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We comment on the article by M. Özdemir and M. Erdoğdu [9]. We indicate that the
exponential map onto the Lorentz group can be obtained in two elementary ways. The first way
utilizes a commutative algebra involving a conjugate of a semi-skew-symmetric matrix, and the
second way is based on the classical epimorphism from SL(2,C) onto SO0(3, 1).
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1. Introduction
The classical Euler–Rodrigues formula gives the explicit form of the rotation

matrix in R3 in terms of the rotation axis and the rotation angle (see e.g [1] for
a pedagogical introduction by B. Palais and R. Palais). It can be also interpreted as
the explicit formula for the exponential of a 3× 3 skew-symmetric matrix. Various
generalizations to other dimensions have been studied (see e.g. [2]). In physics
a generalization to the Minkowski space especially matters. This problem has been
mentioned by J. Gallier in his lecture notes on Lie groups [3], sending the reader to
the PhD thesis of C. M. Geyer [4]. Geyer indeed has provided such a derivation but
not quite optimal nor complete. In a recent paper E. Minguzzi [5] classified standard
forms of generators and provided the formula for each class separately1. The present
note emerged as an alternative method to the one proposed recently by M. Özdemir
and M. Erdoğdu [9]. Our derivation is based on simple algebraic properties of
the algebra constructed from the generator and its dual. The singular case of the
generator with the quadruple null eigenvalues is also discussed in our note.

1An introduction to such classification can be found in [6, 7].

[39]
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2. Minkowski space generalization of the Euler–Rodrigues formula
Let F be a generator of a one-parameter subgroup of the Lorentz group. We

write F in the following general form that resembles the form of the electromagnetic
field mixed tensor expressed Fµν in terms of the electric and magnetic field vectors
e and b,

F =


0 b3 −b2 e1

−b3 0 b1 e2

b2 −b1 0 e3

e1 e2 e3 0

 . (1)

The “dual” matrix, denoted by F̃ , is obtained from F by a “dual rotation”, that is,
by replacing e→ b, b→−e,

F̃ =


0 −e3 e2 b1

e3 0 −e1 b2

−e2 e1 0 b3

b1 b2 b3 0

 . (2)

We also introduce real numbers u and v defined as

u =
1
4

TrFF̃ = e · b, v =
1
4

Tr F 2
=

1
2
(e2
− b2). (3)

The characteristic polynomials for F and F̃ can now be expressed in terms of u
and v,

det(F − λI) = λ4
− 2vλ2

− u2, det(F̃ − λI) = λ4
+ 2vλ2

− u2. (4)

Let σ and θ be defined as

σ =

√√
u2 + v2 + v, θ = sgn(u)

√√
u2 + v2 − v. (5)

It is clear that σ is nonnegative and θ has the sign of u, where the sgn is defined
to be right continuous, that is sgn(0) = 1. The eigenvalues of F are ±σ and ±iθ
while the eigenvalues of F̃ are ±θ and ±iσ. The following identities follow directly
from the definitions:

v =
σ 2
− θ2

2
, u = σθ. (6)

Let us define T as
F 2
+ F̃ 2

= T . (7)

LEMMA 1. The matrices F, F̃ , T commute. Moreover, the following identities
hold:

FF̃ = F̃F = σθ I, (8)
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F 2
− F̃ 2

= (σ 2
− θ2) I, (9)

F 3
= (σ 2

− θ2)F + σθF̃ , (10)

F 2
=
T + (σ 2

− θ2)I

2
, (11)

F̃ 2
=
T − (σ 2

− θ2)I

2
, (12)

FT = (σ 2
− θ2)F + 2σθF̃ , (13)

F̃ T = 2σθF − (σ 2
− θ2)F̃ , (14)

T 2
= (σ 2

+ θ2)2I. (15)

Proof : Eqs. (8)–(10) follow by a routine matrix algebra from the identities
σθ = e · b and σ 2

− θ2
= e2

− b2. Eq. (11) (resp. (12)) follows by adding (resp.
subtracting) Eq. (7) and Eq. (9). Eq. (13) results in a smilar way. In order to show
Eq. (14) we first multiply Eq. (9) by F̃ and use Eq. (8). Finally, Eq. (15) can be
derived from Eq. (13) multiplied by F , and by using (8) and (9). �

PROPOSITION 1 (Generalized Euler–Rodrigues formula). Assume that σ 2
+θ2 > 0.

Then the following general formula holds,

exp(F t) =
cosh(tσ )+ cos(tθ)

2
I +

σ sinh(tσ )+ θ sin(tθ)
σ 2 + θ2 F

+
θ sinh(tσ )− σ sin(tθ)

σ 2 + θ2 F̃ +
cosh(tσ )− cos(tθ)

2(σ 2 + θ2)
T . (16)

Equivalently, using F 2 instead of T ,

exp(F t) =
θ2 cosh(tσ )+ σ 2 cos(tθ)

σ 2 + θ2 I +
σ sinh(tσ )+ θ sin(tθ)

σ 2 + θ2 F

+
θ sinh(tσ )− σ sin(tθ)

σ 2 + θ2 F̃ +
cosh(tσ )− cos(tθ)

σ 2 + θ2 F 2. (17)

If σ = θ = 0, then

exp(tF ) = I + tF +
t2

4
T = I + tF +

t2

2
F 2. (18)

Proof : In the proof we use the following theorem about generators of one–
parameter matrix groups: If γ (t) is a one-parameter group of matrices, then
γ (t) = exp(Xt), where X = γ ′(0). 2 We consider first the case of at least one of
the numbers σ, θ being nonzero, i.e. σ 2

+ θ2 > 0.
2The proof of this classical theorem can be found, for instance, in An Introduction to Matrix Groups and

their Applications by Andrew Baker, Springer 2002, Theorem 2.17, also available online, the same title and
author, Theorem 2.5: http://www.maths.gla.ac.uk/˜ajb/dvi-ps/lie-bern.pdf.
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Let L(t) denote the right-hand side of Eq. (16). Immediately, L(0) = I, L′(0) = F.
We aim to show that L(t) is a one-parameter matrix group, i.e. that

L(t + s) = L(t)L(s). (19)

The proof is somewhat tedious but straightforward. We write L(t + s) and expand
the functions sin(x + y), cos(x + y), sinh(x + y), cosh(x + y) in terms of products
of functions of the corresponding arguments x, y (i.e. products of t, s and σ, θ).
This way we get a long expression with coefficients at the matrices I, F, F̃ , T .

On the other hand, we multiply L(t)L(s) and obtain coefficients in front of the
products of I, F, F̃ , T . All of these products can be reduced to I, F, F̃ , T using
Lemma 1. Comparing the coefficients in front of I, F, F̃ , T establishes the result.

Suppose now that σ = θ = 0. Then, from Lemma 1, we have that

FT = T 2
= 0, F 2

= T/2. (20)

The group property of L(t) given by Eq. (19) follows then by the following
observation:

L(t)L(s) = (I + tF +
t2

4
T )(I + sF +

s2

4
T )

= I + sF +
s2

4
T + tF +

ts

2
T +

t2

4
T (21)

= I + (s + t)F +
1
4
(s + t)2T .

On the other hand L(0) = I, L′(0) = F, which completes the proof. Eq. (17) follows
from Eq. (16) and Eq. (11). �

REMARK 1. Since we are dealing with commuting matrices, the problem
reduces to a simple commutative symbolic algebra. It can be handled more
efficiently by an adequate software, capable of commutative symbolic opera-
tions.

2.1. Alternative derivation via SL(2,C)
With the four Hermitian matrices3 σµ = σ

µ:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
0 0

0 −1

)
, σ4 =

(
1 0

0 1

)
, (22)

the group homomorphism A 7→ 3(A) from the group of unimodular matrices SL(2C)
onto the connected component of the identity SO(3, 1)0 of the homogenous Lorentz

3By abuse of notation σµ and σµ constitute exactly the same set matrices. Their components are σµAB
and σµAB , (µ = 1, . . . , 4), (A,B = 1, 2).
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group is given by

3(A)µν =
1
2

Tr(AσµA†σν), (µ, ν = 1, . . . , 4). (23)

The completeness relations for σ matrices
4∑

µ=1

σµABσµCD = 2δADδ
B
C , (A,B,C,D = 1, 2), (24)

entail
Tr(3(A)) = |Tr(A)|2. (25)

Taking the derivative of Eq. (23) we arrive at the linear relation (isomorphism)
between infinitesimal generators f (traceless 2× 2 complex matrices) from the Lie
algebra sl(2,C) to the Lie algebra of elements F in so(3, 1):

Fµν =
1
2

Tr(f σµσν + σµf †σν). (26)

With f defined by

f
def
=

1
2

3∑
i=i

(ei + ibi)σi, (27)

we arrive at F given by (1), while f̃ def
= −if gives F̃ . The characteristic polynomial

for f , det(f − λ I) = λ2
−

1
2(v + iu), entails two roots ±ω. There is a simple

relation between ω and σ, θ : ω = 1
2(σ + iθ). Every 2 × 2 complex matrix X

determines a vector in the complex Minkowski space with complex coordinates
xµ = Tr(σµX)/2. There are two scalar products in this space: (x, y) = xT Jy
and {x, y} = x†Jy. The first one is bilinear, while the second one is Hermitian.
Both are SO(3, 1) invariant. X is Hermitian if and only if xµ are real, moreover
Tr(X†εYε)/2 = {x, y} and Tr(XT εXε)/2 = det(X) = (x, y), where ε =

(
0 1
−1 0

)
. If

ξ± are eigenvectors of f belonging to eigenvalues ±ω 6= 0, and if X± = ξ± ⊗ ξ
†
±,

then x± are real isotropic (i.e. (x, y) = {x, y} = 0) eigenvectors of F corresponding
to real eigenvalues ±2<(ω). Vectors y± corresponding to ξ+ ⊗ ξ

†
− and ξ− ⊗ ξ

†
+

are Hermitian space-like (we have {y, y} = 2(||ξ+||2||ξ−||2 − |ξ
†
+ξ−|

2) > 0), bilinear
isotropic (i.e. (y±, y±) = 0), and J -orthogonal to x±, resp. They are eigenvectors of
F corresponding to imaginary eigenvalues ±2=(ω). Since f 2

= (v + iu)I/2 = ω2,
exp(tf ) is easily computed

etf = cosh(ωt) I +
sinhωt
ω

f, (28)

where it does not matter which of the two possible signs of ω is chosen. If ω = 0,
then f has just one eigenvector ξ, vector x, corresponding to ξ is real isotropic, and
F annihilates 2-dimensional plane in the three dimensional hyperplane orthogonal to
x. Moreover, when ω = 0, which happens if and only if f 2

= 0, we get instantly

etf = I + tf, (29)
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which can be also obtained by taking the limit of ω→ 0 in Eq. (28). We can now
expand the functions cos(tω), sinh(tω) of the complex argument tω = t (σ + iθ)
and use Eq. (23) to recover the results of Proposition 1 by straightforward though
somewhat lengthy calculations.
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