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We review and further analyze Penrose’s ‘light cone at infinity’—the conformal closure of

Minkowski space. Examples of a potential confusion in the existing literature about its geometry

and shape are pointed out. It is argued that it is better to think about conformal infinity as of

a needle horn supercyclide (or a limit horn torus) made of a family of circles, all intersecting at one

and only one point, rather than that of a ‘cone’. A parametrization using circular null geodesics

is given. Compactified Minkowski space is represented in three ways: as a group manifold of the

unitary group U(2), a projective quadric in six-dimensional real space of signature (4,2), and as

the Grassmannian of maximal totally isotropic subspaces in complex four–dimensional twistor

space. Explicit relations between these representations are given, using a concrete representation

of antilinear action of the conformal Clifford algebra Cl(4,2) on twistors. Concepts of space-time

geometry are explicitly linked to those of Lie sphere geometry. In particular conformal infinity

is faithfully represented by planes in 3D real space plus the infinity point. Closed null geodesics

trapped at infinity are represented by parallel plane fronts (plus infinity point). A version of

the projective quadric in six-dimensional space where the quotient is taken by positive reals is

shown to lead to a symmetric Dupin’s type ‘needle horn cyclide’ shape of conformal infinity.
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1. Introduction

A persistent confusion about Minkowski’s space conformal infinity started with
a widely quoted paper by Roger Penrose The light cone at infinity [1]. In the
abstract to this seminal paper Penrose wrote:

From the point of view of the conformal structure of space-time,
“points at infinity” can be treated on the same basis as finite points.
Minkowski space can be completed to a highly symmetrical conformal
manifold by the addition of a null cone at infinity—the “absolute cone”.

He then elaborated in the main text:

[179]
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Let xμ be the position vector of a general event in Minkowski
space-time relative to a given origin O. Then the transformation to new
Minkowskian coordinates x̂μ given by

x̂μ = xμ

xαxα
, xμ = x̂μ

x̂αx̂α
, (1)

is conformal (“inversion with respect to O”). Observe that the whole
null cone of O is transformed to infinity in the x̂μ system and that

infinity in the xμ system becomes the null cone of the origin Ô of

the x̂μ system. (“Space–like” or “time-like” infinity become Ô itself
but “null” infinity becomes spread out over the null cone of O.) Thus,
from the conformal point of view “infinity” must be a null cone.

Penrose’s statement, “that infinity in the xμ system becomes the null cone of the

origin Ô of the x̂μ system” apparently had a confusing effect even on some experts
in the field. For instance, in the monograph [2, p. 127], we find the statement
that “‘conformal infinity’ is the result of the conformal inversion of the light cone
at the origin of M,” and in another monograph Huggett and Tod write about the
compactified Minkowski space Mc [3, p. 36]: “Thus Mc consists of M with an
extra null cone added at infinity. ” Not only they write so in words, but they also
miss a part of the conformal infinity (the closing two–sphere) in their, otherwise
excellent and clear, formal analysis.

This apparent confusion has been described in [4], where also a deeper analysis
of the structure of the conformal infinity has been given using, in particular, Clifford
algebra techniques. In [5] a close similarity has been noticed between the geometry
and shape of the conformal infinity with that of Dupin’s type (super)cyclide. In
the present paper we review and develop these ideas further on, and also make
a step in relating them to Lie sphere geometry in R

3 developed by Sophus Lie [7],
Wilhelm Blaschke [8] and Thomas E. Cecil [9].

In Section 1 we introduce the compactified Minkowski space Mc (via Cayley’s
transform) following Armin Uhlmann [10], as the group manifold of the unitary group
U(2), and the conformal infinity as the subset of U(2) consisting of those matrices
U ∈ U(2) for which det(U − I ) = 0. In Section 3 we review the relation of the
compactified Minkowski space and its conformal infinity part to the group SU(2, 2)
(the spin group of the conformal group), and to its action on U(2) via fractional linear
transformations U ′ = (AU+B)(CU+D)−1. In particular, the role of totally isotropic
subspaces of C

2,2 (as null geodesics and as points of Mc) is elucidated there. In
Section 4 the SU(2, 2) formalism is explicitly related to the O(4, 2) representation
via a particular matrix realization (by antilinear transformations) of the Clifford
algebra Cl4,2. The main results of this section are contained in Proposition 1 and
Corollary 1, where an explicit formula for a bijective map between the projective
quadric of R

4,2 and U(2) is given—cf. Eq. (5). Our conventions are: coordinates
xμ, μ = 1, . . . , 4, with x4 = ct, for the Minkowski space, xα, α = 1, . . . , 6 for R

4,2

endowed with the quadratic form Q(x) = (x1)2+ (x2)2+ (x3)2− (x4)2+ (x5)2− (x6)2.
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Let Q = {x ∈ R
4,2 : Q(x) = 0, x �= 0}. We discuss two equivalence relations in

R
4,2 : the standard one in projective geometry, x ∼ y iff x = λy, λ ∈ R

∗ = R \ {0},
and a stronger one x ≈ y iff x = λy, λ > 0. In Section 5 we discuss M̃c, the
double covering of Mc, defined as Q/ ≈, and the corresponding conformal infinity.
Skipping one space dimension, and projecting from four dimensions on a 3D box,
the conformal infinity has the shape of an elliptic supercyclide as depicted in Fig. 1.
Simple conformal infinity, that of Mc, is discussed in Section 6 where we represent
it in two ways: as an asymmetric needle cyclide in Fig. 2, and as a symmetric
limit torus in Fig. 3. In Section 7, in particular cf. Table 1 adapted from [9], the
correspondence between the objects of the space of Lie spheres and those of R

4,2

geometry is described, and then used for elucidating the R
3 picture of conformal

infinity. A null geodesic trapped at infinity can be represented as a family of plane
fronts in R

3—cf. Fig. 4, or, equivalently, as a path on the supercyclide intersecting its
cusp—Fig. 5. The family of such null geodesics essentially determines the geometry
of the conformal infinity which carries a natural conformal structure of signature
(2, 0).

2. Minkowski’s space conformal infinity

Albert Einstein introduced the Minkowski space as the ‘affine space of events’
equipped with the Minkowskian infinitesimal line element ds2 = (dx1)2 + (dx2)2 +
(dx3)2− (dx4)2, and this is the most popular image today.1 ‘Affine’ means that there
is no distinguished ‘origin’, though each inertial observer selects one particular event
as having all four coordinates zero in the coordinate system of his frame of reference.
Mathematically equivalent is another approach: Minkowski space is a four-dimensional
real vector space, endowed with the quadratic form q(x) = (x1)2+(x2)2+(x3)2−(x4)2,
but when studying its geometry we are looking for geometrical objects, concepts and
constructions that are invariant under the full 10-parameter Poincaré group consisting
of Lorentz transformations and translations. Poincaré’s group is the fundamental
symmetry group of all relativistic theories. But, in fact, this very group appeared
naturally in the works of geometers of the XIX-th century studying the ‘space of
(Lie) spheres’ in R

3, cf. [7, 9], in a way that had nothing to do with the philosophy
of relativity.

Let us introduce the notation that will be used in the following. Minkowski space
will be denoted, alternatively, either as M, or as E3,1, or as R

3,1. We will represent it
as a vector space endowed with the scalar product (x, y) = x1y1+x2y2+x3y3−x4y4.
Introducing the metric tensor η = diag(1, 1, 1,−1), the scalar product is written as
(x, y) = ημν xμyν = ημνxμyν. The Lorentz group L = O(3, 1) is the group of all
4×4 real matrices � for which t� η � = η. It acts on M via linear transformations
xμ �→ �μ

ν xν. Translation group T , isomorphic to the additive group of R
4, acts

on M via xμ �→ xμ+aμ. The Poincaré group P is the semidirect product of L and
T . It consists of pairs (a, �), and acts on M via xμ �→ �μ

νx
ν + aμ. That implies

the composition law of the semidirect product: (a, �)(a′, �′) = (a +�a′, ��′).
1We use x4 = ct rather than more popular x0.
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In quantum theory we are interested in ray representations of the Poincaré group
on complex vector spaces. Ray representations lead to vector representations of the
double covering group. This way we are led from the Lorentz group to its double
covering group—SL(2,C), the group of unimodular (i.e. of determinant one) complex
2× 2 matrices. Its action on M is then conveniently coded via standard Hermitian
Pauli’s matrices σμ, where we put σ4 =

(
1 0
0 1

) = I. The mapping x �→ σ(x) = xμσμ

maps bijectively M onto the space of 2× 2 Hermitian matrices, with the important
property that q(x) = det(σ (x)). If A ∈ SL(2,C), then Aσ(x)A† is Hermitian, thus
Aσ(x)A† = σ(x ′), and since det(σ (x ′)) = det(σ (x)), we have q(x) = q(x ′). It
follows that x ′ is related to x by a Lorentz transformation: Aσ(x)A† = σ(�(A)x).
The mapping SL(2,C) 
 A �→ �(A) ∈ L is then a group homomorphism from
SL(2,C) onto the connected component of identity of L, with kernel {I,−I }.

There are two simple ways in which Hermitian matrices can be transformed into
unitary matrices. The first one is by exponentiation: X �→ exp(iX). It is not very
interesting here, as it is periodic. The second way, more interesting in the present
context, is by Cayley’s transform

X �→ u(X) = U = X − iI

X + iI
.

The inverse transform

u−1(U) = X = i
I + U

I − U

is well defined whenever det(I−U) �= 0. The space U(2) of 2×2 (complex) unitary
matrices is a four–dimensional (real) compact manifold, and Cayley’s transform maps
M onto an open dense submanifold of U(2). The remaining part, described by the
algebraic equation det(U − I ) = 0 is what is being called the conformal infinity of
M [10].

3. The group SU(2, 2)

Early in the XX-th century (1909–1910) Bateman and Cunningham [11–13]
established local invariance of the wave equation and of Maxwell’s equations under
conformal transformations. The central role in these transformations is being played
by the conformal inversion R, formally defined by

R : (x, t) �→ r2
0

(x, t)

x2 − c2t2
, (2)

where r0 is a constant of physical dimension of length. Conformal inversion is
singular on the light cone q(x) = x2 − c2t2 = 0. Together with Poincaré group
transformations, it generates the conformal group of local transformations of M,
isomorphic to O(4, 2). The spin group for the conformal group, in our settings the
group SU(2, 2), enters the scene through the following observations.

Let G be the matrix G = diag(1, 1,−1,−1). Then U(2, 2) is the group of 4×4
complex matrices U with the property UGU† = G, where † denotes the Hermitian
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conjugation. Writing U in the 2×2 block matrix form as U = (
A B
C D

)
, the condition

UGU† = G, translates into A†A − C†C = D†D − B†B = I and A†B − C†D = 0.
The group SU(2, 2) acts naturally on U(2) by fractional linear transformations,

U �→ U ′ = (AU + B)(CU +D)−1. (3)

Namely, with some little effort, one can show that if U is unitary, then CU +D
is invertible and that (AU + B)(CU +D)−1 is again unitary. Evidently the matrix
(AU + B)(CU +D)−1 is insensitive to the overall complex phase of U , therefore,
effectively, we can restrict ourself to the subgroup SU(2, 2) by requiring det(U) = 1.
This way the compactified Minkowski space, which we will denote as Mc, the
group manifold of U(2), becomes a homogeneous space for the group SU(2, 2).1

Now, having the group U(2), with its distinguished group identity element
U0 = I, as a homogeneous space does not look very natural. Therefore, taking
the group SU(2, 2) (or a group isomorphic to it) as a basic element, a more
abstract and more ‘basic’ construction is needed. To this end one may choose
a coordinate free construction, starting from what is often called ‘the twistor space’2

Thus let V be a complex vector space equipped with a pseudo-Hermitian form,
written as 〈v|w〉, of signature (2, 2). A basis ei in V is called orthonormal if
〈ei |ej 〉 = Gij , (i, j = 1, . . . , 4). Any two orthonormal bases e′, e are then related by

a U(2, 2) transformation e′i = ej U
j
i . In order to be able to reduce the transformation

group to SU(2, 2) a volume form ω is selected in
∧4

V, and the set of orthonormal
bases is reduced to those having the property e1 ∧ · · · ∧ e4 = ω. The relation to
space–time geometry is now obtained via the study of one- and two–dimensional
totally isotropic subspaces of V.3 Two–dimensional totally isotropic subspaces of
V correspond to points in the compactified Minkowski space Mc, while one–
dimensional isotropic subspaces of V correspond to ‘null geodesics’ in Mc [15].
This correspondence has a remarkable geometric simplicity and beauty: if v is an
isotropic vector representing a null geodesic in Mc, then the set of all totally
isotropic subspaces containing v is the set of points in Mc on this geodesic. If W
is a two–dimensional totally isotropic subspace representing a point p in Mc, then
nonzero vectors (automatically isotropic) of W are null geodesics through p. If two
isotropic planes intersect, then the corresponding points in Mc can be connected
by a null geodesic. If two isotropic vectors in V are mutually orthogonal, the
corresponding geodesics intersect.

1In fact, Mc is the Shilov boundary of the bounded homogeneous complex domain SU(2, 2)/S(U(2)×U(2)),

cf. e.g. [14], but we will not need this fact and its consequences here.
2For a clear, concise and mathematically precise introduction see e.g. [15], also references therein.
3One could think that the term isotropic subspace should be enough, since if a subspace has all its vectors

isotropic, then any two its vectors must be, automatically, orthogonal. However, in the literature, by an isotropic

subspace one usually means ‘a subspace that contains a nonzero isotropic vector’. Therefore, in order to avoid

the confusion, the additional adjective ‘totally’ is needed for a subspace whose any two vectors are mutually

orthogonal.
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3.1. Relation between U(2) and SU(2, 2) pictures

In this subsection we will describe the relation between the two pictures of Mc,
one as the set of all 2× 2 unitary matrices, and one as the set of totally isotropic
planes in V. To this end we choose an orthonormal basis ei in V and split V into
a direct sum V = C2 ⊕ C2. Thus each vector in V can be written as a column
( u

v ) with u being a linear combination of e1, e2, and v of e3, e4. It is then easy to
see that each totally isotropic subspace of V is uniquely represented in the form(

Uv
v

)
, where v runs through C

2 spanned by e3, e4, and U is a unitary operator in

this space. Moreover, if
(

A B
C D

)
, is in U(2, 2), then

(
A B

C D

)(
Uv

v

)
=

(
(AU + B)v

(CU +D)v

)
=

(
U ′v′

v′

)
,

where U ′ = (AU + B)(CU +D)−1, and v′ = (CU +D)v. Since, as we mentioned
before, CU + D is necessarily invertible, v′ runs through the whole C2 when v
does so.

4. R
4,2 and the group O(4, 2)

Let R
4,2 be R

6 endowed with the quadratic form Q(x) = (x1)2 + (x2)2 +
(x3)2 − (x4)2 + (x5)2 − (x6)2 and the associated pseudo-Hermitian form 〈x, y〉 =
x1y1 + x2y2 + x3y3 − x4y4 + x5y5 − x6y6. We start with the following proposition
essentially taken from [5], and refer the reader there for more details, though, in
fact, the proof is nothing but a somewhat tedious, simple calculation.1

PROPOSITION 1. Consider the following set of six complex 4× 4 matrices:

	1 =

⎛
⎜⎜⎜⎝

0 0 i 0

0 0 0 −i

i 0 0 0

0 −i 0 0

⎞
⎟⎟⎟⎠, 	2 =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠, 	3 =

⎛
⎜⎜⎜⎝

0 0 0 −i

0 0 −i 0

0 −i 0 0

−i 0 0 0

⎞
⎟⎟⎟⎠,

	4 =

⎛
⎜⎜⎜⎝

0 i 0 0

−i 0 0 0

0 0 0 i

0 0 −i 0

⎞
⎟⎟⎟⎠, 	5 =

⎛
⎜⎜⎜⎝

0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎠, 	6 =

⎛
⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

⎞
⎟⎟⎟⎠.

For each x = (x1, . . . , x6) ∈ R
4,2, let X be the matrix

X =
6∑

α=1

xα	α. (4)

1The author does not know whether these properties are known to the experts or not. Any hint to the

existing literature will be appreciated.
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Then a straightforward calculation shows that these matrices satisfy the following
relations:

(i) GXG = − tX,

(ii) X̄i
j = 1

2
εimnk GmjGnl Xl

k,

(iii) XȲ + YX̄ = 2〈x, y〉,
(iv) det(X) = Q(x)2,
(v) If R ∈ SU(2, 2), then R	αR−1 = 	βL(R)βα, and R �→ L(R) is a group homo-

morphism from SU(2, 2) onto the connected component of identity SO+(4, 2),
with kernel {1,−1, i,−i}.

(vi) The 15 matrices Lαβ = 	α	̄β −	β	̄α, α < β, form a basis of the Lie algebra
of SU(2, 2).

REMARK 1. The meaning of (iii) is that the mapping x �→ X̂, where X̂ is the

antilinear operator on C4 defined by (X̂v)i = Xi
j v̄j is a Clifford map from R

4,2 to

the algebra of all real-linear transformations of C
4. The algebra Mat(4,C), as an

algebra over R, can be then identified with the even Clifford subalgebra of R
4,2.

4.1. Compactified Minkowski space Mc as a projective quadric in R
4,2

Probably the most popular representation of Mc that can be found in the literature
is one where Mc is defined as the set of generator lines of the cone2 (minus the
origin {0}),

C = {x ∈ R
4,2 : x �= 0, Q(x) = 0}.

Or, in other words, it is the manifold of all one-dimensional isotropic subspaces of
R

4,2. Or else, it is the cone C divided by the equivalence relation: x ∼ y if and
only if x = λy, λ �= 0, λ ∈ R. We denote the resulting projective quadric, consisting
of equivalence classes [x] of nonzero isotropic vectors x ∈ R

4,2, by [C] = C/ ∼ .
It is now important to know the explicit relation between Mc defined as [C] and
U(2). This is given by the following corollary to our Proposition 1.

COROLLARY 1. For each x ∈ C the matrix

U(x) = 1

x4 + ix6

⎛
⎝−x3 + ix5 −x1 + ix2

−x1 − ix2 x3 + ix5

⎞
⎠ (5)

is unitary and depends only on the equivalence class [x] of x. We have

det(U(x)− I ) = −2i(x5 − x6)

x4 + ix6
. (6)

Therefore det(U(x)− I ) = 0 if and only if x5 = x6.

2For a more general discussion of the case of signature (r, s) see, for instance, [6, Chapter 1.4.3]
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While the proof of this corollary is by a straightforward calculation, the deeper
meaning of it is revealed by a study of the kernels of Clifford algebra representatives
on a Clifford module, as discussed in [5, Eq. (20)]. C

4, when considered as R
8, is

a module for the Clifford algebra Cl4,2, the map x �→ X̂ being the Clifford map.

One then computes the kernel of X̂, which is then represented in the form
(

Uv
v

)
.

By defining U(x) = U one gets the formula (5).

The compactified Minkowski space is this way represented as a projective
quadric described by the equation

Q(x) = (x1)2 + (x2)2 + (x3)2 − (x4)2 + (x5)2 − (x6)2 = 0

in RP
5. The conformal infinity is an intersection of this projective quadric with

the projective hyperplane
x5 = x6.

5. The doubled conformal infinity as an elliptic supercyclide

The conformal infinity is a real algebraic variety described in homogeneous
coordinates by two homogeneous equations: Q(x) = (x1)2 + (x2)2 + (x3)2 − (x4)2 +
(x5)2 − (x6)2 = 0 (compactified Minkowski space) and x5 = x6 (the infinity hy-
perplane). In this section we will replace the equivalence relation in R

6
� {0} :

x ∼ y iff x = ry, r �= 0, by a stronger one x ≈ y iff x = ry, r > 0. The doubled

compactified Minkowski space M̃c is defined as the quotient of {x : Q(x) = 0}/≈. 1

We can embed now M = R
3,1, described by coordinates (x, t) in M̃c in two ways:

φ+(x, t) = [(x, t, 1
2
(1− x2 + t2),− 1

2
(1+ x2 − t2))],

φ−(x, t) = [(x, t,− 1
2
(1− x2 + t2), 1

2
(1+ x2 − t2))].

The first embedding is characterized by the equation x5 − x6 = 1, the second one

by x5−x6 = −1. As we will see, in M̃c there are also two special, singular points:
[(0, 0, 1, 1)] and [(0, 0,−1,−1)].

5.1. Graphic representation as a needle horn

To obtain a geometric representation of the conformal infinity in M̃c consider
the two defining equations written as

(x1)2 + (x2)2 + (x3)2 + (x5)2 = (x4)2 + (x6)2, (7)

x5 = x6. (8)

1Topologically Mc and M̃c are equivalent. Indeed Mc is topologically U(2) which is (U(1)×SU(2))/{I,−I }.
M̃c is topologically U(1) × SU(2), (no quotient). But both spaces are homeomorphic, since U(2) can be

parametrized also as S1 × S3 : U =
(

z1 −cz̄2
z2 cz̄2

)
, |c| = 1, |z1|2 + |z2|2 = 1.
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Clearly the number (x1)2+ (x2)2+ (x3)2+ (x5)2 = (x4)2+ (x6)2 is positive, it cannot
be zero because that would imply x = 0, and the origin is excluded. Therefore we
can always choose a unique positive scaling factor and get two equations in R

6 :
(x1)2 + (x2)2 + (x3)2 + (x5)2 = 1, and (x4)2 + (x6)2 = 1. These are two intersecting
cylinders. The infinity plane x5 = x6 cuts this intersection effectively reducing the
number of dimensions to 3. We obtain:

(x1)2 + (x2)2 + (x3)2 + (x5)2 = 1, (9)

(x4)2 + (x5)2 = 1. (10)

In order to arrive at a graphics representation in R
3 we suppress one space dimension,

say x3, so that two-spheres will be represented by circles. We are left now with
four variables (x1, x2, x4, x5), and the intersection of two cylinders

(x1)2 + (x2)2 + (x5)2 = 1, (11)

(x4)2 + (x5)2 = 1, (12)

in R4. We now choose a light source in R4, a 3D box, and project our surface
onto the box. For the light source we choose the point x0 with coordinates
x1 = 2, x2 = x4 = x5 = 0 (it can be easily verified that the whole represented body
is contained inside a sphere of radius 1), for the screen let us choose the space
(0, x2, x4, x5). The screen will cut our surface, but this is not a problem. From
now on let us call the screen variables (x, y, z). The straight line in R

4 connecting
the source (2, 0, 0, 0) with a point (x1, x2, x4, x5) has the parametric equation:

x(s) = (1− s)(2, 0, 0, 0)+ s(x1, x2, x4, x5) = (s(x1 − 2)+ 2, sx2, sx4, sx5).

It cuts the screen when s(x1 − 2)+ 2 = 0, therefore for s = 2/(2− x1). This way
it hits the screen at the point (0, sx2, sx4, sx5), which gives us the equations for
the image:

x(x2, x4, x5) = 2x2

2− x1
(13)

y(x2, x4, x5) = 2x4

2− x1
(14)

z(x2, x4, x5) = 2x5

2− x1
. (15)

Let us choose now angular coordinates for the variables x1, x2, x4, x5 satisfying
Eqs. (11) and (12). To satisfy (12) we set

x4 = sin , (16)

x5 = cos . (17)
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Then, from (11), we get (x1)+ (x2)2 = 1− (x4)2 = cos2 , and as long cos  �= 0
(the two singular points), we can set, uniquely,

x1 = cos � cos , (18)

x2 = sin � cos . (19)

After substitution of these parametrization into the surface equation we get

x(�,) = 2 sin � cos 

2− cos � cos 
, (20)

y(�,) = 2 sin 

2− cos � cos 
, (21)

z(�, ) = 2 cos 

2− cos � cos 
. (22)

These are the equations of a degenerate elliptic supercyclide [17, Eq. (11)], which
is a slightly deformed Dupin’s cyclide known under the names needle (horn) cyclide
[18, Fig. 8, p. 83], [9, Fig. 5.11, p. 158], or, in French, double croissant symétrique
[19]. The simplest form of the cyclide may be thought of as a deformed torus,

Fig. 1. Pictorial representation of the doubled conformal infinity with one dimension skipped (elliptic super-

cyclide).

in which the minor radius varies around the central hole. In particular the Dupin
cyclides provide a generalization of all the surfaces conventionally used in solid
modeling—the plane, cylinder, cone, sphere and torus [20].

6. Simple conformal infinity

By taking the quotient, as in Section 5, but by R
∗ = R \ {0} rather than by R

+,
we arrive at the same equations (11) and (12), but this time x and −x describe
the same point.

Jakob Steiner faced a similar problem when studying the method of representing
the projective plane in R

3. One possible solution was to use quadratic expressions
in the coordinates—cf. [21] and [22, p. 340]. Let us first follow a similar method.
In order to represent the resulting variety graphically, we will need the following
lemma.
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LEMMA 1. With the notation as in Section 5.1 introduce the following variables:

yα = xαx4. (23)

Then, assuming that xα, x ′α satisfy Eqs. (11) and (12), we have yα = y ′α if and
only if either xα = x ′α or xα = −x ′α, α = 1, . . . , 5.

Proof : The variables y being quadratic in x, it is clear that the ’if’ part
holds. Now suppose we have yα = y ′α, α = 1, . . . , 5. If x4 = 0, then x ′4 = 0,

therefore from (12) we have that x5 = ±1 and x ′5 = ±1. It follows then from (11)
that x1 = x2 = x3 = 0, and the same for x ′. Therefore x = (0, 0, 0, 0,±1) and
x ′ = (0, 0, 0, 0,±1), thus x ′ = ±x. If x4 �= 0, then x ′4/x4 = ±1 and y ′α = (x ′4/x4)yα.

�

6.1. Graphic representation

To obtain a graphic representation we proceed as before and arrive, after renaming
of the variables, at the following set of parametric equations

x(�,) = 2 cos2 �

2− cos2 � cos 
, (24)

y(�,) = 2 cos2 � sin 

2− cos2 � cos 
, (25)

z(�, ) = 2 cos � sin 

2− cos2 � cos 
. (26)

The resulting surface has the shape of a simple elliptic supercyclide needle (horn)
cyclide as in Fig. 2—[18, Fig. 6, p. 80], [9, Fig. 5.7, p. 156], or, in French,
croissant simple [19]. In P

5 the surface is, in fact, made of closed null geodesics, all
intersecting at the point with homogeneous coordinates (0, 0, 1, 1) ∼ (0, 0,−1,−1).
Each od these geodesics is uniquely determined by a point on the 2-sphere (n, 1, 0, 0),
n2 = 1. The geodesic is then given by the formula

γ (�) = [(cos(�)n, cos �, sin �, sin �)], � ∈ [0, π ], (27)

Fig. 2. Pictorial representation of the simple conformal infinity with one dimension skipped—needle cyclide,

made of a one-parameter family of null geodesics trapped at infinity.
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Fig. 3. A symmetric representation of the simple conformal infinity, as a horned torus.

—cf. [4, Eq. (16)]. Taking another projection, switching the roles of x1 and x5, we
arrive at a topologically equivalent, this time symmetric, representation—see Fig. 3.

7. Conformal infinity and Lie spheres

In 1872 Sophus Lie [7] has formulated the geometry of oriented spheres in R
3.

It was further developed and generalized in the third volume of the monograph
[8] Differentialgeometrie der Kreise und Kugeln, published in 1929 by Wilhelm
Blaschke. Its modern version is presented in Lie Sphere Geometry by Thomas E.
Cecil [9]. Lie sphere geometry is concerned with the geometry of oriented spheres
in R

3 (or, more generally in R
n). An oriented sphere is a sphere with its radius

vector pointing outwards (positive) or inwards (negative). A sphere of zero radius
(no distinction between outwards and inwards) is just a point. An oriented sphere
of infinite radius is a plane—with its normal vector pointing in one or another
direction. Added to points, oriented spheres, and oriented planes, is an exceptional
point at infinity that makes R

3 into S3—its one-point compactification. Formally,
Lie sphere geometry is the study of the projective quadric Q(x) = 0 and of the
invariants of the action of O(4, 2) on this quadric.

Blaschke [8, p. 270] noticed the relation of Lie sphere geometry to the Minkowski
space of special relativity, but he did not elaborate much on this relation. The
interpretation of relativistic space-time events in terms of Lie spheres can go as
follows: The radius r can be interpreted as the radius of a spherical wave at time
t = r/c, if the wave, propagating through space with the speed of light c, was
emitted at x, |x| = r, at time t = 0. The image being that when the spherical wave
reduces to a point, it turns itself inside–out, thus reversing its orientation.

The correspondence between the constructs of Lie geometry in R
4,2 and geo-

metrical objects in R
3 is given in the following table (adapted from [9, p. 16]).1

1In [23] E. V. Ferapontov makes and interesting connection between Lie sphere geometry and twistor’s

formalism.
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Table 1. Correspondence between Lie spheres and points of the compactified Minkowski space.

[x] denotes the equivalence class modulo R∗.

Euclidean Lie

points: x ∈ R3 [(x, 0, (1− x2)/2,−(1+ x2)/2, 0, 0)]

∞ [(0, 0, 1, 1)]

spheres: center x, signed radius t [(x, t, (1− x2 + t2)/2,−(1+ x2 − t2)/2)]

planes: x · n = h, unit normal n (n, 1, h, h)]

Conformal infinity of the Minkowski space consists of planes x · n = h, and of
the point ∞. According to Eq. (27) all null geodesics trapped at infinity intersect
at this special point, with � = π/2. For � �= π/2 the geodesic equation (27) can
be written as x · n = tan �. That means that a null geodesic trapped at infinity
corresponds, in R

3, to a family of parallel planes (plus ∞)—they represent light
wave fronts—see Fig. 3. The same family of fronts can be represented by the points
on the null geodesic of the cyclide. In fact, there will be two geodesics, one for
each of the two opposite orientation of planes—see Fig. 4

Fig. 4. A family of plane fronts representing in R3 a null geodesic x · n = tan � for n = (1/
√

2, 0, 1/
√

2),

� = k ∗ π/20, k = −9, . . . , 9.
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Fig. 5. A family of points on the cyclide representing two null geodesics x · n = tan � for n = ±(1/
√

2, 0, 1/
√

2),

� = k ∗ π/20, k = −9, . . . , 9, this time viewed from a different perspective, so that the point ∞ is in front

of the picture.

7.1. Plane fronts

Giving Minkowski’s space conformal infinity the name of “the light cone at
infinity” was unfortunate and misled even several expert authors of mathematical
monographs. Is there a better picture? Using Eqs. (11) and (12) we can parametrize
conformal infinity by angle variables � ∈ [0, π ], ,� ∈ [0, 2π ] as follows:

x1 = cos � sin  cos �, (28)

x2 = cos � sin  sin �, (29)

x3 = cos � cos , (30)

x4 = cos �, (31)

x5 = sin �, (32)

where we still need to identify x with −x. The whole information about the surface
can be then expressed in terms of quadratic variables yi = xix4 (i = 1, 2, 3), and
y4 = x5x4. Thus conformal infinity is parametrized in R

4 as:

y1 = cos2 � sin  cos � (33)

y2 = cos2 � sin  sin � (34)

y3 = cos2 � cos  (35)

y4 = cos � sin � (36)

By choosing stereographic projection with center at (0, 0, 1, 0) we can represent the
family of null geodesics (parameter � varies along geodesics) in R3, missing only
one point, as follows:
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x = cos2 � sin  cos �/(1− cos2 � cos ), (37)

y = cos2 � sin  sin �/(1− cos2 � cos ), (38)

z = cos � sin �/(1− cos2 � cos ), (39)

with the following graphic representation: The figure resembles Clifford–Hopf fibration

Fig. 6. Conformal infinity represented in R3.

(cf. e.g. [24, Fig. 33.15], but is essentially different. The circles here are not the
Villarceau circles (or ‘Clifford parallels’) and the tori are limit tori with one common
point—the point ∞.

8. Compactified Minkowski space and its conformal infinity in (1+1) space-time
dimensions

In (1 + 1) space-time dimensions, with coordinates (x, t) the compactified
Minkowski space is described, in R

2,2 with coordinates (X, T , V, W), by equa-
tions (cf. Eq. (7))

X2 + V 2 = 1,

T 2 +W 2 = 1. (40)

We should then identify (X, T , V, W) with (−X,−T ,−V,−W). It is convenient
to introduce complex variables z1 = X + iV , z2 = T + iW, with |z1| = |z2| = 1.
The necessity of identification may seem, at first sight, to complicate the picturing
of the surface. What we have is the Clifford torus quotiented by Z2 action
f : (z1, z2) �→ (−z1,−z2). However, the following lemma is easy to prove.

LEMMA 2. The map (z1, z2) �→ (z1z2, z1z̄2) is a surjection from the Clifford torus
onto itself. The counterimage of each point consists of exactly two points (z1, z2)
and (−z1,−z2).
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Fig. 7. (1+ 1)-dimensional Minkowski space on the Clifford torus representing Mc.

It follows that Mc is, in our case, nothing else but the Clifford torus. We
can represent it now in R

3 using stereographic projection, but is more instructive
to embed first the Minkowski space M in Mc. To this end we first embed M
into the isotropic cone of R

2,2, in the standard way (cf. Eq. (11)) (x, t) �→
(x, t, v, w) = (x, t, (1− x2 + t2)/2,−(1+ x2 − t2)/2). We then have, automatically,
x2 + v2 = t2 + w2 > 0. In order to have (40) satisfied we introduce normalized

variables (X, T , V, W) = (x, t, v, w)/
√

t2 + w2, then z1 = X+ iV , z2 = T + iW, and
plot (�(z1z2),�(z1z2),�(z1z̄2),�(z1z̄2)) using stereographic projection from four to
three dimensions with center at (2, 0, 0, 0). In Fig. 7 we plot this way the part of
Minkowski space corresponding to the rectangle |x| ≤ 20, |t | ≤ 15. The remaining
part contains conformal infinity which, in this case, is represented by two circles
with one common point: ∞.

In Segal’s model [25, Chapter III.5], cf. also [26], an important role is being
played by the temporal evolution emerging from the action of the circle group on the
S1×S3. For our (1+1)-dimensional model this action corresponds to the multiplication
by z1. The corresponding orbits on Mc are then Villarceau circles—see Fig. 8.

Fig. 8. Trajectories of unispace Segal’s dynamics on Clifford’s torus representing Mc.
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