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Some Comments on Projective Quadrics
Subordinate to Pseudo-Hermitian Spaces

Arkadiusz Jadczyk

Abstract. We study in some detail the structure of the projective quadric
Q′ obtained by taking the quotient of the isotropic cone in a standard
pseudo-hermitian space Hp,q with respect to the positive real numbers

R
+ and, further, by taking the quotient Q̃ = Q′/U(1). The case of sig-

nature (1, 1) serves as an illustration. Q̃ is studied as a compactification
of R×Hp−1,q−1
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1. Introduction

This note is a result of a discussion with Pierre Anglès of the reasoning in
[1, pp. 209-212]. Pierre Anglès subsequently published a corrected derivation
[2], which gives, by a different method, the results presented below. The
comments below contain the material referred to as Comments on projective
quadrics subordinate to pseudo-Hermitian spaces in the References section
of [2]. In their extremely clear paper [3] Woronowicz and Kopczyński have
explicitly shown the one-to-one correspondence between null geodesics in the
compactified Minkowski space M̃ and isotropic lines in the pseudo-hermitian
space V ≈ H2,2. Below we study this correspondence for a general case of
signature (p, q).

Let C be the field of complex numbers, and let C∗ be the multiplicative
group of complex numbers different from zero. Using the polar decomposition
we can write C∗ = R

+×U(1), where R+ is the multiplicative group of positive
real numbers and U(1) is the circle group.

Let V be a complex vector space of finite dimension n, equipped with a
regular pseudo-hermitian form (x, y) of signature (p, q), p + q = n, p, q ≥ 1,
and let Q be the isotropic cone minus the origin:

Q = {x ∈ V : (x, x) = 0, x �= 0}.
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Q is a real manifold of (real) dimension 2n − 1, and we denote by Q̃ the
quotient manifold Q̃ = Q/C∗. Its elements are the equivalence classes: Q̃ =
{{cx : c ∈ C

∗}, x ∈ Q}. Q̃ is a real submanifold of the complex projective
space P (V ). We denote by P the canonical projection P : V → P (V ).
The projection P can be implemented in two steps: first taking the quotient
with respect to R

+ to obtain Q′ = Q/R+, then quotienting Q′ by U(1) to
obtain Q̃. We denote the corresponding projections P ′ and π respectively.
Thus we have P = π ◦ P ′, and Q̃ = Q′/U(1). Q′ and Q̃ are real compact
manifolds of dimensions 2n− 2 and 2n− 3 respectively.1

Let TxQ be the tangent space at x ∈ Q. Then TxQ can be identified with
a real vector subspace of V as follows. If R � t �→ x(t) ∈ Q is a path with
x(0) = x, then (x(t), x(t)) = 0 ∀t. Denoting by X = dx(t)

dt |t=0 the tangent
vector at x, and using the Leibniz rule, we get (X,x) + (x,X) = 0, or

X ∈ TxQ if and only if Re((X,x)) = 0).

Let TC
x Q = x⊥ be the subspace of TxQ defined by the condition (X,x) = 0.

Then TC
x Q is a hyperplane in TxQ. In fact, while TxQ is only a real vector

space, TC
x Q carries the structure of a complex space.

Let ηjk be the diagonal matrix ηjk = δjk for j, k = 1, . . . , p, ηjk = −δjk for
j, k = p+1, . . . , p+q. Let Hp,q be the standard pseudo-hermitian space C

p+q

equipped with the scalar product

f(u, v) =
n∑

j,k=1

ηjk u
j v̄k.

Hp,q is the direct sum of two subspaces Hp,q = H+
p,q⊕H−

p,q spanned by the first
p (resp. last q) vectors of the standard basis. Every orthonormal basis {ej},
(ej , ek) = ηjk in V determines an isometry φe : Hp,q → V and determines
an orthogonal direct sum decomposition V = φe(H+

p,q) ⊕ φe(H−
p,q) into a

positive and a negative subspace. We call such a decomposition a “split”.
We denote by S the set of all splits of V. Then S is a homogeneous space
(in fact, it is a Kähler manifold) for the unitary group U(V ), isomorphic to
U(p, q)/(U(p) × U(q)).

1.1. The topology of Q′ = P ′(Q)
Let {ej} be an orthonormal basis in V, so that we can identify V with Hp,q.
The equation of Q becomes then

p∑
j=1

|zj |2 =
p+q∑

j=p+1

|zj |2 �= 0.

Consider the submanifold S1 of Hp,q defined by the formula
p∑

j=1

|zj |2 =
p+q∑

j=p+1

|zj |2 = 1. (1)

1In fact, we will see that Q′ is diffeomorphic to the product of two odd-dimensional spheres
S2p−1 × S2q−1.
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Then S1 is the product of two spheres S1 = S2p−1×S2q−1 and the projection
P ′ restricted to S1 is a diffeomorphism from S1 to Q′ = P ′(Q). The repre-
sentation of Q′ as a product of two spheres will, in general, depend on the
choice of the orthonormal basis, more specifically: on the split determined by
the basis.
Somewhat more generally, let s ∈ S be a split, so that V is decomposed into
a direct (orthogonal) sum V = V+ ⊕ V− of positive and negative subspaces.
Defining ‖x‖ = (x, x) on V+, and ‖x‖ = −(x, x) on V−, each isotropic vector
x ∈ Q decomposes into a sum x = x+ + x−, with x+ ∈ V+, x− ∈ V−,
and ‖x+‖ = ‖x−‖ = R(x) > 0. Rescaling x �→ x/R(x) we get the unique
representative of the equivalence class R

+x of x with R(x) = 1. In other
words, if we define

Qs = {x ∈ Q : ‖x+‖ = ‖x−‖ = 1},
then Qs defines a global cross section of the projection P ′ : Q → Q′, and
a diffeomorphism of Q′ onto the product of the two unit spheres, one in V+

and one in V−.

1.2. The conformal structure of Q′

Let a be a point of Q′ and let x be an isotropic vector in Q with P (x) = a.
The tangent space TxQ is equipped with the (real) bilinear form fx(X,Y ) =
Re((X,Y )). Notice that the vector x itself can be considered as an element
of TxQ, and that the line Rx is the radical of the bilinear form fx, and is the
kernel of the tangent map (dP ′)x :

R = {y ∈ TxQ : fx(y, z) = 0 ∀z ∈ TxQ} = {y ∈ TxQ : (dP ′)x(y) = 0}.
It follows that the form fx induces a regular bilinear form, which we denote
gx on the tangent space TaQ

′.

Lemma 1. With the notation as above, if λ > 0 then gλx = λ2gx.

Proof. Let a1(t), a2(t), a1(0) = a2(0) = a, be two paths in Q′ with tangent
vectors ȧ1(0) and ȧ2(0) respectively. Let x1, x2 be the lifts: P ′(x1(t)) = a1(t),
P ′(x2(t)) = a2(t), x1(0) = x2(0) = x. Then, according to the definition of
gx, we have that2

gx(ȧ1(0), ȧ2(0)) = fx(ẋ1(0), ẋ2(0)).

Let λ > 0, then x′
1(t) = λx1(t) and x′

2(t) = λx2(t) are lifts through λx of
a1(t) and a2(t) respectively, with tangent vectors λẋ1, λẋ2. Thus

gλx(ȧ1(0), ȧ2(0)) = λ2gx(ȧ1(0), ȧ2(0)). �

2Notice that this expression does not depend on the choice of the lifts, the reason being

that vectors tangent to two lifts will differ by vectors in the kernel of (dP ′)x, that is in Rx,
which is orthogonal to all vectors in TxQ.
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It follows from the above lemma that what is independent of the choice
of x in P ′−1(a) is the conformal class of gx and, in particular, the signature,
which, by construction, is (2p− 1, 2q − 1). 3

In order to proceed further on notice that we have the following, easy
to prove, lemma:

Lemma 2. Given a vector x ∈ Q there exists an orthonormal basis e such
that x = e1 + en.

Proof. Take any orthonormal basis {e′i}. The vector x′ = e′1 + e′n is isotropic.
We know that the automorphism group of V acts transitively on isotropic
lines (see e.g., [4, p. 74, Corollaire 2]). Let U be any automorphism of V with
the property x = Ux′, and let ei = Ue′i. Then {ei} is an orthonormal basis
of V and x = e1 + en. �

Each tangent space Tx(Q) is also equipped with a skew-symmetric bi-
linear form Fx defined by

Fx(X,Y ) = Im(X,Y ), X, Y ∈ Tx(Q).

However the form Fx does not descend to the quotient Q′ = Q/Rx because,
owing to the fact that, for instance, ie1 is in Tx(Q) but Fs(x, ie1) = 1, we
find that x is not in the radical of Fx. But Fx, when restricted to x⊥, does
descend to a skew-symmetric bilinear form on (dP ′)x(x⊥).
Because of the lemma above it is instructive to consider first the case of
p = 1, q = 1.

1.3. The case of the signature (1, 1)
With x ∈ Q, let (e1, e2) be the orthonormal basis (e1, e1) = 1, (e2, e2) = −1,
with x = e1 + e2, and let {f1, f2, f3, f4} be defined as f1 = e1 + e2 = x, f2 =
i(e1 + e2), f3 = i(e1 − e2), f4 = (e1 − e2). The tangent space TxQ is spanned
by the vectors {f1, f2, f3}, the complex orthogonal space x⊥ is spanned by
the vectors {f1, f2}. Let a = P ′(x). Notice that (dP ′)x(f1) = 0, while (dP ′)x
is a bijection from the plane spanned by {f2, f3} onto TaQ

′. Denoting ε1 =
(dP ′)x(ie1), ε2 = (dP ′)x(ie2), the vectors ε1, ε2 form an orthonormal basis in
TaQ

′ for the induced bilinear form gx :

gx(ε1, ε1) = −gx(ε2, ε2) = 1, gx(ε1, ε2) = 0.

Q′ is now the torus S1 × S1 given by the formula (1), now becoming:

|z1|2 = |z2|2 = 1.

Writing z1 = cos(φ1)+i sin(φ1), z2 = cos(φ2)+i sin(φ2), the pseudo Rieman-
nian metric gx of Q′, when expressed in the natural torus coordinates φ1, φ2 is
diagonal gx = diag(1,−1). The action z �→ exp(iφ)z of U(1) on Q translates
to the action (φ1, φ2) �→ (φ1 + φ, φ2 + φ) on the torus. The tangent vector to

3The fact that the conformal class of the induced metric on Qs does not depend on the
choice of the split s is by no means evident if the two induced metrics are computed
using two different orthonormal bases related by a general U(p, q) transformation and then
compared.
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the orbit of this action at x is f2 that projects onto ε1 + ε2 at TaQ
′. Taking

the quotient of Q′ by this action we get Q̃ as the circle Q̃ = Q/Cx = S1.
The image of x⊥ = Cx by (dP )x consists of one point - the zero vector. Since
ε1 + ε2 is a null vector for the metric gx, there is no distinguished subspace
transversal to the fiber, therefore no metric whatsoever is generated by dP
on Q̃.

1.4. The structure of Q̃

Given a split s ∈ S, let V = V+ ⊕ V− be the corresponding decomposition
V. Every vector x ∈ Q can be then uniquely represented as x = x+ + x−, so
that (x+, x+) = (x−, x−). With

Qs = {x ∈ Q : (x+, x+) = (x−, x−) = 1},
the map P : Q → Q′, when restricted to Qs, becomes a diffeomorphism.
The U(1) action x �→ cx, |c| = 1 leaves Qs invariant. (Q′, π) is a U(1)
principal fibre bundle over Q̃. Given a split s, Q′ is endowed with the pseudo-
Riemannian metric gs that is automatically U(1)-invariant.
Given a non-degenerate pseudo-Riemannian metric on a principal bundle,
the standard method of obtaining the metric on the base space is by taking
the orthogonal complement to the fibers. This method works when the or-
thogonal complement is transversal to the fibers. Yet in our case the vectors
tangent to the fibers are isotropic, therefore the orthogonal complement is
not transversal to the fibers. Nevertheless, we can obtain a natural, though
degenerate, scalar product g on the cotangent bundle of Q̃. as follows:

Let S be as split, let a ∈ Q̃, and let ω, ω′ be two one-forms in the cotan-
gent space T ∗

a Q̃. Let b ∈ Q′ be a point in the fibre π−1(a). The pullbacks
π∗ω, π∗ω′ are invariant one-forms defined at the points of the fibre π−1(a).
We can therefore calculate the scalar product g∗x(π∗ω, π∗ω′), at any point of
the fibre, and, owing to the fact that the forms and the metric are invariant,
the result is independent of the chosen point. Since the scalar products corre-
sponding to different choices of x differ only by a scale factor, the same is true
about the induced contravariant symmetric scalar product on the cotangent
bundle of Q̃. The scalar product so obtained is degenerate. Indeed, any form
that vanishes on the image (dP ′)x(x⊥) is in the radical of g∗x.

There is another way of looking at this construction.
Let W1 be a subspace of a real vector space W, and let f1 be a non-degenerate
symmetric bilinear form on W1. Let ι : W1 → W be the canonical inclusion
map, and let ι∗ : W ∗ → W ∗

1 be its dual. The bilinear form f1 can be consid-
ered as a map f1 : W1 → W ∗

1 , and, since we assume it to be non-degenerate,
there exists the inverse f∗

1 : W ∗
1 → W1. We can then define f∗ : W ∗ → W by

f∗ = ι ◦ f∗
1 ◦ ι∗.

The map f∗ can now be considered as a bilinear form on W ∗ and it is easy
to see that, by construction, it is symmetric. Moreover, its radical consists of
the forms ω ∈ W ∗ that vanish on the image ι(W1).
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1.5. Q̃ as a compactification of R×Hp−1,q−1

Let a, b ∈ Q̃.

Definition 1. We write a ⊥ b if and only if a = P (x), b = P (y), where
x, y ∈ Q, and (x, y) = 0. Given a ∈ Q̃ we define

a⊥ = {b ∈ Q̃ : a ⊥ b.}.
It can be seen that a⊥ is a closed subset of Q̃.
Let us fix a ∈ Q̃, and let x ∈ Q be such that P (x) = a. We recall that
x⊥ is a complex vector subspace of V that carries a degenerate sesquilinear
form inherited from the scalar product of V, with radical Cx. Therefore the
quotient space

M
df= x⊥/Cx

carries the pseudo-Hermitian form of signature (p− 1, q − 1). We can realize
M as follows: choose u ∈ Q such that (u, x) = 1. 4 Let Mu be the orthogonal
complement of {x, u} in V. Then the scalar product of V restricted to Mu is
of signature (p − 1, q − 1), we evidently have Mu ⊂ x⊥, and the projection
x⊥ → x⊥/Cx restricted to Mu is easily seen to be a bijection.
We will construct now a bijection κ from R×Mu onto Q̃ \ a⊥ ⊂ Q̃.
Given r ∈ R, y ∈ Mu define

κ0(r, y) = y + u +
(
−1

2
(y, y) + ri

)
x.

Notice that the coefficient in front of x has the imaginary part r. It is easy
to see that, automatically, κ0(r, y) ∈ Q and also (x, κ0(r, y)) = 1.
We define now κ = P ◦ κ0. It is easy to check that κ is injective. It remains
to show that it is a surjection from R×Mu onto Q̃ \ a⊥. Given b ∈ Q̃ \ a⊥,
let z′ be any point in P−1(b). Then, since b is not in a⊥, we have that
(z′, x) = a �= 0. Taking z = z′/a, we still have P (z) = b, but now (z, x) = 1.
Now, z can be uniquely written in the form z = y +αu+ βx, where y ∈ Mu,
α, β ∈ C. From (z, x) = 1 we find that α = 1, and from (z, z) = 0 we get that
Re(β) = − 1

2 (y, y). Putting r = Im(β) we get b = κ(r, y).

1.5.1. The structure of a⊥.

Proposition 1. With the notation as above,

a⊥ ∼= {1} ∪ R× (Sp−2 × Sq−2)/S1.

Proof. Let {ej} be an orthonormal basis such that x = e1 + en. Then any
vector y ∈ x⊥ is of the form

y = αx +
n−1∑
i=2

αjej .

4Such a choice is always possible, for instance, by using Lemma 2, we can set x = e1 + en,
u = (e1 − en)/2.
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Such a vector y is in Q if and only if
∑p

j=2 |αj |2 =
∑n−1

j=p+1 |αj |2. If all αj are
zero, then, necessarily, α �= 0, and we can choose a unique representative of
the equivalence class with α = 1. This give s the point {1}. If at least one of
the αj is non-zero, then

∑p
j=2 |αj |2 =

∑n−1
j=p+1 |αj |2 �= 0 and we can use the

freedom of real scaling to get
∑p

j=2 |αj |2 =
∑n−1

j=p+1 |αj |2 = 1. The remaining
freedom of U(1) gives us (Sp−2 × Sq−2)/S1. The α coefficient remains still
arbitrary, thus the result follows. �
Acknowledgements

The author wants to express all his thanks to Pierre Anglès for a fruitful and
constructive discussion.

References

[1] Pierre Anglès, Conformal Groups in Geometry and Spin Structures. Birkhäu-
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