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This paper is dedicated to the memory of Jaime Keller.

Abstract. In this paper we give a brief review of the pseudo-Riemannian
geometry of the five-dimensional homogeneous space for the confor-
mal group O(4, 2). Its topology is described and its relation to the
conformally compactified Minkowski space is discussed. Its metric and
geodesics are calculated using a generalized half-space representation.
Compactification via Lie-sphere geometry is outlined. Possible applica-
tions to Jaime Keller’s START theory may follow by using its predeces-
sor - the 5-optics of Yu. B. Rumer. The point of view of Rumer is given
extensively in the last section of the paper.
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1. Introduction

Jaime Keller [1] (cf. also the detailed analysis by da Rocha [2]) expressed con-
formal transformations via the adjoint representation of Spin(4, 2) acting on
paravectors of the Clifford algebra C�4,1 and twistors as elements of a left
minimal ideal of the Dirac-Clifford algebra C⊗ C�1,3. This observation pos-
sibly contributed to his interest in a five-dimensional formulation of physics,
where, following Yu. B. Rumer (cf. [3,4] and references therein), he gave the
interpretation of the fifth coordinate as related to action. He has elaborated
this idea in a sequence of papers using the name START (Space-Time-Action
Relativity Theory) - cf. e.g. [5–7].

In the present paper we study some geometrical properties of two five-
dimensional homogeneous domains for the conformal group SO(4, 2)1, with

1In the mathematical literature one can find several slightly different definitions of the
“conformal group” of a pseudo-Euclidean space Rr,s . Some authors define it as SO(r +
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the hope that these properties may prove to be relevant for further extension
of the ideas developed in Keller’s START theory. We will also discuss some
of the ideas of Keller’s predecessor, Yu. B. Rumer, whose works have been
published only in Russian, and therefore are largely unknown for the rest of
the world.

2. Conformally compactified Minkowski space as a boundary
of five-dimensional domains

Conformally compactified Minkowski space is the Shilov’s boundary of an
eight-dimensional complex domain

SO(4, 2)/S(O(4)× O(2)) ≈ SU(2, 2)/S(U(2) × U(2))

- cf. [9] and references therein. But it can also be considered as a boundary of
a five-dimensional homogeneous space for the conformal group. We will now
study this latter case in some detail.

We denote by Rr,s vector space Rn, n = r+s, endowed with a quadratic
form

q(x) = (x1)2 + · · · + (xr)2 − (xr+1)2 − · · · − (xr+s)2. (2.1)
When s = 0 (or when r = 0) the natural compactification of Rr,s = Rn is the
Alexandroff’s one-point compactification, that is, the n-sphere Sn. In other
cases, the natural compactification is the so-called conformal compactifica-
tion. For the Minkowski space, r = 3, s = 1 (or r = 1, s = 3), the resulting
compactified space consists of the Minkowski space with added conformal
infinity - a three-dimensional variety of a generalized Dupin cyclide, some-
times misleadingly called “the light cone at infinity” - cf. [9,10] and references
therein.

2.1. Compactified Minkowski space

As we will see, compactified Minkowski space can be viewed as a four-
dimensional boundary between two five-dimensional domains. Boundaries
and regions close to boundaries are interesting. We can easily imagine that
the physical Reality is five-dimensional and that, for reasons yet to be un-
derstood, our perception is restricted to a thin four-dimensional boundary.
While physics2 of such an approach may be still in a development (as in
Kaluza-Klein type theories or in Jaime Keller’s unfinished START program),
mathematics is not that difficult and we will describe it briefly in the follow-
ing.

Consider R4,2 endowed with coordinates X1, . . . , X6, scalar product
(X,Y ) = X1Y 1 + · · · + X4Y 4 − X5Y 5 − X6Y 6, and the quadratic form
Q(X) = (X,X). There we have a null cone consisting of those X for which

1, s+ 1), some other as PO(r + 1, s+ 1). We choose simply O(r + 1, s+ 1) because in our

construction of the double cover of the compactified Minkowski space ˜̃M inversions play a
nontrivial role.
2In fact, since we are dealing here with human perception, an interdisciplinary approach
is needed, including the theory of information, biology, and even some philosophy.
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(X,X) = 0. This null cone is singular - it has an apex at X = 0 and it is
useful to remove this apex. Let us denote the remaining set by C :

C = {X ∈ R
4,2 : (X,X) = 0, X �= 0}. (2.2)

A standard way is to consider the set of all generator lines of the cone Q(X) =
(X,X) = 0 or, what is the same, to divide C by the equivalence relation
X ∼ Y if and only if X = cY for some c ∈ R - then necessarily c �= 0. The
resulting set (a projective quadric) denoted by M̃, M̃ = C/ ∼, happens to
be a four-dimensional compact manifold diffeomorphic to (S3×S1)/Z2 - the
compactified Minkowski space. But there is another option: instead of taking
the quotient by real numbers, we can divide C by a stronger equivalence
relation, namely, X ≈ Y if and only if X = cY, c > 0. The resulting manifold
˜̃M = C/ ≈ is a double covering of M̃.3

We can now embed Minkowski space M = R3,1, with coordinates (xμ) =
(x1, . . . , x4), and with the quadratic form

q(x) = (x1)2 + · · · + (x3)2 − (x4)2, (2.3)

using a variation of the standard formula (cf. [8, p. 80, (B)] and [9, Eq. (9)]):

τ(x) = (x,
1
2
(1 − q(x)),−1

2
(1 + q(x)). (2.4)

It can be easily verified that Q(τ(x)) = 0, thus τ(x) ∈ C , and that X ∈ C is
in τ(M) if and only if X5−X6 = 1. The remaining part of C, namely the part
characterized by the condition X5 = X6, when divided by the equivalence
relation ∼, projects onto the conformal infinity.

With the stronger equivalence relation ≈ we have two non intersecting
embeddings of M into ˜̃M described by:

τ+(x) = (x,
1
2
(1 − q(x)),−1

2
(1 + q(x))). (2.5)

τ−(x) = (x,−1
2
(1 − q(x)),

1
2
(1 + q(x))). (2.6)

The compactified Minkowski space, being a projection of the null cone C , does
not inherit from the quadratic form Q of R4,2 any natural pseudo-Riemannian
structure. It inherits only a conformal structure (of signature (3, 1)) - cf. [9].

2.2. Compactified Minkowski space as a boundary

The null cone C of R4,2 separates two domains D± characterized as follows:

D+ = {X ∈ R
4,2 : Q(X) > 0}, D− = {X ∈ R

4,2 : Q(X) < 0}. (2.7)

Let us consider their projections D+ (resp. D−) obtained by taking the quo-
tient by the equivalence relation ≈ . For every point of D+ (resp. D−) there is
a unique point X in D+ (resp. D−) for which Q(X) = 1 (resp. Q(X) = −1).

3While physics of such a construction is speculative, mathematically this second construc-
tion is not less natural than the standard one.
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Therefore, D± can be, respectively, identified with a hyperboloid Σ± defined
by

Σ± = {X ∈ R
4,2 : Q(X) = ±1}. (2.8)

Now, the quadratic form Q defines a pseudo-Riemannian metric on Σ±. In
fact, we have the following theorem [12, p. 66]4

Theorem 2.1. Σ+ (resp. Σ−) is a complete pseudo-Riemannian manifold of
constant curvature and signature (3, 2) (resp. (4, 1)). The geodesics of Σ±
are intersections P ∩ Σ± of Σ± with planes P through 0 in R4,2. The group
of all isometries of Σ± is O(4, 2).

So, in the projective space P(R4,2) we have two five-dimensional pseudo-
Riemannian manifolds of signatures (3, 2) and (4, 1) respectively, separated
by a compact four-dimensional manifold endowed with a conformal structure
only, of signature (3, 1) - the compactified Minkowski space.

Let us look now at the topology of the two five-dimensional domains Σ±.
For the domain Σ+ we have the defining equation

(X1)2 + · · · + (X3)2 − (X4)2 + (X5)2 − (X6)2 = 1. (2.9)

We can write it as

(X1)2 + · · · + (X3)2 + (X5)2 = (X4)2 + (X6)2 + 1.

It is then clear that X4 and X6 can be arbitrary real numbers, and that
introducing Y i = X i/((X4)2 + (X6)2 + 1), (i = 1, 2, 3, 5) we have

(Y 1)2 + · · · + (Y 3)2 + (Y 5)2 = 1.

Therefore, Σ+ has the topology of S3 × R2. Using a similar reasoning we
easily deduce that Σ−, defined by the condition

(X1)2 + · · · + (X3)2 − (X4)2 + (X5)2 − (X6)2 = −1 (2.10)

has the topology of S1 × R4.

3. An explicit description of the domain Σ−
In this section we will introduce a particular set of local coordinates in Σ− and
calculate an explicit expression for the induced metric. To this end will adapt
the method discussed by Cannon et al. [13, Chapter 7] who, discussing the
“Five Models of Hyperbolic Space”, similarly to Wolf [12, p. 70], consider only
the hyperbolic case of Rn−1,1. Our case of R4,2 is somewhat more singular,
thus some care needs to be taken, but otherwise the formal reasoning is
similar.

4Thanks are due to Pierre Anglès for bringing this reference to author’s attention.
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3.1. Local coordinates and the metric

In Σ− we choose an open set defined by the condition X5 −X6 > 0. On this
set we introduce five coordinates (xμ, λ) ∈ R5 defined by

xμ =
Xμ

X5 −X6
, λ =

1
X5 −X6

> 0. (3.1)

On the other hand, given a point in R5 with coordinates (xμ, λ > 0) we can
embed it in Σ− as follows:

(Xμ) =
xμ

λ
, X5 =

1 − q(x) − λ2

2λ
, X6 = −1 + q(x) + λ2

2λ
. (3.2)

Reader is encouraged to verify by a straightforward calculation that with
the above definition Q(X(xμ, λ)) = −1, and that applying formula (3.1) to
X(xμ, λ) we indeed recover (xμ, λ).

We can now calculate a new metric. In general, when we are dealing with
an embedded manifold parameterized by coordinates xα, its metric gαβ is
induced by a metric GAB on a manifold into which our manifold is embedded,
and it is given by the expression

gαβ =
∂XA

∂xα

∂XB

∂xβ
GAB. (3.3)

In our case, (GAB) = diag(1, 1, 1,−1, 1,−1) and it is easy to calculate gαβ
using formula (3.2). The result of a straightforward calculation is:

(gαβ) =
1
λ2

diag(1, 1, 1,−1, 1). (3.4)

Exactly the same method applies to the region X5 − X6 < 0. We get a
five-dimensional pseudo-Riemannian, conformally flat manifold of constant
curvature and signature (4, 1). We have covered by coordinates two regions
corresponding to different signs of the fifth coordinate. Physicists, when dis-
cussing representations of the conformal group with applications to elemen-
tary particle physics, often restrict their attention to these regions - cf. for
instance [14–16]. Yet, evidently the group O(4, 2) acts on this part with singu-
larities. Like in the case of Minkowski space, in order to avoid singularities one
has to add “conformal infinity”. In our case this is a region where X5 = X6.
This conformal infinity of the five-dimensional domain has a simpler structure
than the one for the Minkowski space. In fact, setting X5 = X6 in (2.10), we
get

(X1)2 + · · · + (X3)2 − (X4)2 = −1
with no scaling freedom. Therefore, the conformal infinity of our five-dimen-
sional domain Σ− is the Cartesian product of R (X5 − X6 ∈ R) and the
standard two-sheeted hyperboloid of the Minkowski space.

3.2. Christoffel symbols and geodesics

Given metric (3.4) it is easy (in our coordinate patch) to calculate the
Christoffel symbols Γμ

νσ and geodesic equations - cf. e.g. [18, Mathemat-
ica Programs: Christoffel Symbols and Geodesic Equations]. The metric is



694 A. Jadczyk Adv. Appl. Clifford Algebras

conformally flat and the only non-vanishing Christoffel symbols are:

Γμ
5σ = − 1

λ
δμσ , Γ5

νσ =
1
λ
ηνσ, Γ5

55 = − 1
λ
. (3.5)

The corresponding geodesic equations, when parameterized by an affine pa-
rameter s, are:

d2xμ

ds2
=

2
λ

dxμ

ds

dλ

ds
,

d2λ

ds2
= − 1

λ

((
dx1

ds

)2

+
(
dx2

ds

)2

+
(
dx3

ds

)2

−
(
dx4

ds

)2

−
(
dλ

ds

)2
)
, (3.6)

where μ, ν, σ = 1, . . . , 4, and ηνσ is the flat Minkowski metric diag(1, 1, 1,−1).
It is interesting to notice that, for λ = const., Minkowski’s space null lines
xμ(s) = suμ, where uμ is a fixed null vector, are geodesics of the five-
dimensional space.

When λ is non-constant, it is convenient to choose λ as a (non-affine)
parameter. The geodesic equations will read in such a case (adapted from
[11, Appendix B, (B7)]) as

0 =
d2xμ

dλ2
− dxμ

dλ

(
Γ5

55 + 2Γ5
5ν

dxν

dλ
+ Γ5

νσ
dxν

dλ

dxσ

dλ

)

+ Γμ
55 + 2Γμ

5ν
dxν

dλ
+ Γμ

νσ
dxν

dλ

dxσ

dλ
, (3.7)

which, in our case, reduces to:

x′′μ(λ) = x′μ(λ)
1 + x′2(λ)

λ
. (3.8)

Here, we denote by a prime the derivative with respect to λ, and denote

x′2(λ) = ηνσ
dxν

dλ

dxσ

dλ
.

The direction of the vector x′μ is kept constant along the geodesics. Thus,
we need to consider three cases: x′2 = 0, x′2 < 0, and x′2 > 0. If x′2 = 0, we
can use a Lorentz rotation (in the variables xμ) to set the direction of x′μ

along the vector (1, 0, 0, 1). The differential equations reduce in this case to
the following ones:

x1′′(λ) = x1′(λ)/λ, x4′′(λ) = x4′(λ)/λ, (3.9)

which, taking into account the constraint x′2 = 0, solve to

x1(λ) = aλ2 + x1
0, x4(λ) = aλ2 + x4

0, (3.10)

with x2 and x3 constant.
When x′2 < 0, we can use a Lorentz rotation to rotate the geodesic into

the (x4, λ) plane. The relevant differential equation:

x4′′(λ) = (1 − x4′(λ)2)/λ (3.11)

solves to (x4(λ) − x4
0)

2 − λ2 = a2 - a hyperbola.
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When x′2 > 0, we can Lorentz rotate the geodesic into the (x1, λ) plane,
and the differential equation

x1′′(λ) = (1 + x1′(λ)2)/λ (3.12)

solves to (x1(λ) − x1
0)2 + λ2 = a2 - a semi-circle.

�4 �2 0 2 4
x1 � x4

1

2

3

4

5
Λ

Figure 1. A family of geodesics in the (x1 = x4, λ) plane
through the point (0, 1).
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Figure 2. A family of geodesics in the (x1, λ) plane through
the point (0, 1).

3.3. Σ− as the space of hyperboloids

The five-dimensional homogeneous space Σ− can be interpreted as a space
of (unoriented) hyperboloids in the Minkowski space along the lines of a gen-
eralized Möbius geometry (cf. e.g., [19, Ch. 1.2]). Let Y be in R4,2 with
Y 5 − Y 6 > 0 and Q(Y ) < 0. Consider a set of all x ∈ M for which
(τ+(x), Y ) = 0. Normalizing Y so that Y 5 − Y 6 = 1 we can write it in
the form

Y =
(
yμ,

1 − q(y) − λ2

2
,−1 + q(y) + λ2

2

)
.

A simple calculation shows that the condition (τ+(x), Y ) = 0 translates then
to q(x − y) = −λ2. For y = 0 this is a double-sheeted hyperboloid with
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Figure 3. A family of geodesics in the (x4, λ) plane through
the point (0, 1).

apex at x1 = x2 = x3 = 0, x4 = ±λ. Each geodesic line in Σ− can thus
be interpreted as a particular one-parameter family of hyperboloids in the
Minkowski space.

3.4. The case of Σ+

The same method as above applies in this case except that there is a change
of signs in front of λ2 in (3.2). The resulting metric is then

(gαβ) =
1
λ2

diag(1, 1, 1,−1,−1), (3.13)

with signature (3, 2). As in the case of Σ−, the conformal infinity is the
Cartesian product of R and, this time, the one-sheeted hyperboloid

(X1)2 + · · · + (X3)2 − (X4)2 = 1.

The Minkowski space can be embedded in our five-dimensional manifold sim-
ply by putting λ = 1. It follows that the direction of the vector x′ is constant
along the geodesics.

Remark 3.1. Following Wolf [12] we have considered in details only the case
of the equivalence relation ≈ . In projective geometry one is using the weaker
relation ∼ . The standard projection can be discussed along the same lines as
above. In that case the regions X5−X6 > 0 and X5−X6 < 0 are identified, so
we can restrict our attention to λ > 0.5 On the other hand, when discussing
the topology - we have to additionally take the quotient by Z2.

5That is why a similar coordinatization is often referred to as the “half-space model” in
literature on hyperbolic geometry - see e.g. [17].
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3.5. Compactification of the five-dimensional space

The manifolds Σ±, having the topology of S2 × R3 and S1 × R4, are non-
compact. They relate to Möbius geometry of hyperboloids in the Minkowski
space. Yet, there is an extension of Möbius geometry - the geometry of Lie
spheres - initiated by Sophus Lie [20] and developed by Wilhelm Blaschke [21]
and Thomas E. Cecil [19]. Using the Lie spheres approach we would end up
with a projective null cone in a seven-dimensional space that would lead to a
compactified version of Σ±. These compact versions would be equipped with
O(4, 3)- (resp. O(5, 2)-) invariant conformal structures. When restricting the
symmetry group to O(4, 2) we would then obtain compactified versions of
our pseudo-Riemannian five-dimensional manifolds Σ±. Yet, as of today, this
line of research seems to be unfinished.6

4. Predecessor: 5-optics of Yu. B. Rumer

In his 2002 paper [6] Jaime Keller gives references to five papers of Albert
Einstein, seven papers of his own, and two references to Yu. B. Rumer [3,
4]. In a long series of papers (years 1949-1959) Yu. B. Rumer developed a
five-dimensional formulation of physics, extending the early ideas of Kaluza,
Klein, Einstein, Bergmann and Bargmann. In [6], Jaime Keller remarks:

Besides the many papers which have been written about
the Kaluza-Klein proposition and their extension to the idea
of hyper-space with one additional dimension (at least) for
each additional interaction included, the direct inclusion of
action as a fifth dimension was proposed as early as the 1949-
1956 by the Russian physicist Y.B. Rumer [13, 14] under the
name of “Action as a spatial coordinate. I-X”. In the work of
Rumer the main foreseen application is to the case of optics
in what he called 5-optics. We should remember that in this
case the action dA = 0 and then the fifth coordinate turns
out to be identically null.

While the meaning of the last part (“the fifth coordinate turns out to be
identically null”) is unclear to the present author, it should be stressed that
Rumer applied his methods to more than the case of optics - although geo-
metrical optics was his starting point. It may be instructive to recall Rumer’s
own comments on his theory. These comments, found in the afterword to his
1956 monograph [3], give a historical overview of the involved ideas.

Rumer mentions that the formal apparatus of his “5-optics” was essen-
tially built in the works of Theodore Kaluza, Oskar Klein, Vladimir Fock,
Albert Einstein and Peter Bergmann. Then he gives a historical overview of
five-dimensional theories with these remarks:

6For a rough justification of such an approach cf. e.g., [22, 23].
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I Kaluza (1921) [24]
1 The extra fifth dimension of the four-dimensional physical space

of the theory of gravity is introduced. Physical meaning of extra
dimension remains open.

2 It is realized that the metric potentials of the 5-space should not
depend on the extra fifth coordinate. A physical meaning of this
condition remains open.

3 In order to have a possibility of a one-to-one correspondence be-
tween 10+4=14 potentials of the theory of gravity and electrody-
namics with 15 metric potentials of the 5-space, an additional con-
dition is being introduced, namely that G55 = 1. Physical meaning
of this requirement remains open.

II O. Klein [25] and V. A. Fock (1926) [26]
1 The relation between 14 potentials of the theory of gravity and

electrodynamics, and 15 metric potentials of the 5-space is made
more precise. A trajectory of a charged particle is described as a
null geodesic line (geometrical ray) in the 5-space. In fact one gets
an equivalence of the problem of relativistic classical mechanics
of a motion of a material point with the problem of geometrical
optics of the ray propagation in the 5-space.

2 It is found that there is a possibility of formulating the quantum
mechanical problem of the motion of a charged particle as a prob-
lem of the wave optics of scalar waves propagation in the 5-space
provided one imposes a periodicity condition

W (x1, x2, x3, x4, x5) = U(x1, x2, x3, x4) exp
(
i(
mc

�
)x5

)
,

while keeping the cylindricity condition for the metric potentials.
3 The problems of a physical meaning of the fifth coordinate, the

cylindricity condition for the metric potentials, and the periodicity
condition for the wave function remain open. The question about
a physical meaning of the condition G55 = 1 remains open.

III A. Einstein and P. Bergmann (1938) [27]
The condition of cylindricity is replaced by a weaker condition of period-
icity of metric potentials in the fifth coordinate. The period is assumed
to be of a microscopic dimension, which, in a first approximation, can be
put equal to zero. In such a case the periodicity condition degenerates
into that of cylindricity.

As there is no equivalence condition for the electromagnetic field,
in all these papers the metric tensor of the 5-space depends on the
ratio e

m for the particle whose motion is being considered, while the
metric tensor for the 4-space is a universal one.

From this fact one has to deduce that the 5-space of five-dimensio-
nal generalizations of the theory of gravity cannot be (extended by one
extra dimension) a universal physical space of general relativity, but it
should have some different physical meaning.
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IV The 5-optics
1 The 5-space of the 5-optics is a (extended by one extra dimension)

configuration space for the test particle under consideration. Met-
ric and topological structure of this space reflects the character of
action of all external matter on the particle.

2 The fifth coordinate of the configuration space has a clear physical
character of action. The 5-space is closed in the fifth coordinate.

3 Instead of the condition of cylindricity for metric potentials and
cyclicity for the wave function, all physical quantities are subjected
to just one condition of periodicity in the 5-th coordinate.

4 One finds that the period of the fifth coordinate has a universal
value of Planck’s constant, what has a clear physical meaning.

5 Quantization of action of a material point is an effect of a periodical
dependence of physical quantities on the action coordinate.

6 The possibility of assuming G55 = 1 in the previous theories is
conditioned by the fact that the 5-eiconal equation

Gμν ∂Σ
∂xμ

∂Σ
∂xν

= 0,

which formulates the classical mechanical problem of motion of
a charged material point, is homogeneous in the metric poten-
tials Gμν . Therefore, in this problem, only fourteen relations be-
tween metric potentials have a physical meaning, and the condition
G55 = 1 does not lead to a contradiction.

7 A different situation arises in the problem of defining metric poten-
tials from given external sources of the field, which is formulated
through Einstein’s equations for the 5-space:

Pλμ − 1
2
GλμP = κQλμ.

These equations are inhomogeneous in the metric potentials.
When solving this problem, the ratio e

m , that enters the expression
for the metric tensor for the 5-space, should be replaced by a uni-
versal quantity c2

√
κ
2π . The value of the potential G55 should then

be derived from the field equations. One should not put G55 = 1
from the beginning, as this leads, for instance, to wrong results in
the problem of a charged point mass.

8 Taking into account the periodical dependence of the electromag-
netic field on the fifth coordinate leads automatically not only to
long-range Coulomb-type forces but also to short-range forces of
Yukawa type.

9 In every resulting classical theory we are obliged to take the limit
� → 0, i.e., we should neglect the periodical dependence of physical
quantities on the action coordinate. In every resulting quantum
theory we are obliged to take into account periodical dependence
of physical quantities on the action coordinate. Therefore, from
the point of view of the 5-optics, it is inappropriate to neglect,
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as it is in classical mechanics, the periodical dependence of the
components of the external field on the action coordinate.
Taking into account this dependence should lead to a prediction
and a discovery of a number of 5-optics effects which could be then
used for an experimental verification of the theory.

In Rumer’s autobiographical notes [28] he mentions that his theory of
1956 was predicting spin 3

2 for the electron - three times too much. This fact
has discouraged Freeman Dyson who, for some time, was following all devel-
opments of Rumer’s theory. It is only in 1959, with the help of V. Pokrovsky,
Rumer was able to find a solution to this puzzle [4].
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