diagram (cf. Fig. 1), with
the two 2-spheres that need to be identified. Owing to this identification no
intrinsic distinction between J + and J− is possible. In Fig. 3 and Fig. 6 we
mark these two parts of the conformal infinity in order to be able to compare
this diagram with those (as in Fig. 4) found in the standard literature.

In section 5, the explicit action of the Poincaré group on the conformal
infinity is calculated, where it is in particular shown that this action is transi-
tive there. A lack of a mathematical precision in the mathematical literature
on the subject is also elucidated.

Section 6 starts with a simple exercise showing a geometrically amusing
fact that null geodesics can be completely trapped at infinity. A role of the
conformal inversion, and the signature of the induced metric is also discussed
there. Then, a pictorial representation of the infinity is given, first as a double
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cone with identified vertices in Fig. 3, then, more correct as far as its differ-
entiability properties are concerned, as a squeezed torus in Fig. 6. A typical,
almost identically looking, but with a different meaning, picture – taken from
[4] – is shown in Fig. 4. The squeeze point in Fig. 6 corresponds to what is
usually denoted as I0, I+, I− (or i0, i+, i−) in the standard literature. All
three points coincide in our case.1 A correct image, which we reproduce here
in Fig. 5 can be found in Fig. 2 of [5]. It may be worth quoting the following
remarks from the monograph of Penrose and Rindler [2, p. 298]:

“Having this natural association between the points of J−
and J +, for Minkowski space, it is in some respect natural
to make identification between J− and J +, the point A−

being identified with A+ and J− and J + written as J . If
we do this, then, for the sake of continuity we should also
identify I− with I0, and I0 with I+.”

To which they added:
“For reasons that we shall see in more detail later, such
identification cannot be satisfactorily carried out in curved
asymptotically flat spaces. (Not only is there apparently no
canonical way of performing such identifications in general,
but, when the total mass is non-zero any identification would
lead to failure of the required regularity conditions along the
identification hypersurface.) For many purposes, the identi-
fication of J− with J + may, even in Minkowski space, seem
unphysical (and, of course, it need not be made). However,
for various mathematical purposes the identification is very
useful. . . ”

In subsection 6.4 we discuss the double cover of M̃, that can be obtained by
the same method as in section 3 but by considering positive rays rather than
generator lines.2 This leads us to the compactification with the past infinity
J− and future infinity J + different, but I− and I+ are identified, though
different from I0. The resulting Penrose diagram is given in Fig. 2, and the
ensuing graphic representation of the conformal infinity is pictured in Fig. 7
and in Fig. 8.

We follow here the method used by Kopczyński and Woronowicz in [9],
but this time applied to the double cover of M. Moreover, we identify the anti-
linear map x �→ x⊥ used by these authors as a Hodge � operator adapted for a
complex vector space V equipped with a non-degenerate sesquilinear form.3

After a general introduction, for an arbitrary signature, starting with the
Grassmann algebra endowed with the natural scalar product, we specialize

1A. Uhlmann [1] conjectured that it may be a squeezed Klein’s bottle. Klein’s bottle is

unnecessary as long as we do not care about the embedding. Squeezed torus does the job.
2This construction is also briefly mentioned in [6, p. 180]. It is also worthwhile to mention
that (U(1)×SU(2))/Z2, Z2 = {I,−I}, with the topology of (S1×S3)/Z2 is homeomorphic,
as a manifold, to its double cover U(1)× SU(2) – cf. [7] and [8].
3For a discussion in case of positive definite scalar product cf. e.g., [10].
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to the case of signature (2, 2), V ≈ H2,2, and relate the two compactification
methods – one in which the points of the double covering of the compactified
Minkowski space are represented by oriented maximal isotropic subspaces of
a four dimensional complex space endowed with a sesquilinear form of signa-
ture (2, 2), and the one discussed in Sec. 6.4 based on rays of the null cone
in 6-dimensional real space endowed with a scalar product with signature
(4, 2). We derive explicit formulas connecting the U(2) compactification and
the one based on H2,2.

In order to show how the compactified Minkowski space enters more
general conformal structures on manifolds, in section 8 we briefly review ge-
ometry of conformal structures, second-order frames and the normal Cartan
connection. We end this section by explicitly calculating the standard em-
bedding of Minkowski space into the compact projective hyperquadric using
the conformal development.

2. Conformally Compactified Minkowski Space

In this section we follow the idea of Armin Uhlmann [1]. Let H(2) be the real
vector space of complex 2 × 2 Hermitian matrices. Let M be the Minkowski
space endowed with the standard coordinates x1, x2, x3, x0,4 and the qua-
dratic form q(x) = −(x0)2 + (x1)2 + (x2)2 + (x3)2, and let ϕ : M → H(2) be
the isomorphism given by5

ϕ(x) = X =
[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
. (1)

Then we have

det(X) = (x0)2 −
(
(x1)2 + (x2)2 + (x3)2

)
= −q(x). (2)

Let U(2) be the group of all unitary 2×2 matrices with complex entries.
Let u : H(2) → U(2) be the Cayley transform:

u(X) = U =
X − iI

X + iI
.

Notice that, because of X being Hermitian, det(X + iI) �= 0. We then
have

I + U =
iI + X + X − iI

X + iI
=

2X
X + iI

,

I − U =
X + iI −X + iI

X + iI
=

2i
X + iI

. (3)

In particular det(I − U) �= 0 and

X = i
I + U

I − U
. (4)

4Sometimes, as an alternative, will set x0 = x4, and write x = (x1, . . . , x4) ∈M.
5Cf. e.g., [11, p. 324].
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It easily follows that ψ = u ◦ ϕ : M → U(2) is a bijection from M onto the
open subset of U(2) consisting of those U for which det(I − U) �= 0.

Remark 1. It may be useful for the reader to see the explicit form of ψ(x) for
any x ∈ M, namely

U = ψ(x) =
1

−q(x) − 1 + 2ix0

[
1 − q(x) + 2ix3 2(ix1 + x2)

2(ix1 − x2) 1 − q(x) − 2ix3

]
. (5)

We also have, explicitly:

det(I − U) =
4

1 + q(x) − 2ix0
, det(I + U) =

4q(x)
1 + q(x) − 2ix0

. (6)

The first one of the last two equalities shows that for any U ∈ ψ(M), det(I−
U) �= 0, while the second one states that det(I+U) = 0 if and only if q(x) = 0.
Notice that the quantity 1 + q(x) − 2ix0 �= 0 for all x ∈ M.

Let us now determine the structure of the remaining set I :

I = U(2) \ ψ(M) = {U ∈ U(2) : det(I − U) = 0}.
Let m : U(2) → U(2) be the diffeomorphism of U(2) given by m(U) = −U,
i.e., the group translation by −I. Let us investigate the structure of the set
m(I) – the image of I ⊂ U(2) under m. We split this set into two disjoint
non empty components Ic and Is defined by

Ic = m(I) \ I, and Is = m(I) ∩ I.

Remark 2. To see that both sets, Ic and Is, are non empty, notice that U0 =
−I = m(I) is not in I, but is in m(I). Therefore U0 is in Ic. On the other
hand let U1 =

(
1 0
0 −1

)
. Then U1 and −U1 = m(U1) are in I, thus U1 is in Is.

The set Ic is, by its definition in the range of Cayley transform, therefore
we can apply ψ−1 to Ic.

Denoting by K the light cone through the origin: K = {x ∈ M : q(x) =
0}, let us show that

ψ−1(Ic) = K. (7)

With x ∈ M we have that x ∈ ψ−1(Ic) if and only if ψ(x) ∈ Ic, that is
if and only if (U ∈ m(I)) and (U �∈ I). That is x ∈ ψ−1(Ic) if and only if
det(I+U) = 0 and det(I−U) �= 0. It follows now from Eq. (6) that det(I−U)
is automatically non-zero, and that det(I +U) = 0 is equivalent to q(x) = 0,
that is x ∈ K.

It remains to identify the set Is. Let j : U(2) → U(2) be the map
j(U) = iU, i.e., the translation by i. It follows from the very definition that
U ∈ Is is equivalent to: det(I − U) = 0 and det(I + U) = 0. It follows
that U ∈ Is if and only if one eigenvalue of U is equal +1 while the other
eigenvalue is equal −1. It follows that j(U) = iU has eigenvalues +i and −i.
Therefore I− iU is invertible and U = ϕ(X), with X given by Eq. (4) and U
replaced by iU . It follows that j(U) is in the range of ψ. Thus we conclude
that j(Is) ⊂ ψ(M).
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Let us show that ψ−1(j(Is)) is the 2-sphere:

ψ−1(j(Is)) = {x ∈ M : x0 = 0, (x1)2 + (x2)2 + (x3)2 = 1}.

With U ∈ Is let x = ψ−1(j(U)). Then ψ(x) = X = i I+iU
I−iU . It follows that X

has eigenvalues i 1+i
1−i = −1 and i 1−i

1+i = 1, which is equivalent to det(X) = −1
and tr(X) = 0. Now, from Eq. (1) it follows that tr(X) = 0 is equivalent to
x0 = 0, and then det(X) = −1 is equivalent to (x1)2 + (x2)2 + (x3)2 = 1,
which concludes our proof.

It follows from the above that U(2) \ ψ(M) consists of two pieces. The
first piece is the set of all unitary matrices with precisely one eigenvalue equal
to −1, the other eigenvalue different from +1. This piece has the structure
of the light cone at infinity . The matrix U = −I is the apex of this cone.
The second piece consists of unitary matrices with one eigenvalue equal to
−1, the other eigenvalue being +1. This piece is the 2-sphere at infinity that
forms “a base” of the light cone at infinity.

Remark 3. A closely related derivation of this fact can be found in [12, Theo-
rem 6]. This pedagogical paper is closely related in spirit and is a recommended
reading for all those interested in the subject.

Remark 4. It is easy to calculate the result of the transformation x �→ x′

corresponding to the left translation U �→ iU = j(U). The result of a simple
calculation reads:

x0′ =
1 + q(x)

1 − q(x) − 2x0
and x′ =

2x
1 − q(x) − 2x0

.

This particular transformation can be interpreted in terms of conformal trans-
formations T (a)x = x + a, K(a) = RT (a)R, D(λ)x = λx, where R is the
inversion R(x) = x/q(x). A simple calculation shows that

x′ = T (−a)D(2)K(a)x,

where a0 = −1, a = 0. The transformation is singular on the light cone
centered at −a.

In Appendix A we calculate the conformal vector fields on Minkowski
space corresponding to left actions of one-parameter subgroups of U(2).

3. The Overlooked 2-Sphere

In their Introduction to Twistor Theory [3, Chapt. 5], Compactified Minkowski
Space , the authors obtain their “cone at infinity” using a different method
and, as we will see, their incomplete reasoning leads to their neglecting of
the 2-sphere at infinity. First, we will reproduce their reasoning, using their
notation, with slight changes, simplifications, and with some elucidating com-
ments. Then, we will present our corrected derivation and its result.
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3.1. Reasoning of Huggett and Tod

Here we will present the essence of the reasoning in [3], though with some
changes of the notation. We denote by M the standard Minkowski space,
that is E3,1 = R3 ⊕ R1, with coordinates x = (x, t), endowed with the
quadratic form q(x) = x2− t2, where x = (x1, x2, x3), and x2 is the standard
Euclidean quadratic form of R3 : x2 = (x1)2 + (x2)2 + (x3)2. Let E1,1 be
R2 endowed with the quadratic form q2 defined by q2(x5, x6) = (x5)2 −
(x6)2, (x5, x6) ∈ R2. We denote by E4,2 the 6-dimensional space E3,1⊕E1,1,
with coordinates (Zα) = (x, x5, x6), and endowed with the quadratic form
Q(x, x5, x6) = q(x) + q2(x5, x6). In order to simplify a bit the notation, let
us set, in this section,

x5 = v, x6 = w.

Let N be the null cone of E4,2 minus the origin:

N = {Z ∈ E4,2 : Z �= 0 and Q(Z) = 0}, (8)

and let PN be the set of its generators, that is the set of straight lines through
the origin in the directions nullifying Q(Z). In other words PN = N/ ∼,
where, for Z,Z ′ ∈ N , Z ∼ Z ′ if and only if there exists a nonzero μ ∈ R
such that Z ′ = μZ. We denote by π the projection π : N → PN . Then PN ,
with its projective topology, is a compact projective quadric. PN is called
the compactified Minkowski space .

Consider now the following smooth map between manifolds: τ : M →
E4,2 given by the formula:

τ(x, t) = (x, t,
1
2
(1 − q(x)),−1

2
(1 + q(x))). (9)

The map τ is evidently injective. Let Z be the hyperplane in E4,2 :

Z = {Z ∈ E4,2 : v − w = 1}. (10)

Lemma 1. The image τ(M) in E4,2 coincides with the intersection N ∩Z of
N with Z.

Proof. It is clear that τ(x) �= 0, and it also follows by an easy calculation that
Q(τ(x)) = 0. Evidently, from Eq. (9), τ(x) is also in Z. Conversely, let Z =
(x, v, w) be in N ∩Z. From Q(Z) = Q(x, v, w) = 0 we get q(x)+v2−w2 = 0.
But v2 − w2 = (v − w)(v + w) so that from v − w = 1 it follows that
q(x) + v + w = 0. Together with v − w = 1 it implies q(x) + 2v = 1 or
v = 1

2 (1 − q(x)) and w = − 1
2 (1 + q(x)). It follows that Z = τ(X). �

From now on we will follow the arguments in [3, p. 36] step by step,
skipping what is not essential and adapting to our notation.

“On any generator of N with v−w �= 0, we can find a point
satisfying v − w = 1 and hence a point in M. Thus M is
identified with a subset of PN .”

This is clear. If (x, v, w) is in N and v − w �= 0, then x
v−w is in N ∩ Z.

“The points in PN not in τ(M) correspond to the generators
of PN with v − w = 0.”
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This is evident from the definition. Now there comes an unclear paragraph
with an erroneous conclusion:

“This is the intersection of N with a null hyperplane through
the origin. All such hyperplanes are equivalent under O(4, 2)
so to see what these extra points represent, we consider the
null hyperplane v + w = 0. From Eq. (9) we see that the
points of M corresponding to generators of N which lie in
this hyperplane are just the null cone of the origin. Thus PN
consists of τ(M) with an extra cone at infinity.”

It is rather hard to follow this fuzzy reasoning, therefore we will study the
structure of the “extra part” directly from the definition. The extra part is
the projection by π of those points in N for which v − w = 0. Now the
following two cases must be considered separately: either v = w = 0 or
v = w �= 0. Let Nc = {Z ∈ N : v = w �= 0, and Ns = {Z ∈ N : v = w = 0}.
Each element of π(Nc) has a unique representative Z ′ = (x′, v′, w′) in N
with v′ = w′ = 1. Since Q(Z ′) = 0, we have q(x′) = 0. Therefore π(Nc)
has the structure of the null cone at zero in M. But there is also the second
part, π(Ns). If Z = (x, t, 0, 0) is in Ns, then t �= 0, otherwise, because of
Q(Z) = q(x) = 0 we would have x = 0. Therefore each Z = (x, t, 0, 0) in Ns

has a unique representative with t = 1. From q(x) = 0 it follows then that
x2 = 1. It follows that π(Ns) has the structure of the 2-sphere. This part is
missing in the conclusion of [3]. One of the possible reasons for this omission
can be a possibly misleading statement in Penrose and Rindler [2, p. 303],
where we can read

“. . . and the remainder of the intersection of the 4-plane
with M̃ is J (the identified surfaces J +,J− of the previous
construction).”

The point is that in J of Penrose and Rindler one has to first identify the
two 2-spheres, one of J + and one of J−, though with opposite orientations
– see the next subsection. This lack of precision in [2] may have confused the
authors of [3, 13].

3.2. The 2-sphere missed by Akivis and Goldberg

A similar inadvertency takes place in a monograph on conformal geometry by
M. A. Akivis and V. V. Goldberg [14]. In the introductory chapter the authors
analyze the Euclidean case. They start with the equation of a hypersphere
in the conformal space Cn, which is just En,0 endowed with an Euclidean
scalar product defined up to a non-zero multiplicative constant. The equation,
in polyspherical coordinates s0, si, sn+1, reads: s0

∑n
i=1(x

i)2 + 2
∑n

i=1 s
ixi +

2sn+1 = 0. When s0 �= 0, this can be put in the form:
n∑

i=1

(xi−ai)2 = r2, where ai = − si

s0
, r2 =

1
(s0)2

(
n∑

i=1

(si)2 − 2s0sn+1

)
.

In order to describe a hypersphere of zero radius (centered at ai) we must
have (X,X) :=

∑n
i=1(s

i)2 − 2s0sn+1 = 0, which is just the equation (8) of
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the null cone N in En+1,1 with s0 = 1
2 (w − v), sn+1 = (w + v), adapted

to the Euclidean signature. Hyperspheres of zero radius correspond to the
points (their centers) in Cn. The remaining set of non-zero solutions of Eq.
(8) is the line s0 = 0, xi = 0, 1,≤ i ≤ n, sn+1 �= 0 – the point at infinity.

The same strategy is then used in Chapter 4.1 in the pseudo-Euclidean
case. With slight changes of the notation the authors state [14, p. 127] that

“. . . after compactification the tangent space Tx(M) is en-
larged by the point at infinity y with coordinates (0, 0, . . . , 0, 1)
and by the isotropic cone Cx, with vertex at this point y
whose equation is the same as the equation of the cone Cx,
namely gijx

ixj = 0.”

There is a subtle inadvertency there. The change of notation is not important,
so let us use the same notation as in the Euclidean case. When s0 �= 0 we have
the same situation as in the Euclidean case, except that the “hypersphere
of zero radius” becomes now a cone (light cone in the Minkowski case). It
remains to consider the case of s0 = 0. Here we have two possibilities: either
sn+1 = 0 or sn+1 �= 0. If sn+1 = 0, then, necessarily, the n-vector (si) �= 0,
and gijs

isj = 0. But then, we should consider the set of lines and not the set
of points.

For example in the case of Minkowski space we find that the set of lines
is the quadric (S2), and not the “isotropic cone”, as falsely stated in [14].
On the other hand, if sn+1 �= 0, the we can choose sn+1 = 1. In this case no
freedom of choosing the scale remains and we get gijs

isj = 0 – the isotropic
cone, including its origin.

Another mistake takes place during the discussion of the conformal in-
version in [14, p. 15-16]. The authors state that

“In the pseudo-Euclidean space Rn
q , the inversion in a hy-

persphere S with center at a point A is defined exactly in the
same manner as it was defined in the Euclidean space Rn

(. . . ). However, in contrast to the space Rn, under an inver-
sion in the space Rn

q not only does the center a of the hyper-
sphere S not have an image but also points of the isotropic
cone Cx with vertex at the point a does not have images. To
include these points in the domain of the mapping defined
by the inversion in Rn

q , we enlarge the space Rn
q not only

by the point at infinity, ∞, corresponding to the point a but
also by the isotropic cone C∞ with the vertex at this point.
The manifold obtained as the result of this enlargement is
denoted by Cn

q :

Cn
q = Rn

q

⋃
{C∞}

and is called a pseudoconformal sphere of index q. (. . . ) Just
like conformal space Cn, the pseudoconformal space Cn

q is
homogeneous.”
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Adding the image of the isotropic cone under inversion does not result in the
homogeneous space. In section 6.1 we show that the conformal inversion with
respect to the isotropic cone C0 centered at the origin 0 ∈ M is implemented
by the map (x, v, w) �→ (x,−v, w). Using the embedding τ : M → E4,1 given
by Eq. 9 we find that the image of C0 consists of vectors of the form (x, 1

2 ,−
1
2 )

and therefore τ(C0) consists of vectors of the form (x,− 1
2 ,−

1
2 ). Let now x be

a nonzero vector in C0, and let a be a vector satisfying x · a = 1
2 . The action

of the translation group is given by Eq. (15). It is clear that after translation
by a the point (x,− 1

2 ,−
1
2 ) is mapped to (x, 0, 0), which is not in the image

of C0 under inversion. Therefore the statement in [14] that adding just the
image of C0 under inversion gives a homogeneous space is erroneous. It is
necessary to add the missing sphere.

A similar misleading statement can be found in a paper by N. M. Nikolov
and I. T. Todorov in [15], where the authors state that “The points at infinity
in M̄ form a D − 1 dimensional cone with tip at p∞, quoting Penrose [18],
and then state that “. . . the Weyl inversion . . . interchanges the light cone
at the origin with the light cone at infinity”.6

4. From Einstein’s Static Universe to PN
The group U(1) can be identified withe the group of complex numbers z ∈ C
with |z| = 1, and the group SU(2) can be thought of as the group of unit
quaternions {q = v + xi + yj + zk ∈ H : |q|2 = v2 + x2 = 1}. Let E4,1

denote R5, with coordinates (x, v, ψ), and endowed with the quadratic form
q5(x, v, ψ) = x2 + v2 −ψ2. Writing z = eiψ, we can then represent the group
U(1) × SU(2) (topologically S1 × S3) as the cylinder K in E4,1:

K = {(x, v, ψ)} : x2 + v2 = 1, ψ ∈ [−π, π)}.

Lemma 2. With E4,2 endowed with the coordinates Z = (X, T, V,W ), as in
the previous section (but we will use capital letters here) let λ : E4,1 → E4,2,
be the map

λ : (x, v, ψ) �→ (X, T, V,W ) = (x, sin(ψ), v,− cos(ψ)). (11)

Then π ◦ λ restricted to K, is 2 : 1 and surjective: π ◦ λ(K) = PN . Given
any two points (x1, v1, ψ1) and (x2, v2, ψ2) in K, we have π ◦ λ(x1, v1, ψ1) =
π ◦ λ(x2, v2, ψ2) if and only if the following conditions (i)–(iii) hold:

(i) |ψ2 − ψ1| = π, (ii)x2 = −x1, and (iii) v2 = −v1.

Proof. The proof is evident after noticing that Q(Z) = X2−T 2+V 2−W 2 = 0
can be written as X2 + V 2 = T 2 + W 2, and, if Z �= 0, then V 2 + X2 > 0.

6In a private exchange one of the authors (N.M.N) explained to me that the precise state-
ment should read: “The Weyl inversion . . . interchanges the compact light cone at the
origin with the compact light cone at infinity, where the compact light “cone” with a tip
at p is defined as {q ∈ M̃ : p and q are mutually isotropic }. ” These concepts have been
described in [16, Appendix A,C] and [17], and will be developed in their future paper.
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Therefore on each generator line of N there are exactly two points Z,−Z,
with V 2 + X2 = 1. �

In order to be able to represent PN graphically, on a plane, let us
introduce the map ρ : K → [0, π] × [−π, π] ⊂ R2 given by

ρ : (x, v, ψ) �→ (ξ = arccos(v), ψ).

In Figure 1 the resulting “Penrose diagram” is shown, using the notation

−π

+π

0

I−

I+

I0

π

ξ

ψ

J−

J−

J+

J+

S

S

Figure 1. The “Penrose diagram” of Minkowski space.

as in [19, p. 919], but with two distinguished points denoted as S. In this
realization they represent one and the same 2-sphere – they need to be iden-
tified. The region inside the triangle with vertices at (0,−π), (0,+π), (π, 0)
corresponds to the points in the Minkowski space. In order to understand this
correspondence, let us first notice that owing to the equation v2 +x2 = 1, we
have the following relations:

X = x, T = sin(ψ), V = cos(ξ), W = − cos(ψ), |X| = sin(ξ).

When V −W �= 0, we get the corresponding point in Minkowski space with
coordinates (r, t) given by the formulae:

r =
X

V −W
=

x

cos(ψ) + cos(ξ)

t =
T

V −W
=

sin(ψ)
cos(ψ) + cos(ξ)

r = |r| =
sin(ξ)

cos(ψ) + cos(ξ)
.



732 A. Jadczyk Adv. Appl. Cliff ord Algebras

Now, by elementary trigonometric identities we have that:

tan
(
ψ + ξ

2

)
=

sin(ψ) + sin(ξ)
cos(ψ) + cos(ξ)

,

tan
(
ψ − ξ

2

)
=

sin(ψ) − sin(ξ)
cos(ψ) + cos(ξ)

.

It follows that

t + r = tan
(
ψ + ξ

2

)
, t− r = tan

(
ψ − ξ

2

)
,

which are exactly the equations in [19, p. 919], and in [20, p. 121] (with
our ψ, ξ corresponding to their t

′
, r

′
resp.). Each point in the interior of the

triangle represents a 2-sphere at time t and radius r > 0 centered at the
origin of x-axes. Each point on the open interval ξ = 0, |ψ| < π represents
the origin (t = 0, r = 0) of the Minkowski coordinate system. The points I−

and I+, with ξ = 0, ψ = ±π both correspond to V = 1,W = 1, T = 0,X = 0
– a single point in the compactified Minkowski space, the apex of the null
cone Nc at infinity. Each point of the open intervals J± corresponds to a
2-sphere V = W �= 0, T �= 0,X2 = T 2. These 2-spheres build Nc except of its
apex I+ = I−. The point I0 represents the same point of the compactified
Minkowski space as I±. What is misleading in all the standard literature
describing the conformal infinity is the neglecting the fact that there are two
exceptional points of the diagram, denoted here as I1, and corresponding to
the parameter values ξ = π/2, ψ = ±π/2. These two points correspond to
V = W = 0, T = ±1,X2 = 1 which is the sphere Ns discussed at the end
of the previous section. These two exceptional points should be identified in
order to give the complete representation of the conformal infinity – compare
the discussion of these issues in the papers of Roger Penrose [18, 21].

5. Action of the Inhomogeneous Lorentz Group (Poincaré
Group) ISO(3, 1)

5.1. Action of SO(3, 1)
The homogeneous Lorentz group SO(3, 1) maps the conformal infinity into
itself. It is thus of interest to analyze this action in some details. We will show
that there are two invariant submanifolds for this action, one consisting of a
point, and one being the 2-sphere Ns. To this end will use the results of W.
Rühl [22]. According to [22], his Eqs. (2.18), (2.19), the homogeneous Lorentz
group is represented by SU(2, 2) matrices ( A B

C D ) of the form A = D = 1
2 (R+

(R∗)−1) and B = C = 1
2 (−R + (R∗)−1) where det(R) = 1 and ∗ denotes

Hermitian conjugation. We need to consider two cases: when R is unitary
(pure rotations), and when R is Hermitian (pure boosts). In the case of pure
rotations we have R = R∗−1. Therefore, in this case, A = D = R,B = C = 0,
and the fractional linear action of SU(2, 2) on U(2) becomes U

′
= RUR−1.

It is clear that the point at infinity corresponding to U = E is invariant.
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Also the spectrum of U is an invariant of this transformation, therefore the
2-sphere Ns corresponding to U with eigenvalues ±1 is mapped into itself.

Now consider the boosts, with R = R∗. Denote R+ = R + (R∗)−1,
R− = −R + (R∗)−1. The fractional linear transformation corresponding to
the boosts are then of the form:

U
′
= (R+U + R−)(R−U + R+)−1. (12)

Evidently the point U = E is left invariant. Consider now the 2-sphere Ns

corresponding to the unitary operators U with eigenvalues ±1. These points
are characterized by the property U2 = E. Therefore we can rewrite the Eq.
(12) as (R+U + R−)((R− + R+U)U)−1 = ZUZ−1, where Z = R+U + R−.
It follows that then also (U

′
)2 = E, therefore the Lorentz boosts map the

2-sphere Ns onto itself. Thus Ns is an O(3, 1)-invariant submanifold of the
conformal infinity.

5.2. Action of the translations

Consider the translation by a four-vector a ∈ M. Using Clifford algebra
methods and the formula for the translations in [23, p. 87] it is easy to
calculate the effect of the translation in terms of variables (x, v, w) of section
3.1:

x′ = x− (v − w)a (13)

v′ = v + (x · a) − a2

2
(v − w) (14)

w′ = w + (x · a) − a2

2
(v − w) (15)

At the conformal infinity we have v = w, therefore x′ = x, but, for x �= 0, the
coordinates v and w change. If v = w = 0, then, after the generic translation,
v′ = w′ �= 0. The coordinate description of the 2-sphere Ns, which is the
common part of J + and J− changes. What is invariant is the set J + ∪J−,
and the fact that J + and J− have a common 2-sphere.

5.3. Transitivity of ISO(3, 1) on the conformal infinity

Let J denote the conformal infinity, minus the singular point I0 = I+ = I−.
It is easy to see that action of ISO(3, 1) on J is transitive. J has the topol-
ogy of a cylinder R× S2. The group of translations acts along the R, while
SO(3, 1) acts transitively on S2 in a standard way – Lorentz transformations
act on directions of light rays through the origin of the Minkowski space. It
follows that any splitting of J into J + and J− is not translation invariant
and not intrinsic. The article of Roger Penrose [24] is extremely unclear in
this respect. Penrose mentions for instance that “There is another version
of compactified Minkowski space in which the future boundary hypersurface
is identified with the past”, and quotes his earlier paper [25], as well as the
classic one by Kuiper [26], but he does not bother to define precisely what
would be the alternative for the projective model. The same lack of clar-
ity concerns the discussion in [20] and [19]. B.G. Schmidt, in an apparently
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mathematically precise paper [13] proves a Theorem stating that The con-
formal boundary of Minkowski space is J +∪J−∪I+∪I−∪I0, without ever
bothering to define the sets on the right hand side of his statement.

In [27, p. 178] Penrose writes:

“There is one property of R, however, which seems unde-
sirable when these ideas are applied to interacting fields, or
curved space-times. This is the fact that the ‘future infinity’
turns out to have been identified with the ‘past infinity’ in
the definition of R. To avoid this feature it will be desirable
effectively to ‘cut’ this manifold along the hypersurface J
and to consider instead the resulting manifold with bound-
ary. This boundary consists essentially of two copies of J ,
one in ‘future’ which will be called J + and one in the ‘past
to be called J− . . . ”

Nowhere a precise definition of J + and J− is given. We are not told how the
Poincaré group acts on these ‘boundaries’. Also the authors of recent papers
like, for instance [28], when asked about the definition of J + and J− for
Minkowski space, refer to Penrose [27] or Geroch [29]. In fact Geroch does
not define J + and J− for the Minkowski space. He considers Schwarzschild
space-time with the topology S2 ×R2, proposes some coordinate-dependent
constructions and does not really discuss global symmetries.

6. Trapped at Infinity

We start this section by demonstrating that a light ray can be trapped in
the conformal infinity and circulate there “forever” – unless disturbed by
some quantum effect. It is well known (cf. e.g., [9] for a clear and self-
contained exposition) that null geodesics are described by two-dimensional
totally isotropic subspaces of E4,2. Using the coordinates (x, v, w) as in Sec.
3.1, let x0 be a fixed non-zero null vector in E3,1, and let n1 and n2 be the
vectors in E4,2 defined by n1 = (x0, 0, 0) and n2 = (0, 1, 1). Then the two-
dimensional (real) plane spanned by n1 and n2 is totally isotropic – therefore
it is describing a null geodesic in the compactified Minkowski space. A gen-
eral vector in this plane is of the form αn1 + βn2 = (αx0, β, β), therefore it
is completely contained in the conformal infinity that consists of null vectors
(x, v, w) with v = w. We can completely parameterize our null geodesic by a
parameter τ ∈ [0, π] by choosing the representatives of its points in the form

(cos(τ)x0, sin(τ), sin(τ)). (16)

For τ = 0 the geodesic is on the 2-sphere Ns, for τ = π/2 it reaches the
exceptional point I+ = I− = I0, then it circulates further towards the 2-
sphere Ns. Notice that for τ = π we get the point (−x0, 0, 0) which projects
onto the same point of PN as (x0, 0, 0). Replacing x0 by λx0, λ ∈ R does
not change the plane spanned by n1, n2, therefore in this way we get a family
of null geodesics, all trapped in the conformal infinity. We can always choose



Vol. 21 (2011) Conformal Infi nity and Compactifi cations of Minkowski Space 735

a representative of x0 of the form (r, 1), r2 = 1, so that we have a trapped
null geodesic for every point of the unit sphere in R3.

6.1. Conformal inversion

Consider the following linear map R of E4,2 : R : (x, v, w) �→ (x,−v, w). It is
clear that R ∈ O(4, 2) (though not in SO(4, 2)). It is instructive to see that
R implements the conformal inversion x �→ x/x2 of the Minkowski space.
To this end let x be a point in the Minkowski space M and let, writing x2

for q(x), τ(x) =
(
x, (1 − x2)/2,−(1 + x2)/2

)
be its image in E4,2 as in Eq.

(9).7 We apply the inversion R to obtain
(
x,−(1 − x2)/2,−(1 + x2)/2

)
and

represent it as an image of a new point x′. Therefore we should have(
x′,−1

2
(1 − x′2),−1

2
(1 + x′2)

)
= λ

(
x,

1
2
(1 − x2),−1

2
(1 + x2)

)
. (17)

Now, from x′ = λx it follows that x′2 = λ2x2. Substituting this value of x′2

into the two other equations and adding them we get λ = 1/x2, therefore
x′ = x

x2 , which is the well known conformal inversion in Minkowski space.
The formula (17) becomes then an identity.8

Let us now apply the conformal inversion R to the light rays circulating
at infinity, given by the formula (16). We obtain the family

(x0,− sin(τ), sin(τ)) = −2 sin(τ)
(
x(τ),

1
2
(1 − x(τ)2),−1

2
(1 + x(τ)2

)
,

where x(τ) = − 1
2 cot(τ)x0. This is nothing else but a family of light rays

through the origin of the Minkowski space in the directions of null vectors x0.
The parameter τ is, of course, not an affine parameter of these null geodesics.

6.2. The signature of the metric at infinity

Let H1 be the affine hyperplane in E4,2 parameterized by the coordinates
(r, t, v, w), defined by the condition t = 1. Then H1 is transversal with respect
to the null cone N , therefore, by Theorem 3 of [9] it induces the unique
conformal structure on π(H1 ∩ N ). The intersection H1 ∩ N is described by
the equation r·ṙ−1+v2−w2 = 0. Taking a trajectory there, by differentiation,
we get for the tangent vector (ṙ, v̇, ẇ) the equation ṙ + v̇ − ẇ = 0. Notice
that at the points corresponding to the conformal infinity we have v = w.
Taking a trajectory with v = w = const we get a trajectory on the 2-sphere.
The signature there is (2, 0). On the other hand, taking a trajectory with r
constant we obtain a tangent vector of the form (0, 0, v̇, ẇ) – a null vector in
E4,2. It follows that the metric induced on conformal infinity is degenerate
and has as its standard form diag(1, 1, 0).

7This is the standard map, discussed in a general signature for instance in [23, p. 92].
8It is evident that this formula makes sense only when a length scale is chosen. This can be
a Planck length, a cosmic scale length or some other length scale. The formula is singular
on the light cone, but this apparent singularity is a coordinate effect.
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6.3. A pictorial representation of the infinity

In order to get an idea about the manifold structure of the conformal infinity
and to obtain its pictorial representation, it is convenient to use the formulas
from Lemma 2. At the conformal boundary we have v = w, thus v = cos(ψ),
and since v2 + x2 = 1, we get x2 = sin2(ψ). Furthermore, because (x, t, v, w)
and (−x,−t,−v,−w) describe the same point of PN , it is enough to consider
ψ ∈ [0, π]. The whole conformal infinity is then described by one equation:

x2 = sin2(ψ), ψ ∈ [0, π],

where (x, ψ = 0) and (x, ψ = π) describe the same point. This is nothing
else but a squeezed torus. Replacing the spheres S2 by circles S1 we get the
graphic representation as shown in Fig. 6. Topology itself is represented by a
double cone with two vertices identified, as in Fig. 3. This picture must not
be confused with a similarly looking picture taken from [4, p. 178], which we
reproduce here in Fig. 4.

6.4. The double covering

It is possible to repeat the constructions of Sects 3.1 and 4, but replacing the
equivalence relation Z ∼ Z ′ by a stronger one: we identify two vectors Z and
Z ′ in E4,2 if and only if Z ′ = λZ, λ > 0. The manifold resulting by taking
the quotient of N by this new equivalence relation will be denoted by P̂N .
Instead of one map τ as in Eq. (9) we define now two maps:

τ+(x) = (x,
1
2
(1 − q(x)),−1

2
(1 + q(x))). (18)

τ−(x) = (x,−1
2
(1 − q(x)),

1
2
(1 + q(x))). (19)

Similarly we define

Z± = {Z ∈ E4,2 : v − w = ±1}, (20)

and then show that

Lemma 3. The image τ±(E3,1) in E4,2 coincides with the intersection N∩Z±
of N with Z±.

The manifold P̂N contains now two copies of Minkowski space, we may
call them M+ and M−, joined by a common boundary.

In Figure 2 the corresponding Penrose diagram is shown, this time we
have two different 2-spheres S+ and S−. There are two copies of Minkowski
space, M+ and M−, separated by the boundary. The horizontal lines at
ψ = +π and ψ = −π should be identified. The corresponding pictorial rep-
resentation of the infinity is shown in Figures 3, 6.
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−π

+π

0

I−

I+

I0

π

ξ

ψ

J−

J−

J+

J+

S−

S+

M+

M+

M−

M−

Figure 2. The second version of the “Penrose diagram” of
Minkowski space.

Figure 3. Pictorial representation of the conformal infinity
with one dimension skipped. Double light cone at infinity
with endpoints identified. While topologically correct this
representation is misleading as it suggests non differentiabil-
ity at the base, where the two half-cones meet.

7. Geometry of Oriented Twistors

In this section we present a slightly modified version of the reasoning of
Kopczyński and Woronowicz in [9, section III]9. In particular we will take

9Our numbering conventions differ slightly from those used in [9]. We use Roman letters
e, x, y, v, w, etc. to denote the elements of the algebra. A different approach, using pure
Clifford algebra methods and dealing with the case of non-oriented twistors, is discussed
by Crumeyrolle [30, Ch. 12. Twsitors]
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i+

J +

J−

i0

i−

r = 0

Figure 4. Conformal infinity of Minkowski space from [4, p.
178]. The meaning of this picture is quite different from the
one in Fig. 3, where the points i0, i+, i− are identified. The
2-sphere indicated in the middle of this picture is just one
point i0 and not the true 2-sphere of Fig. 3

i+

i−

Sn−1

Figure 5. Chronological boundary for L
n+1 – Figure 2

from [5]

into account the orientation, and also we will change the notation a little bit
by introducing the Hodge � operator. Otherwise, in this section we will follow
the notation of [9] – that may differ from the notation in other parts of this
paper. To start with: as it will be explicitly shown below in section 7.2.2,
twistors are spinors for the conformal group10. But, for our present purpose,

10In his Afterward to “Such Silver Currents. The Story of William and Lucy Clifford
1845-1929” [31, p. 182] Roger Penrose wrote: Twistors may be regarded as spinors for six

dimensions; yet they refer directly to the four dimensions of space–time. In “The Road to
Reality” [32, Ch. 33.4] Penrose writes How do twistors fit in with all this? The shortest



Vol. 21 (2011) Conformal Infi nity and Compactifi cations of Minkowski Space 739

Figure 6. Differentiably correct pictorial representation of
the conformal infinity with one dimension skipped. A torus
squeezed to a point I+ = I− = I0 at ψ = 0. All null
geodesics described in this section pass through this point.

Figure 7. Pictorial representation of the double covering
conformal infinity. Double double light cone. Points con-
nected by a dashed line are, in fact, a one point. This repre-
sentation is also topologically correct but differentiably mis-
leading.

in order to analyze the twistor geometry no knowledge of spinors is needed.
We will make this section self-contained – to a large extent. Nevertheless it
may be useful to recall the fact that the spinor space for the conformal group
is the space of an irreducible representation of the even Clifford algebra Cl+4,2,

but hardly the most transparent way to describe a (Minkowski-space) twistor is to say
that it is a reduced spinor (or half spinor) for O(2, 4).
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Figure 8. Pictorial representation of the double covering
conformal infinity. A pair of tori squeezed at a common
point.

the dimension of this space over C being 2
r+s
2 −1 = 4, which is the same as

the dimension of H2,2.

7.1. The exterior algebra
∧

V and Hodge duality operator

Let V be a complex vector space of finite dimension n. We denote by
∧
V =⊕n

k=0

∧k
V the exterior algebra of V thought of as a consisting of antisym-

metric tensors endowed with the wedge product11:

v1 ∧ . . . ∧ vk =
∑
σ

(−1)σvσ(1) ⊗ . . .⊗ vσ(k).

Assume that V is endowed with a pseudo-hermitian form (x|y) of signature
(p, q). The standard example is the space Cn = Cp ⊕Cq with

(x|y) =
p∑

i=1

xiȳi −
q∑

j=1

xj ȳj .

We endow
∧
V with a natural pseudo-hermitian form defined by:

(v1 ∧ . . . ∧ vk|w1 ∧ . . . ∧ wk) = det ((vi|wj)) . (21)

Remark 5. Notice that there exist, in the literature, two different conventions
of defining the exterior product. While most authors seem to agree on the
definition of the alternating operator:

Alt (v1 ⊗ . . . vk) =
1
k!

∑
σ

(−1)σvσ(1) ⊗ . . . vσ(k),

the exterior product of a k-vector v and l-vector w can be defined by the
formula:

v ∧ w =
(

(k + l)!
k!l!

)ε

Alt (v ⊗ w),

where ε = 0 or ε = 1. We choose ε = 1.
There are also two different convention of extending the scalar product

from V to
∧

V. Some authors (especially physicists, when discussing the sec-
ond quantization of Fermions) endow

∧
V with the restriction of the natural

11For more information about exterior (Grassmann) algebras see e.g., [33, Ch. 5].
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scalar product defined on the tensor product. For k-vectors this gives k! times
our scalar product.

Given x ∈
∧p

V we have the coordinate representation of x in a basis
{ei} of V :

x =
1
p!

xi1...ip ei1 ∧ . . . ∧ eip .

The wedge product is then given by the formula:

(x ∧ y)i1...ip+q =
1

p!q!
δ
i1... ...ip+q

j1...jpjp+1...jp+q
xj1...jp yjp+1...jp+q ,

where δa...bc...d is the (generalized) Kronecker delta symbol. We also have the
coordinate representation:

(x|y) =
1
p!

Gi1j1 ..Gipjpx
i1...ip yj1...jp , (22)

where Gij = 〈ei, ej〉.
Let now {ei} be an orthonormal basis for V with (ei|ei) = +1 for

i = 1, . . . , p, and = −1 for i = p+1, . . . , p+ q, and let e = e1 ∧ . . .∧ en. Then
(e|e) = (−1)q. Let e ∈

∧n
V be a unit n-vector. We call e an orientation

of V. An orthonormal basis {ei} will be called oriented if e1 ∧ . . . ∧ en = e.
Any two oriented bases are then related by a unique transformation from the
group SU(p, q).

For each x ∈
∧
V let C(x) be the linear operator on

∧
V defined by

C(x)y = x ∧ y.

Clearly, for x ∈
∧k

V, we have C(x) :
∧l

V →
∧k+l

V, and v �→ C(v), v ∈ V
is a linear map from V to L(

∧
V ), with

C(v)C(w) + C(w)C(v) = 0, (23)

for all v, w ∈ V. Notice that it follows from the definition that C(x ∧ y) =
C(x)C(y).

Let C(x)∗ be the Hermitian adjoint of C(x), defined by

(C(x)∗y|z) = (y|C(x)z), y, z ∈
∧

V.

Then, for x ∈
∧k

V, C(x)∗ :
∧l

V →
∧l−k

V, the map x �→ C(x)∗ is anti-
linear, and for v, w ∈ V we have the anti-commutation relations:

C(v)C(w)∗ + C(w)∗C(v) = (v|w). (24)

Notice that for all x, y ∈
∧
V we have C(x ∧ y)∗ = C(y)�C(x)∗.

Remark 6. The anti-commutation relations (23),(24) are known as CAR –
canonical commutation relations – in our case finite-dimensional and gen-
eralized for the case of an indefinite scalar product. If we define φ(v) =
2−

1
2 (C(v) + C(v)∗) , then the real linear map v �→ φ(v) is a Clifford map for

V considered as a 2n-dimensional real vector space endowed with the scalar
product � ((v|w)) – cf. [34]12.

12For a complex number z = α+ iβ we denote �(z) = α, �(z) = β.
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Assuming V oriented with an orientation e, we define the Hodge oper-
ator � :

∧k
V →

∧n−k
V as an antilinear map � : x �→ �x uniquely defined

by the formula

x ∧ �y = (x|y)e, x, y ∈
k∧

V. (25)

It is easy to see that an equivalent definition of the Hodge � operator is given
by:

�x = C(x)∗ e.

It easily follows from the definition that for x ∈
∧k

V, y ∈
∧n−k

V we have:

(x| � y) = (−1)k(n−k)(y| � x). (26)

A little bit more effort13 is required to check that we have

� � x = (−1)k(n−k)+q x, ∀x ∈
k∧
V.

Remark 7. A k-vector x �= 0 is called decomposable if x is of the form
x = x1 ∧ .. ∧ xk for x1, . . . , xk ∈ V. If x is decomposable, then also �x is
decomposable. Moreover the (n − k)-dimensional subspace corresponding to
�x is the orthogonal complement of the subspace corresponding to x – cf.
[42, Exercise 8, p. 62].

Another important property involving creation and annihilation opera-
tors and the Hodge star operator in [10, eq. 139] is14

�C(x)∗�−1 = C(x)(−1)d(x)N̂ ,

where d(x) is the grade of x (d(x) = k for x ∈
∧k

V ) and N̂ is the number
operator – N̂y = ly for y ∈

∧l
V.

We define a bilinear form

〈x, y〉 = (x| � y), x, y ∈
∧

V.

Notice that the following formulas hold:

〈x, y〉 = (−1)q〈y, x〉, 〈x, y〉 = (−1)k(n−k)+q〈x, y〉

In an orthonormal basis ei such that e = e1 ∧ . . . en we have the explicit
expression for the star operator for x ∈

∧p
V :

(�x)ip+1...in =
1
p!

Gi1j1 . . . Gipjp ε
i1...ipip+1...in xj1...jp . (27)

13Cf. e.g., [35, p. 167], [36, p. 118]
14While only positive definite scalar product is discussed in [10], this particular property
can be easily seen to hold also for pseudo-Hermitian spaces.
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7.2. The case of signature (2, 2)
In this section we specialize to the case of the signature (2, 2) that is relevant
for our purposes, and has been studied in [9].

Let G be the diagonal matrix G = diag(+1,+1,−1,−1). Let H2,2 be
a four-dimensional complex vector space endowed with a pseudo-Hermitian
form (·|·) of signature (2.2). A basis ei of H2,2 is said to be orthonormal if
(ei|ej) = Gij . Any two orthonormal bases are related by a transformation
from the group U(2, 2). We fix an orientation e ∈

∧4
H2,2 and define the

Hodge � duality operator as in previous subsection. Notice that on
∧2

H2,2

we have �2 = 1. Let �
∧2

H2,2 be the space of self-dual bivectors:

�
2∧
H2,2 = {x ∈

2∧
H2,2 : x = �x}.

Then �
∧2

H2,2 is a six-dimensional real vector space, and the real-bilinear
form 〈x, y〉 is real-valued and symmetric on �

∧2
H2,2. It can be easily seen

(Cf. [9, Theorem 7]) that �
∧2

H2,2 equipped with the scalar product 〈x, y〉
is of signature (4, 2). It follows that all the constructions of section 6.4 apply
and in the following we will use the notation of this section. In particular we
will use the identification E4,2 = �

∧2
H2,2.

In a complex vector space the concept of an orientation of a subspace
is not well defined. In our case, however we can define what is meant by an
oriented two-dimensional subspace. Given a k-dimensional subspace S we can
associate with it a simple (i.d. decomposable) nonzero k−vector x, unique up
to a non-zero complex factor. For λ �= 0, x and λx define the same subspace.
For k = 2 we can restrict the freedom of choice by demanding that x should
be self-dual: �x = x. This restricts the freedom of choice to λ real – that is
either positive or negative. By an “oriented two-space” we will thus mean an
equivalence class of simple self-dual bivectors, where x and y define the same
oriented subspace if and only if y = λx, λ > 0.

Consider now the Grassmann manifold of oriented totally isotropic
(complex) subspaces of H2,2. We can repeat now, slightly modified, argu-
ment of [9].15

Theorem 1. There is a one-to-one correspondence between the elements of
P̂N (the double covering of the compactified Minkowski space), and the ori-
ented isotropic subspaces of H2,2.

Proof. If p ∈ P̂N , then there exists a unique up to a multiplication by a
positive constant, non-zero element x of E4,2 in the equivalence class of p.
Since x is a null vector of E4,2, and since, as a bivector, it is self-dual, it
follows that x ∧ x = x ∧ �x = (x|x)e = (x| � x)e = 〈x, x〉e = 0. Therefore x is
decomposable and it represents a two-dimensional subspace S(q). Now, since
x is self dual, x = �x, it follows from the Remark 7 that S(q) is orthogonal to
itself, and thus totally isotropic as a subspace of H2,2. Conversely, let x be a

15For an additional information related to this subject, see also [6, 37].
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self-dual bivector representing an oriented totally isotropic subspace S. Then
(x|x) = 0 (since the subspace is totally isotropic), and, since �x = x, we have
〈x, x〉 = 0, thus x is an isotropic vector of E4,2, and therefore determines
p ∈ P̂N. �

7.2.1. Relation to the U(2) compactification. In section 2 the points of M̃
have been described by unitary operators U ∈ U(2), while in this Section by
rays in the space of self-dual null bivectors in E4,2. It may be of interest to
derive an explicit formula connecting these two descriptions.

Let us equip H2,2 with an orthonormal basis e1, e2, e3, e4 and orientation
e = e1∧. . .∧e4. Then H2,2 can be decomposed into H2,2 ≈ C2⊕C2, and every
vector x ∈ H2,2 can be written as x = ( u

v ) , u, v ∈ C2. It is easy to see that
there is a bijection between unitary matrices U in C2 and maximal totally
isotropic subspaces in H2,2 : Every maximal totally isotropic subspace W of
H2,2 is of the form W = {( Uv

v ) : u ∈ C2}, where U is uniquely determined
by W. Conversely, given unitary U the above formula defines a 2-dimensional
maximal totally isotropic subspace W. For our purposes it will be convenient
to write the unitary operators as cU, where c is in U(1), (i.e., {c ∈ C : |c| =
1}), and U is in SU(2). To each (c, U) ∈ U(1)×SU(2) we associate a maximal
totally isotropic subspace W(c, U) defined by W(c, U) = {( Uv

cv ) : v ∈ C2}.
Till now we still have a redundancy, since (c, U) and (−c,−U) define the
same subspace. However, this redundancy will soon disappear when we will
move from subspaces to oriented bivectors. In order to do this select two
basis vectors in C2 : v1 = ( 1

0 ) , v2 = ( 0
1 ) , and let fi(c, U) ∈ H2,2, i =

1, 2 be defined by fi =
(
Uvi
cvi

)
. Every matrix U ∈ SU(2) can be uniquely

written in the form U =
(

ᾱ β
−β̄ α

)
, |α|2 + |β|2 = 1. Our vectors fi can

then be written in components as follows: f1 =
(

ᾱ
−β̄
c
0

)
, f2 =

(
β
α
0
c

)
, or

f1 = αe1 − β̄e2 + c e3 and f2 = βe1 + ᾱe2 + c e4. To the pair (c, U) we
associate the bivector f1 ∧ f2, easily calculated to be f1 ∧ f2 = e12 − cβe13 +
cᾱe14 − cαe23 − cβ̄e24 + c2e34, where eij = ei ∧ ej . It follows by the very
construction that f1 ∧ f2 is a null vector in

∧2
H2,2, what can be easily

checked, but it is not, in general, self-dual: �(f1 ∧ f2) �= f1 ∧ f2. Therefore let
us consider bivector f defined by the formula: f = 1√

2
(f1 ∧ f2 + �(f1 ∧ f2)) .

Now f(c, U) is both null and self-dual.

From the explicit formulas (22), (27) we easily find the following prop-
erties of the basis vectors ei, i = 1, . . . , 4:

1 = (e12|e12) = (e34|e34) = −(e13|e13)
= −(e14|e14) = −(e23|e23) = −(e24|e24),
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and �e12 = e34, �e13 = e24, �e14 = −e23, �e23 = −e14, �e24 = e13, �e34 = e12.
Define the following six 4 × 4 antisymmetric matrices Σi = (ΣAB

i ):16

Σ1 =
(

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

)
Σ2 =

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)
Σ2 =

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)
Σ3 =

(
0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

)

Σ4 =
(

0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

)
Σ5 =

(
0 0 0 1
0 0 −1 0
0 1 0 0−1 0 0 0

)
Σ6 =

(
0 1 0 0−1 0 0 0
0 0 0 1
0 0 −1 0

)

Lemma 4. The following identities hold:

Σij
α =

1
2
εijklGkmGlnΣmn

α , (28)

where α = 1, . . . , 6, i, j, k, l,m, n = 1, . . . , 4.

Proof. Easily follows by a direct calculation. 17 �

It follows from Eq. (28) that if we define bivectors E1, . . . , E6 by the
formula Eα = 1

2
√
2

Σij
α ei ∧ ej , then �Eα = Eα. Moreover, one can verify that

we have 〈Eα, Eβ〉 = Qαβ , where

Q = diag (1, 1, 1,−1, 1,−1). (29)

Explicitly we have:

E1 = i√
2
(e13 − e24), e12 = −1√

2
(E6 − iE4)

E2 = 1√
2
(e13 + e24), e13 = 1√

2
(E2 − iE1)

E3 = −i√
2
(e14 + e23), e14 = −1√

2
(E5 − iE3)

E4 = −i√
2
(e12 − e34), e23 = 1√

2
(E5 + iE3)

E5 = −1√
2
(e14 − e23), e24 = 1√

2
(E2 + iE1)

E6 = −1√
2
(e12 + e34), e34 = −1√

2
(E6 + iE4)

Then, the calculation gives the following result:

f = −
√

2�(c) (�(β)E1 + �(β)E2 −�(α)E3 −�(c)E4 + �(α)E5 + �(c)E6)

Evidently there is a problem with this definition for �(c) = 0. But we are
free to choose the scale factor in our definition, therefore we define :

f(c, U)
df
= �(β)E1 + �(β)E2 −�(α)E3 −�(c)E4 + �(α)E5 + �(c)E6. (30)

It is easy to see that the formula above provides an embedding of U(1)×SU(2)
into the isotropic cone N of E(4, 2) that is transversal to the generator lines
of N , and therefore, by taking the quotient with respect to the multiplicative
action of R+, a diffeomorphism from U(1) × SU(2) onto P̂N . Notice that

16These matrices have been constructed using the fact that Cl4,2 = Cl3,1 ⊗ Cl1,2 =

(Cl2,0 ⊗Cl1,1)⊗Cl1,1, constructing this way 8× 8 real matrix generators, then finding a
unique (up to scale) metric matrix invariant under the Clifford group – of signature (4, 4),
and also a unique invariant complex structure in R8, then expressing the generators as
complex 4× 4 matrices, and renumbering them generators.
17These and some other calculations in this paper have been aided by several different
computer algebra systems.
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we have f(−c,−U) = −f(c, u), thus replacing c �→ −c, U �→ −U changes the
orientation of the corresponding isotropic subspace.

Let us now return to formula (5) of sec. 2 that provides the embedding
ψ of M into U(2) via the Cayley transform. We rewrite it in the form

ψ(x) = cU ′, c ∈ U(1), U ′ ∈ SU(2),

with

c = −(1 + q(x) + 2ix0)/
√

(1 + q(x))2 + 4x02,

U ′ =
1√

(1 + q(x))2 + 4x02

[
1 − q(x) + 2ix3 2(ix1 + x2)

2(ix1 − x2) 1 − q(x) − 2ix3

]
.

Applying formula (30) we obtain

f(c, U ′) = λ
(
x1E1 + x2E2 + x3E3 + x0E4

)
+ λ

(
1
2
(1 − q(x))E5 −

1
2
(1 + q(x))E6

)
,

where λ = 2
√
2

(1+q(x))2+4x02 > 0. This is the same map as the one given by Eq.
(9).

7.2.2. From self-dual bivectors to the Clifford algebra and conformal spinors.
In Chapter 1.5.5.1 of [23] Pierre Anglès generalizes earlier results of Deheuvels
and shows how to embed the projective null cone of Ep,q into the space of
spinors of the Clifford algebra of this space. It is instructive to see how this
method works in our case, yet in order to this we must first explicitly identify
the space of spinors for our version of E4,2 realized as self-dual bivectors in
H2,2.

Lemma 5. Define the following six complex matrices

Γα
i
k = Σα

ijQjk, (α = 1, . . . , 6; i, j, k = 1, . . . , 4) (31)

and let Γα be the antilinear operators on H2,2 defined by the formula:

(Γαf)i = (Γα)ij f j , f = (f i) ∈ H2,2.

Then the antilinear operators Γα satisfy the following anti-commutation re-
lations of the Clifford algebra of E4,2 :

Γα ◦ Γβ + Γβ ◦ Γα = 2Qαβ
.

The space H2,2 considered as an 8-dimensional real vector space carries this
way an irreducible representation of the Clifford algebra Cl4,2. The Hermit-
ian conjugation in H2,2 coincides with the main anti-automorphism of Cl4,2.
The space H2,2 considered as a 4-dimensional complex vector space carries
a faithful irreducible representation of the even Clifford algebra Cl+4,2.
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Proof. The formulas (31) follow easily by a direct calculation. The first part
of the Proposition follows then from the known fact that the Clifford algebra
Cl4,2 is isomorphic to the algebra Mat(8,R), while the even Clifford Cl+4,2
is known to be isomorphic to Mat(4,C) (cf. e.g., [23, Table 1.1, p. 28]).
Moreover, also by the direct calculation we have (Γα ◦Γβ)∗ = Γβ ◦Γα, which
proves the statement about the main automorphism. �
Proposition 1. The pseudo-Hermitian space H2,2 is a spinor space for the
Clifford algebra of its self-dual bivectors.

Proof. The proposition is an immediate consequence of Lemma 5 �
In [23, Ch. 1.5.5.1, p. 44] Pierre Anglès discusses a general method of em-

bedding a projective quadric into the manifold of totally isotropic subspaces
of a spinor space for the even Clifford algebra. Let us apply this method to
our case adding at the same time a new element to this method. The original
method can be described as follows: Consider Ep,q as a vector subspace of
its Clifford algebra Clp,q. Let S be a spinor space for Cl+p,q endowed with its
associated scalar product. For each non-zero isotropic vector x ∈ Ep,q find
another isotropic vector y such that 2〈x, y〉 = 1. Then yx is an idempotent
in Cl+p,q, and its kernel S(x) is a totally isotropic subspace of S that depends
only on x and not on y. One disadvantage of this procedure in applications
is that we are not being given a procedure for selecting y for each given x.
This can be, however, in our case, easily improved.

Let us first describe the philosophy behind our procedure.18 The set D
of maximal positive subspaces of H2,2 is a complex symmetric domain for
U(2, 2), D = U(2, 2)/(U(2) × U(2)), and the manifold of maximal totally
isotropic subspaces is its Shilov’s boundary D̂. There is a one-to-one corre-
spondence between maximal subspaces and Hermitian unitary operators J in
H2,2 with the property that the scalar product (x|Jy) is positive definite on
H2,2. If J is such an operator, then the associated maximal positive subspace
is given by {z ∈ H2,2 : Jz = z}. Every such J is, in particular, an element
of SU(2, 2), therefore it acts on its Shilov’s boundary D̂. Acting on a given
element of D̂, it produces another element, its “J-antipode”. We will take
for J the operator described by the matrix G. It is then easy to see that in
terms of isotropic vectors E4,2 the corresponding action consists of flipping
the signs of two coordinates: (x, t, x5, x6) �→ (x,−t, x5,−x6). In other words
– it corresponds to the action of the matrix Q – cf. (29).

The geometrical idea described above, when implemented, leads to the
following Proposition 2.

Proposition 2. Let x be a point in M, x = (x0,x), let X = τ(x) be its image in
E4,2, as in Eq. (9), and let Y ′ = QX be its antipode. Let Y = Y ′/(2〈X,Y ′〉),
so that 2〈X,Y 〉 = 1. Let X̂ = X1Γ1 + . . . + X6Γ6 be the image of X in

Cl4,2, and similarly for Ŷ = Y 1Γ1 + . . . + Y 6Γ6. Then P = Ŷ ◦ X̂ is an
idempotent in the space L(H2,2) of linear operators of H2,2, whose kernel is

18For more information cf. [39] and references therein.
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a maximal totally isotropic subspace of H2,2 consisting of vectors of the form
( Uv

v ) , where U is the unitary matrix given by Eq. (5).

Proof. The proof follows by a straightforward though lengthy direct calcula-
tion. �

8. Flat Conformal Structures

While the present paper concentrates on the Minkowski space, the results
apply also to tangent space structures in more general case – they may also
apply to conformally flat manifolds. In this section we will introduce the main
concepts needed for such an extension and show that the embedding τ given
by Eq. 9 of section 3.1 can be understood geometrically by the conformal
development with respect to the normal Cartan connection.

8.1. The bundle P 2(M)
Let M be a smooth n-dimensional manifold. Two maps from open neighbor-
hoods of the origin 0 ∈ Rn to M define the same 2-jet at 0 if and only if their
partial derivatives up to the second order coincide. The 2-jet determined by
such a map e is denoted j20(e). If e is a diffeomorphism, then j20(e) is called a
second order frame at the point p = e(0). The set of all second-order frames
is denoted by P 2(M).19

Let (xμ) be a local chart of M , and let (ta) be the standard coordi-
nates on Rn. Given j20(e) such that p is in the domain of the chart, a set of
coordinates of j20(e) is defined by:⎧⎪⎨

⎪⎩
eμ

.= xμ(p)
eμa

.= ∂(x◦e)μ
∂ta |t=0

eμab
.= ∂2(x◦e)μ

∂ta∂tb
|t=0

If (xμ) is replaced by (xμ′), the coordinates of j20(e) change:⎧⎪⎨
⎪⎩

eμ′ = xμ′(p)
eμ′a = ∂xμ′

∂xμ (p)eμa
eμ′ab = ∂xμ′

∂xμ (p)eμab + ∂2xμ′
∂xμxν e

μ
ae

ν
b

It follows that eμa may be considered as an ordinary (i.e., first order) frame at
p. A natural projection P 2(M) → P 1(M) exists, and is given by j20(e) �→ j10(e)
or, in coordinates, by (eμ, eμa, e

μ
ab) �→ (eμ, eμa). A simple interpretation can

be given to eμab. First notice that the matrix eμa is always invertible. Let
eaμ denote the inverse matrix, so that we have eμae

a
ν = δμν and eaμe

μ
b = δab .

Define “connection coordinates of e” by

eμρσ
.= −erρe

s
σe

μ
rs.

It follows from the transformation properties of the coordinates of e above
that eμρσ transform as connection coefficients at p. Therefore each section of

19For a somewhat different version cf. also [23, pp. 138-152]
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P 2(M) determines a pair: a section of P 1(M) (i.e., a frame) and a torsion-free
affine connection on M , the correspondence being bijective. In particular, if
P 1(M) is reduced to the orthogonal or pseudo-orthogonal group, the Hilbert-
Palatini principle for General Relativity can be considered as a functional on
the space of sections of P 2(M). Also notice that the diffeomorphisms group
of M acts on P 2(M) and on the space of its sections in a natural way. If
e is a map from an open neighborhood of the origin 0 ∈ Rn to M , and
if φ : M → M is a local diffeomorphism defined at p = e(0), then φ ◦ e is
another map from an open neighborhood of the origin 0 ∈ Rn to M. If e1 and
e2 define the same second order frame: j20(e1) = j20(e2), then the composed
maps define the same second order frame as well: j20(φ ◦ e1) = j20(φ ◦ e2).

8.2. The structure group G2(n)

Let G2(n) denote the set of all second-order frames at 0 ∈ Rn. G2(n) is a
group with the group multiplication law given by j20(h)j20(k) .= j20(h ◦ k).
The group G2(n) acts on P 2(M) from the right j20(e)j20(h) .= j20(e ◦ h).
Corresponding to the canonical coordinates in Rn, there are natural coor-
dinates in G2(n): (ha

b, h
a
bc), and each j20(h) can be uniquely represented

by the map Rn → Rn given by ta �→ ha
rt

r + 1
2h

a
rst

rts. In terms of nat-
ural coordinates the group composition law in G2(n) can be written as
(ha

b, h
a
bc)(k

a
b, k

a
bc) = (ha

rk
r
b, h

a
rsk

r
bk

s
c +ha

rk
r
bc). While the group G2(n)

acts on P 2(M) from the right, and P 2(M) is a principal bundle over M with
G2(n) as its structure group, the group Diff(M) of diffeomorphisms of M
acts on P 2(M) from the left, by fibre preserving transformations, commuting
with the right action of G2(n) – thus as an automorphism group of P 2(M).
An affine connection can be considered as a section of a bundle associated to
P 2(M) via an appropriate representation of G2(n) by affine transformations.

8.3. Reduction of P 2(M) induced by a conformal structure

Let now M be an orientable and oriented n-dimensional differentiable mani-
fold. Let GL+(n) be the group of n×n real matrices of positive determinant.
We denote by TM the tangent bundle of M, and by F+ the GL+(n) principal
bundle of oriented linear frames of M. We denote by Λn

+ the bundle of ori-
ented non-vanishing n-vectors. Λn

+ is, in a natural way, a principal R+ bundle.
Given a real number w, let V w be the bundle associated to F+ via the repre-
sentation ρw of GL+(n) on R defined by ρw : GL+(n) � A �→ det(A)−w ∈ R.
Since any oriented frame e defines an oriented n-vector e1 ∧ . . . ∧ en, it fol-
lows that V w can be also considered as the bundle associated to Λn

+ via the
representation R+ � x �→ xwR.

Cross-sections of V w are called densities of weight w. In what follows
we will use the “hat” symbol ˆ to distinguish densities from tensorial objects
of weight w = 0. If e = {ei, i = 1, . . . , n} is a frame at p, and if φ̂ is an
element in the fibre V r

p , then we denote by φ̂[e] the real number representing
φ̂ with respect to the frame e. We write φ̂ > 0 if φ̂[e] > 0 for some (and thus
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for every) oriented frame. It follows from the very definition of the associated
bundle that if A ∈ GL+(n), then φ̂[eA] = det[A]wφ̂[e].

Let r, s be a pair of real numbers, and let φ̂, ψ̂ be positive densities
of weight w = r and w = s respectively. Then (φ̂ψ̂)[e] = φ̂[e]ψ̂[e] defines a
density of weight w = r + s, while φ̂s[e] = φ̂[e]s defines a density of weight
w = rs.

Let xμ, μ = 1, . . . n be a local coordinate system on M, and let ∂μ
be the basis made of vectors tangent to the coordinate lines. Then a cross-
section φ̂ of V w is represented by a real-valued function φ̂(x). When the
local coordinate system changes to another one, xμ′

, then the coordinate
bases changes accordingly: ∂μ′ = ∂xμ

∂xμ′ ∂μ, and the corresponding numerical
representation of φ̂ changes as follows: φ̂′(x′) = |∂x′

∂x |−w φ̂(x), where |∂x′
∂x | is

the Jacobian of the coordinate transformation.
By taking tensor products of tensor bundles with the line bundle V w

we can define, in an obvious way, tensor densities of weight w.

Although much of what will follow is true in a general case of an ar-
bitrary (pseudo-)Riemannian manifold, we will assume in the following that
we are dealing with the signature (n− 1, 1), that our manifold M is oriented
and time-oriented, and that all our local coordinate systems have positive
orientation and time-orientation.

Let ηij = diag (1, . . . 1,−1, . . . ,−1), (signature (p, q)) and let O(η) be
the subgroup of GL(n) consisting of matrices Λ = (Λi j) ∈ GL(n) such that
ΛtηΛ = η, det Λ = 1, and let SO0(η) be the connected component of the
identity in O(η). By a (pseudo-) Riemannian structure on M we will mean a
reduction of the GL(n) principal bundle of the linear frames of M to SO0(η).

There are several equivalent ways of defining a conformal structure on
M. Probably the most intuitive way is to define it as “a Riemannian metric
up to a scale”. Let g and g̃ be two metrics of M. Then g and g̃ are said to
be conformally related if there exists a positive function φ̂ on M such that
g̃(p) = φ̂(p)g(p) for all p ∈ M. Being “conformally related” is, in fact, an
equivalence relation, so that we can define a conformal structure on M as the
equivalence class consisting of conformally related metrics.

Let C be a conformal structure on M. For any g ∈ C, given a local
coordinate system xμ, we can define |g| to be the absolute value of the de-
terminant det gμν , where gμν = g(∂μ, ∂ν). Then from the transformation law:
gμ′ν′ = ∂xμ

∂xμ′
∂xν

∂xν′ gμν we find that |g′| = | ∂x∂x′ |2 |g|, so that |g| is a scalar density
of weight −2. Let us define γμν = gμν

|g|1/n . Then det γμν = −1, γμν is a sym-
metric tensor density of weight −2/n, and γμν is independent of the choice of
the representative gμν in the conformal class C. In other words: a conformal
structure is uniquely characterized by a symmetric tensor density of weight
−2/n, and signature (p, q).

Let T M be the vector bundle of vector densities of weight w = 1/n.
Then, for any two vectors û, v̂ ∈ TpM the number (û, v̂) = γμν û

μv̂ν is in-
dependent of the local coordinate system at p – it defines a bilinear form of
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signature (p, q) on T M. This bilinear form characterizes uniquely the confor-
mal structure C.

Let a conformal structure C be given on M. A general torsion-free affine
connection which preserves C is of the form

Γα
βγ = Γ̂α

βγ +
(
δαβ pγ + δαγ pβ − γβγγ

αρpρ
)
,

where Γ̂α
βγ = 1

2 (∂βγγρ + ∂γγβρ − ∂ργβγ) , and γμν is the inverse matrix of
γμν . Therefore P 2(M) can be reduced to P 2

C(M) defined as consisting of
second-order frames e such that eμa are conformal frames and eμρσ are the
coefficients of conformal connections. It is easy to see that the structure group
H of P 2

C(M) is a subgroup of G2(n) consisting of pairs (ha
b, h

a
bc), with

ha
b ∈ CO0(η), and ha

bc = ha
r (δrbvc + δrcvb − ηbcη

rsvs) , where CO0(η) =
SO0(η) ×R+, v = (va) ∈ Rn∗. It follows that H is isomorphic to the semi-
direct product CO0(η) �Rn∗ with the multiplication law

(ha
b, va) (kab, wa) = (ha

rk
r
b, vrk

r
a + wa) ,

where ha
b = exp(σ)Λa

b, with exp(σ) ∈ R+ and Λ ∈ SO0(η). With (ha
b, va)

written as (θ,Λa
b, va), one can easily verify that the following formula defines

a representation R of H on Rn+2 = Rn ⊕R2 :

R(θ,Λ, v) =

(
Λr

s ηrsvs ηrsvs
−vr
θ

1+θ2−v2

2θ − 1−θ2+v2

2θ

vr
θ − 1−θ2−v2

1θ
1+θ2+v2

2θ

)
.

With S =
(

η 0 0
0 1 0
0 0 −1

)
we then have R(θ,Λ, v)tSR(θ,Λ, v) = S, therefore the

representation R realizes H as a subgroup of the group G = SO0(p+1, q+1).
The part of G that is missing in H is the translation group given by the
following SO0(p + 1, q + 1) matrices T (a), a ∈ Rn :

T (a) =
(

δrs −ar ar

ηrsa
s 1−a2/2 a2/2

ηrsa
s −a2/2 1+a2/2

)
, (32)

- Cf. section 5.2. The Lie algebra generators so(p + 1, q + 1) take now the
following form:

D =
dD(exp(σ), E, 0)

dσ
|σ=0 =

(
0 0 0
0 0 1
0 1 0

)
,

1
2
ωr

sM
s
r =

(
0 0 0
0 ωr

s 0
0 0 0

)

vrK
r =

(
0 ηrsvs ηrsvs
−vr 0 0
vr 0 0

)
, wrPr =

(
0 −wr wr

ηrsw
s 0 0

ηrsw
s 0 0

)
.

8.4. The enlarged conformal bundle and the normal Cartan connection

With H being a subgroup of G, as above, we can build now the associated
bundle P̃ 2

C(M) = P 2
C(M)×HG, which is a principal G-bundle (cf. e.g., [40, p.

4] and references therein). If n = p+ q ≥ 3, then this new bundle is naturally
equipped with a principal connection, the normal Cartan connection, which
can be described as follows.

Let g be a metric in the conformal class C, let ea be a (local) orthonormal
frame of g, and R its curvature tensor. Then, in a coordinate system xμ,
the covariant derivative ∇μZ of a section Z of the associated vector bundle
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P̃ ×R Ep+1,q+1 is given by the following expression - cf. e.g., [38, Ch. 4.4],
[40, p. 14], [23, p. 196]:

∇μZ = ∂μZ + ΓμZ,

with Γμ = 1
2Γr

μsM
s
r + 1

n−2

(
Rμσ − 1

2(n−1)Rgμσ

)
Kσ − Pμ, where Kμ = eμr ,

and Pμ = erμPr.

In a natural way we can then build the associate bundle P̃ ×GEp+1,q+1

with Ep+1,q+1 as a typical fibre, and we can construct the projective quadric
M̃x at each point x ∈ M.

Now, suppose M is connected and simply connected and the conformal
structure is flat. In this case we can choose (cf. [38, Ch. I.2]) gμν = ημν . The
covariant derivative ∇μZ reduces in this case to ∇μZ = ∂μZ − PμZ. In an
adapted coordinate system xμ we choose the “origin” of the “compactified
tangent space” to correspond to the point (0, 1

2 ,−
1
2 ) of Ep+1,q+1. Connecting

the point x ∈ M with 0 ∈ M by the path x(t) = (1 − t)x we can then
transport parallely the origin (0, 1

2 ,−
1
2 ) at x to the point 0 ∈ M. The parallel

transport rule gives us 0 = DZ(x(t))/dt = dZ(x(t))/dt−dxμ/dtPμZ(x(x(t)),
or, in our case, dZ/dt = −xμPμZ, which solves to Z(1) = exp(xμPμ)Z(0),
or, applying Eq. (32): Z(1) = (x, (1− x2)/2),−(1 + x2)/2), which is nothing
but the standard embedding (9).

9. Concluding Remarks

This paper has provided a mathematical analysis of algebraic and geometri-
cal aspects of the Minkowski space compactification. Some omissions, faulty
reasoning and lack of precision in the existing literature dealing with this
subject has been pointed out and analyzed in some detail. In addition to the
standard compactification by adding a “light cone and a 2-sphere at infinity”
also its double covering isomorphic to U(1) × SU(2) has been discussed. A
pictorial representation has been proposed and the corresponding “Penrose
diagrams” have been derived. The role of the conformal inversion and the
representation of null geodesics has been touched upon as well. Applications
to flat conformal structures, including the normal Cartan connection and
conformal development has been discussed in some detail.
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Appendix

A. Killing Vector Fields for the Left Action of U(2) on Itself

A.1 The Problem

We take the group U(2) in the standard matrix form. It has the manifold
structure of (S1 × S3)/Z2 – the same as the compactified Minkowski space.

Now, let ω be the Maurer-Cartan form of U(2), a 2 × 2 matrix of one-
forms. Taking the determinant of ω with understanding that the multiplica-
tion of one-forms is to be understood as a symmetrized tensor product, we
obtain a symmetric bilinear form g = det(ω). This form is non-degenerate
of Lorentzian signature and is conformal to the flat Minkowski metric under
the standard identification of U(2) as the compactification of the Minkowski
space M . The metric g obtained this way is, by its very construction, invari-
ant under the left action of U(2) on itself. Therefore the left action of U(2)
on itself leads to conformal transformations of M.

Precisely which subgroup of the conformal group corresponds to this
left action of U(2) on itself?

A.2 The solution

It is well known that the group SU(2, 2) acts by conformal automorphisms on
the compactified Minkowski space (see e.g., [9]). The group U(2, 2) consists of
block matrices ( A B

C D ) with entries A,B,C,D which are 2×2 complex matrices
satisfying the relations A∗A−C∗C = D∗D−B∗B = E and A∗B−C∗D = 0.
Its action on U(2) is given by the fractional linear transformations:

U �→ U ′ = (AU + B)(CU + D)−1, (33)

with CU + D being automatically invertible for U ∈ U(2). By specifying
B = C = 0, D = E, we see that A is in U(2). Therefore the left action of
U(2) on itself is a particular case of the linear fractional transformations as
above.

In order to describe these transformations in the Minkowski space, we
can use the Cayley transform as in [1]. Or, we can invert Cayley-transform the
matrices of U(2, 2) and act on the Minkowski space represented by hermitian
2 × 2 matrices in the standard form: X = xμσμ, where σ0 = ( 1 0

0 1 ) , σ1 =
( 0 1
1 0 ) , σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. The action of U(2, 2) is still described by

fractional linear transformations

X �→ X ′ = (RX + S)(TX + Q)−1, (34)

where (cf. [22, (2.16)]) A = 1
2 (R+iS−iT+Q), B = 1

2 (−R+iS+iT+Q), C =
1
2 (−R−iS−iT+Q), D = 1

2 (R−iS+iT+Q). With B = C = 0 and D = E we
easily find that R = 1

2 (A+E), Q = 1
2 (A+E), S = −i 12 (A−E), T = i 12 (A−E).

Consider now a one-parameter subgroup A(τ) of U(2). By differentiating the
equation X(τ) = (R(τ)X + S(τ))(T (τ)X + Q(τ))−1 at τ = 0, and putting
A(0) = E, Ȧ(0) = iσ we obtain: Ẋ = i

2 (σX−Xσ)+ 1
2σ+ 1

2XσX. Denoting by
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Zμ the vector fields corresponding to σ = σμ we easily find their components
using the simple algebra: (Zμ)ν = 1

2 tr(Ẋσν). The result is as follows:

Z0 =
1
2
(
1 + t2 + x2 + y2 + z2

)
∂t + t(x∂x + y∂y + z∂z),

Z1 = tx ∂t +
1
2
(
1 + t2 + x2 − y2 − z2

)
∂x + (xy + z)∂y + (xz − y)∂z

Z2 = ty ∂t + (xy − z)∂x +
1
2
(
1 + t2 − x2 + y2 − z2

)
∂y + (xz + y)∂z

Z3 = tz ∂t + (xz + y)∂x + (yz − x)∂y +
1
2
(
1 + t2 − x2 − y2 + z2

)
∂z.

We can now compare these vector fields with the formulas for the standard
generators Pμ, Kμ, Mμν of the conformal group as given, for instance, in [41]:

Pμ = −∂μ, Mμν = xμ∂ν − xν∂μ, Kμ = −2xμ(xν∂ν) + x2∂μ.

By an easy calculation we find: Z0 = 1
2 (K0 + P0), Zi = 1

2 (Ki − Pi) +
Li, (i = 1, 2, 3), where Li = εijkMjk.
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