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Gravitation on a Homogeneous Domain

Arkadiusz Jadczyk

Abstract. Among all plastic deformations of the gravitational Lorentz
vacuum [1] a particular role is being played by conformal deformations.
These are conveniently described by using the homogeneous space for
the conformal group SU(2, 2)/S(U(2)× U(2)) and its Shilov boundary

- the compactified Minkowski space M̃ [2]. In this paper we review the
geometrical structure involved in such a description. In particular we
demonstrate that coherent states on the homogeneous Kähler domain
give rise to Einstein-like plastic conformal deformations when extended
to M̃ .
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1. Introduction

William Kingdon Clifford speculated [3, p. 22] that the curvature of space is
responsible for all motions of matter and fields - the idea that has been taken
over by Albert Einstein in his theory of gravitation, through with the extra
assumption of the weak equivalence and general covariance principles. P. A.
M. Dirac, originally impressed by General Relativity Theory, later on had his
doubts about the validity of general covariance, when the lessons of quantum
theory are taken into account. He tried to revive and reformulate the old idea
of aether [4]. The idea that an alternative to Einstein’s gravity is needed in
order to reconciliate, somehow, classical geometry with quantum theory is, at
least, an interesting one.1 In the present paper we study gravitational fields
that are space/time imprints of coherent quantum states on a homogeneous
complex domain for the conformal group. We start with the simplest toy
case of the Poincaré disk that is a homogeneous space for the group SU(1, 1).
It’s Shilov’s boundary - cf. [6] (and references therein) is just the unit circle,
which plays the role of the compactified Minkowski space in this case. Since
the circle is one–dimensional, Riemannian metrics on such a space are easy

1Another approach is that of noncommutative geometry [5]
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to describe - they are represented by positive functions on the circle. Using
Cayley’s transform the circle (minus one point) is mapped onto R. We study a
particular family of quadratic functions over R (a special family of parabolas)
and show that they are generated by coherent quantum states on the unit
disk. Then we move to the case of interest, namely the complex homogeneous
bounded domain D = SU(2, 2)/S(U(2) × U(2)) and study a particular class
(transitive under the action of SU(2, 2)) of coherent states on D. In this
case Shilov’s boundary of D is the compactified Minkowski space, and we
show that the imprints of these stats on the boundary can be interpreted as
gravitational fields in the conformal class of the Minkowski metric. In fact,
we show that what we get is a family of de Sitter type metrics.

2. The Space H
2

Consider the following 2–parameter family of parabolas:

yq,p(x) =
1
2

(
(x− q)2

p
+ p

)
, q ∈ R, p > 0. (1)

For each of the parabolas its focus is at (q, p) and the distance between the
minimum and the focus is the same as between the minimum and p = 0 axis.
Each of these parabolas represents a vector field on R :2

e(x; q, p) = yq,p(x). (2)

Let ω(x; q, p) be the 1–form dual to e(x; q, p), i.e. ω(x; q, p) = 1/e(x; q, p).
Then ω defines the metric

g = ω ⊗ ω =
4(

p + (x−q)2
p

)2 , (3)

whose volume form is ω. Its inverse is g−1 = 1
4

(
p + (x−q)2

p

)2
. Let h, k be two

vectors tangent to the space of (covariant) metrics. We define their scalar
product at g by the standard formula (cf. e.g. [7]): (h, k)g =

∫
R
g−1 h g−1 kω dx,

where we omit the trace.
From Eq. (3) we have

h = dg =
∂ g(x; q, p)

∂ q
dq +

∂ g(x; q, p)
∂ p

dp

=
8p

(
2p(x− q)dq +

(
q2 − p2 − 2qx + x2

))
dp

(q2 + p2 − 2qx + x2)3
.

We can now calculate the induced quadratic form (h, h)g =
∫
R
g−2 h2 ω dx.

2Because we are in one dimension, we will suppress covariant and contravariant indices.
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The integrand is (8(2p(x−q)dq+(q2−p2−2qx+x2)dp)2)/(p(q2 +p2−2qx+
x2)3), with the primitive function

−2
p

(
2δ(−dp(p− δ) + dq(p + δ))(dq(p− δ) + dp(p + δ))

(p2 + δ2)2

)

+
2
p

⎛
⎝2

(
dq2 + dp2

)
ArcTan

[
δ
p

]
p

⎞
⎠ ,

where we put δ = x − q, and the integral from −∞ to +∞ gives (only the

second term contributes) (h, h)g =
4(dq2+dp2)π

p2 , which is, up to a constant
proportionality factor, the standard Bolyai-Lobachevsky hyperbolic metric
on the upper (q, p) half–plane.

2.1. The group SL(2,R)
Let us first recall some classical facts. We denote by H

2 the upper half–plane

H
2 = {z = q + ip : q ∈ R, p > 0}. (4)

The group SL(2,R) of 2 × 2 real matrices of determinant 1 acts on H
2 by

fractional–linear transformations. For a matrix A =
(
a b
c d

)
we denote by σA

the transformation σA : z �→ σA(z) = az+b
cz+d . Then, with A ∈ SL(2,R) and

z = q + ip we have

Re (σA(z)) =
bd− q + 2adq + ac

(
q2 + p2

)
d2 + 2cdq + c2 (q2 + p2)

, (5)

Im (σA(z)) =
p

d2 + 2cdq + c2 (q2 + p2)
. (6)

In particular Im (σA(z)) > 0 if p > 0. The Jacobian matrix JA(q, p) =
∂ σA(q+ip)

∂ (q,p) implementing the tangent map dσA at z is given by:

JA(q, p) = mA(q, p)
((
d2 + 2cdq + c2

(
q2 − p2

))
2c(d + cq)p

−2c(d + cq)p
(
d2 + 2cdq + c2

(
q2 − p2

))) ,

where mA(q, p) = ad−bc
(d2+2cdq+c2(q2+p2))2 . Let

G(q, p) =
1
p2 ( 1 0

0 1 ) (7)

be the standard hyperbolic metric on H
2. Then, for A ∈ SL(2,R), by a

straightforward calculation,

tJA(q, p)G(σA(z))JA(q, p) =
1

Im2(σA(z))
tJA(q, p)JA(q, p) =

1
p2 I = G(q, p),

(8)
so that G is invariant under SL(2,R) transformations.

The group action of SL(2,R) extends to the real line (except for a
possible singular point if cx+ d = 0), which we will also denote by the letter
σ.
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Proposition 1. The system of vector fields e(x; q, p) is covariant under the
action of SL(2,R) : e(σA(x);σA(q, p)) = dσA(e(x; q, p)).

Proof. By substituting σA(q + ip) and σA(x) =
b(d+cx)+a(dx+cx2)

d2+2cdx+c2x2 from Eqs.

(5,6) into Eq. (1) we obtain that e(σA(x);σA(q, p)) = (q2+p2−2qx+x2)
2p(d+cx)2 . On the

other hand we have for d σA(x) the explicit formula: ∂ σA(x)
∂ x = 1

(d+cx)2 , and

therefore ∂ σA(x)
∂ x × e(x, q, p) =

(
p+ (x−q)2

p

)

2(d+cx)2 . �

2.2. Poncaré disk D.

The Cayley transform z �→ w(z), with

w(z) = (z − i)/(z + i), z = q + ip (9)

maps the upper half–plane onto the unit disk D in the complex plane. Its
inverse is given by

z(w) = i(1 + w)/(1 − w), (10)

with q = Re(z(w)) = −2y/(1 − 2x + x2 + y2), p = Im(z(w)) = (1 − x2 −
y2)/(1− 2x+ x2 + y2). Writing w = x+ iy, the tangent map to w �→ z(w) is
given by the matrix

Jc(x, y) =
2

(1 − 2x + x2 + y2)2

(
2(−1+x)y (−1+2x−x2+y2)

(1−2x+x2−y2) 2(−1+x)y

)
.

Then, denoting by I the 2×2 identity matrix, by a straightforward calculation
we have

tJc(x, y)G(z(w))Jc(x, y) = 4I/(1 − x2 − y2)2,

which defines the induced metric on D. The Cayley transform intertwines
the fractional–linear transformations by SL(2,R) on H

2 and fractional–linear
transformations by SU(1, 1) on D. The connection between the two groups
is given by the matrix [8] γc in SL(2,C) : γc = 1−i

2

(
1 −i
1 i

)
, with γ−1

c =
1−i
2

(
i i−1 1

)
. We have A ∈ SU(1, 1) if and only if γ−1

c Aγc ∈ SL(2,R). The
hyperbolic metric 1

p2 I of H2 is then mapped onto the metric 4I/(1−x2−y2)2

of the Poincaré disk.
The inverse Cayley transform (cf. Eq.(10)) the unit circle - the boundary

of D - to the real line p = 0, except for one singular point. Parametrizing the
unit circle by w(t) = exp(it), we have z(w(t)) = i 1+exp(it)

1−exp(it) = − cot(t/2), with
the derivative: d

dtz(w(t)) = 1
2 csc2(t/2). The family of metrics g(q, p;x) on R

is pulled back on the unit circle parametrized by t with the map t �→ z(w(t))
to give the following metric on the circle:

g(ξ; z) = (
d

dt
z(w(t)))2g(q, p; z(w(t))) =

1 − ξξ̄

|1 − zξ̄|2
, (11)

where we changed the parametrization from (q, p) ∈ H2 to ξ = w(q + ip)
on D and used z = exp(it). The SL(2,R)–invariant metric GH (cf. Eq. (7))
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on H2 is pulled back through the inverse Cayley transform w �→ z(w) and
induces the standard (cf. ref. [9]) SU(1, 1)-invariant metric on D :

ds2 =
4(dx2 + dy2)
(1 − x2 − y2)2

. (12)

3. Coherent States on the Poincaré Disk

In his paper ‘General Concept of Quantization’ [10], F. A. Berezin described,
in particular, quantization on the Poincaré disk (cf. also [11, 12]). Here, fol-
lowing [12, p. 57] we will take a small variation of his method as explained
below. Berezin starts with the Hilbert space Fh of analytic functions on D
with the scalar product

(f, g) =
(

1
h
− 1

)∫
f(z)ḡ(z)(1 − zz̄)

1
h dμ(z, z̄), (13)

where dμ(z, z̄) = 1
2πi

dz∧dz̄
(1−zz̄)2 is the SU(1, 1) invariant measure on D. We will

take h = 1/2, so that the scalar product can be written as

(f, g) =
1

2πi

∫
f(z)ḡ(z) dz ∧ dz̄. (14)

The important role in Berezin’s quantization scheme is being played by the
family of ‘coherent states’. To this end we follow [12] and introduce the Hilbert
space F of functions square integrable with respect to the invariant measure
dμ(z, z̄). To each point v ∈ D there is associated a particular vector ηv in
this Hilbert space given by (using our conventions (cf. also [12, Eq. (4.99)]):
ηv(z) = 1−vv̄

(1−zv̄)2 . By comparing with Eq. (11) we see that on the boundary
of D the absolute values of the coherent states ηv coincide with the metrics
g(ξ; z).

4. Densities for the Group SU(2, 2)

The group SU(2, 2) consists of 4× 4 matrices M = ( A B
C D ) , where A,B,C,D

are 2 × 2 complex matrices, satisfying M∗GM = G, det(M) = 1, G =(
I 0
0 −I

)
, where ∗ denotes the Hermitian conjugate, and I is the 2 × 2 unit

matrix. The inverse M−1 = GM∗G is then easily seen to be given by

M−1 =
(

A∗ −C∗
−B∗ D∗

)
. (15)

The condition M∗GM = G, when written in terms of 2 × 2 matrices reads
A∗A − C∗C = I, D∗D − B∗B = I, A∗B − C∗D = 0, or, equivalently, as
MGM∗ = G, i.e.:

AA∗ −BB∗ = I, DD∗ − CC∗ = I, AC∗ −BD∗ = 0. (16)

It follows automatically from these conditions that for the operator norms we
have ||A|| ≥ 1, ||D|| ≥ 1, and therefore A and D are invertible. In particular
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we may apply the following general formula (cf. e.g. [13]) for the determinant
of the block matrices:

det(M) = det(A) det(D − CA−1B) (17)

= det(D) det(A−BD−1C). (18)

Let D̄ (resp. D) be the set of all 2×2 complex matrices Z satisfying Z∗Z ≤ I,
(resp. Z∗Z < I) or, equivalently - invoking the polar decomposition theorem,
ZZ∗ ≤ I (resp. ZZ∗ < I). The group SU(2, 2) acts on D̄ by linear fractional
transformations:

M : Z �→ Z ′ = (AZ + B)(CZ + D)−1, (19)

with CZ+D being automatically invertible for Z ∈ D̄. The action of SU(2, 2)
on D is transitive – cf. e.g. [14, 15]. 3 4

It follows from Eqs. (16) and (19) that

I − Z ′∗1 Z ′2 = (CZ1 + D)−1∗(I − Z∗1Z2)(CZ2 + D)−1, (20)

and, in particular,

I − Z ′∗Z ′ = (CZ + D)−1∗(I − Z∗Z)(CZ + D)−1. (21)

Therefore the action of SU(2, 2) maps D onto D. We denote by D̂ the set of all
unitary 2×2 matrices - the so called Shilov boundary of D. It follows from Eq.
(21) that the transformations of SU(2, 2) map D̂ onto itself. D is a complex
manifold (in fact, it is endowed with a natural Kählerian structure), and
the transformations of SU(2, 2) are holomorphic. By a holomorphic density
of weight n we will understand a holomorphic function Φ(Z), given in each
coordinate system Z, with the transformation law: Φ′(Z ′) = det

(
∂Z
∂Z′

)n
Φ(Z).

In the following we will need the explicit formula for the (complex) Jacobian
determinant for linear fractional transformations.

Lemma 1. For transformations of the form (19), with A,B,C,D arbitrary

2 × 2 matrices, we have: det
(

∂Z′
∂Z

)
= det(M)2 det(CZ + D)−4. provided

CZ + D is invertible. In particular, for M in SU(2, 2) we have det
(

∂Z′
∂Z

)
=

det(CZ + D)−4.

Proof. By differentiation of both sides of Eq. (19) we easily get: dZ ′ =
(D − (AZ + B)(CZ + D)−1C)dZ(CZ + D)−1, where dZ stands for dZij ,
(i, j = 1, ..., 4). For a transformation L on 2 × 2 matrices, of the form
L(X) = AXB, we have a general formula [16]: det(L) = det(A)2 det(B)2.

3This action is not effective. The kernel of this action is nontrivial (= Z4), and consists of
four 4× 4 matrices {I,−I, iI,−iI}.
4The action (19) can be interpreted in two ways: either as an active transformation of D
or as a passive change of complex coordinates in D.
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Writing B′ = AZ + B, D′ = CZ + D, we thus have: det
(

∂Z′
∂Z

)
= det(A −

B′D′−1C)2 det(CZ + D)−2. It follows then, using Eq. (18) that det(A −
B′D′−1C) det(D′) = det

(
A B′
C D′

)
. Now, notice that

det
(
A B′
C D′

)
= det

(
A AZ+B
C CZ+D

)
= det (( A B

C D ) ( I Z
0 I ) ) = det(M).

Thus the lemma follows. �

Let S be the set of all coordinate systems obtained from the standard
coordinate system of the space of 4 × 4 complex matrices by SU(2, 2) trans-
formations (19). Restricting complex densities to these coordinate systems
we get, for the transformation rule of a density of weight n the formula
Φ′(Z ′) = det(CZ +D)4n Φ(Z). In the following we will restrict our attention
to coordinate system from S. For this class of coordinates we will investigate
holomorphic densities of weight n = 1/4, with the transformation law

Φ′(Z ′) = det(CZ + D) Φ(Z). (22)

We will call them simply densities. The vector space of densities will be
denoted by F .

4.1. Coherent states

If Φ is a density, then it is enough to know the function Z �→ Φ(Z) in
one coordinate system. It will then be determined in every other coordinate
system from S using the formula (19). Using the standard coordinate system
of Mat(4,C) to each point ξ ∈ D we will associate a density Φξ by the
following construction: to the origin ξ = 0 we associate the density Φ0(Z) ≡ 1.
If ξ is an arbitrary point in D, then the matrix Mξ given by:

Mξ = ( A B
C D ) , (23)

with A = (I − ξξ∗)−1/2, D = (I − ξ∗ξ)−1/2, C = ξ∗A, B = ξD, is easily seen
to be in SU(2, 2) and it maps Z = 0 to Z = ξ. The inverse matrix M−1

ξ is
then given (cf. Eq. (15)) by

M−1
ξ =

(
(I−ξξ∗)−1/2 −(I−ξξ∗)−1/2ξ∗

−(I−ξ∗ξ)−1/2ξ (I−ξ∗ξ)−1/2

)
. (24)

In the coordinate system Z ′ obtained from the standard one by the applica-
tion of M−1

ξ , ξ is transformed into 0, therefore for the density associate to ξ

we should have Φ′(Z ′) ≡ 1. It follows then, by using Eqs. (15), (22), that Φξ

should be defined by:

Φξ(Z) = det
(
(I − ξ∗ξ)−1/2 − (I − ξ∗ξ)−1/2ξ∗Z

)−1
,

or

Φξ(Z) =
det (I − ξ∗ξ)1/2

det (I − ξ∗Z)
. (25)

We call ξ �→ Φξ the system of coherent states . The system is equivariant in
the sense that, for an SU(2, 2) transformation ξ �→ ξ′, Z �→ Z ′ we have, as
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can be easily computed, the formula

Φξ′(Z ′) =
det(Cξ + D)∗

| det(Cξ + D)| det(CZ + D)Φξ(Z). (26)

The first factor on the right is a pure phase factor. This fact will prove
to be of importance later on. The formula (26) is a particular case of the
transformation law of a bi–density of weight (m,n). Denoting by J(Z) the
Jacobian determinant of the transformation, we have, for such a bi–density,
the formula

Φ(Z ′1, Z
′
2) =

(
J(Z1)
|J(Z1)|

)−m

J(Z2)−n Φ(Z1, Z2). (27)

In our case, with Z1 = ξ, Z2 = Z), we take m = n = 1/4.

4.2. The Cayley transform

The Cayley transform and its inverse are defined as in the 1–dimensional case
by the formula:

W = i I−Z
I+Z , Z = I+iW

I−iW . The Cayley transform w : Z �→ W may be
considered as a transformation of the form (19) with A = −I, B = I, C =
−iI,D = −iI, with the determinant of the corresponding matrix M being
det(M) = −4. It follows then from Lemma 1 that ∂W

∂Z = 16det(I + Z)−4,
and, using a similar argument,

∂Z

∂W
= 16det(I − iW )−4. (28)

Remark 1. Notice that there is an error in the formula (2.12) of [14]. The
corresponding numerical factors there should be 2−8 and 28 instead of 2−4 and
212 resp. The Jacobian determinants there are for real coordinates, they are
squares of absolute values of complex Jacobi determinants as in our formulas
above.

The Cayley transform maps the domain D onto the future tube T =
{W = X + iY : X = X∗, Y > 0}. An open dense subset of the Shilov
boundary D̂ of D is mapped onto the set M of all Hermitian 2× 2 matrices:
M = {X : X = X∗}. We can use now the formulas (25), (27), (28), and
obtain the expression of coherent states in terms of the future tube variables
W = w(Z), ζ = w(ζ): Φζ(W ) = det(ζ−ζ∗)1/2

det(W−ζ∗) . Let us introduce the standard
basis in the space of Hermitian 2 × 2 matrices σ0 = I, σ1, σ2, σ3 defined by:
σ0 = ( 1 0

0 1 ) , σ1 = ( 0 1
1 0 ) , σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. It is convenient to

introduce real variables xμ, qμ, lν , (μ = 0, ..., 3) via the formulas

W = xμσμ, ζ = (qμ + ilμ)σμ. (29)

Notice that we have
det(W ) = x2 = ημνx

μxν , (30)

where ημν = diag (+1,−1,−1,−1) is the diagonal Minkowski matrix repre-
senting the unique (up to a constant scale factor) invariant (with respect
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to induced action of SU(2, 2)) conformal structure on R
4. Using these new

variables the coherent states Φζ(W ) can be written as:

Φq,l(x) = −4l2
(x− q)2 − l2 − 2il(x− q)

(l2 − (x− q)2)2 + 4 (l(x− q))2
.

Using the translation we can always make q = 0, and then, using a Lorentz
rotation, we can get l = (L, 0, 0, 0). This rotationally invariant state reads
then as: Φ0,L(x) = −4R2 x2−L2−2iLx0

(L2−x2)2+4L2(x0)2 .

4.3. The induced metric

The Minkowski conformal structure is defined as the constant tensor density
ημν of weight w = −1/2. Indeed, if gμν is a tensor, then det(g) is a density of
weight 2. If γμν is a density of weight w, then det(γ) is a density of weight 4+
w. Therefore, det(γ) can be constant only when w = −1/2. On the other hand
the coherent state Φ0,L is a density of weight w = 1/4. It follows that gLμν(x) =
|Φ0,L(x)|2 ημν is a covariant tensor - the space-time metric determined by the
coherent state Φ0,R. Explicitly, written in the standard general relativistic
form in radial coordinates t = x0, r =

√
(x1)2 + (x2)2 + (x3)2, θ, φ, we have

ds2 =
16L4

L4 + (t2 − r2)2 + 2L2(t2 + r2)
(
dt2 − (dr2 + r2dσ2)

)
, (31)

where dσ2 = dθ2 + sin2(θ)dφ2. After recalling the r and t coordinates we
can, effectively, set L = 1 to obtain the following conformally flat space–time
metric:

ds2 =
1

1 + (t2 − r2)2 + 2(t2 + r2)
(
dt2 − (dr2 + r2dσ2)

)
.

This is the metric induced by the coherent state Φξ for ξ = 0. The stability
group of this point is S(U(2)×U(2)) with the diagonal U(1) subgroup consist-
ing of SU(2, 2) matrices of the form: M(α) =

(
eiαI 0

0 e−iαI

)
. Via the Cayley

transform the action of this subgroup translates into the action on Hermitian
2 × 2 matrices: W �→ tan(α)I+W

I−tan(α)W . In terms of space–time coordinates t, r, θ, φ

the trajectories of the action of this U(1) subgroup are θ = const, φ = const,
and

t(α) =
2 cos(2α)t + sin(2α)(1 + r2 − t2)

1 + t2 − r2 + cos(2α)(1 + r2 − t2) − 2 sin(2α)t
, (32)

r(α) =
2r

1 + t2 − r2 + cos(2α)(1 + r2 − t2) − 2 sin(2α)t
. (33)

Differentiating with respect to α at α = 0 we find the tangent vector field Ξ
given by Ξ = (1+r2 + t2) ∂

∂t +2rt ∂
∂r . The field Ξ is a radial conformal Killing

vector field [17] for the flat Minkowski metric. It is also, automatically, by its
very construction, a true Killing field for the metric given by the line element
(31).
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Figure 1. The Killing vector field Ξ Cayley transformed to
the Minkowski space.

4.4. Comoving coordinates

It is convenient to introduce the comoving coordinates in which the coordi-
nate time is described by the parameter α along the orbits of Ξ, assuming, for
instance, that both coordinate systems coincide at t = 0. To this end we intro-
duce new coordinates τ, ρ defined by the expressions t = (1+ρ2) sin(2τ)

1−ρ2+(1+ρ2) cos(2τ) ,

r = 2ρ
1−ρ2+(1+ρ2) cos(2τ) . In new coordinates the line element becomes ds2 =

dτ2 − 1
(1+ρ2)2 (dρ2 + ρ2dσ2) - the standard form of de Sitter’s space–time.

Note added in proof. After submitting this paper Frédéric Barbaresco kindly
drew my attention to his own paper “Information Geometry of Covariance
Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fi-
bration and Fréchet Median”, Proceedings of French/Indian CEFIPRA “Ma-
trix Information Geometries” Workshop, Ecole Polytechnique, Feb. 2011, to
be published by Springer 2012, where similar problems are being discussed,
though with different applications in mind.

Acknowledgments

Thanks are due to an anonymous referee for pointing out numerous mis-
prints in the early versions of this paper. The author is also grateful to A.
v. Humboldt-Foundation for supporting the ICCA9 conference participation.
QFG support during the preparation of this paper is acknowledged with
thanks.



Vol. 22 (2012) Gravitation on a Homogeneous Domain 1079

References

[1] V. V. Fernández and W. A. Rodrigues Jr., Gravitation as a Plastic Distor-
tion of the Lorentz Vacuum. Fundamental Theories of Physics 168, Springer,
Heidelberg, 2010.

[2] Arkadiusz Jadczyk, On Conformal Infinity and Compactifications of the
Minkowski Space. Advances in Applied Clifford Algebras, DOI: 10.1007/s00006-
011-0285-5, 2011.

[3] W. K. Clifford, Mathematical Papers, edited by Robert Tucker. London,
MacMillan And Co, 1882.

[4] P. A. M. Dirac, Is There an Aether? Nature, 168 (1951), 906–907.

[5] Alain Connes, Noncommutative Geometry. Academic Press, 1990.

[6] R. Coquereaux, A. Jadczyk, Conformal theories, curved phase spaces, relativis-
tic wavelets and the geometry of complex domains. Rev. Math. Phys. 2, No. 1
(1990), 1–44.

[7] Olga Gol-Medrano, Peter W. Michor, The Riemannian Manifold of All Rie-
mannian Metrics. Quarterly Journal of Mathematics, 42 (1991), 183–202.

[8] Katharina und Lutz Habremann, Einfürung in die Theorie der Klein-
schen Gruppen. Preprint, Juli 1999. http://www.diffgeo.uni-hannover.de/

~habermann/skripte/einfklein.pdf

[9] James W. Cannon, William J. Floyd, Richard Keyton and Walter R. Pardy,
Hyperbolic Geometry. In: Flavors in Geometry, MSRI Publications, Volume 31
(1997), 59–115.

[10] F. A. Berezin, General Concept of Quantization. Commun. Math. Phys, 40
(1975), 153–174.

[11] A. Perelomov, Generalized Coherent States and Their Applications. Springer–
Verlag, Berlin, 1986.

[12] S. Twareque Ali, Jean–Pierre Antoine, Coherent States, Wavelets and Their
Generalizations. Springer-Verlag, New York, 1999.

[13] Carl D. Meyer, Matrix Analysis and Applied Linear Algebra. SIAM, 2000.
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