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Time of arrival in quantum mechanics is discussed in two versions: the classical axiomatic
“time of arrival operator” introduced by Kijowski and the event enhanced quantum the-
ory (EEQT) method. It is suggested that for free particles the two methods may lead to
the same result. On the other hand, the EEQT method can be easily geometrized within
the framework of Galilei–Newton general relativistic quantum mechanics developed by
M. Modugno and collaborators, and it can be applied to non-free evolutions. The way of
geometrization of irreversible quantum dynamics based on dissipative Liouville equation
is suggested.
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1. Introduction: Why “Time”

In standard quantum mechanics, time is a parameter in Schrödinger’s equation
for the wave functions. Wave functions in QM should be square integrable over
space. We rarely integrate over time. So, there is no canonical “time operator” in
quantum mechanics, while we do have position, momenta, and energy operators.
There is an evident asymmetry between space and time in quantum mechanics.
Certain asymmetry is also present in classical mechanics and field theory. The fun-
damental equations are hyperbolic, the initial conditions (Cauchy’s data) are data
“at a given time”. But in quantum mechanics time is also related to specifically
quantum-mechanical problem of “measurement”. Measurements are usually consid-
ered as “instantaneous in time”. We are measuring physical quantities at different
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times, and we are interested in “time evolution” of these quantities. Yet the ques-
tion of “How to measure time in quantum mechanics?” is asked by physicists and
philosophers again and again [1–4].

1.1. But which time?

Dowling discusses quantum time measurements in his recent monograph reviewing
modern quantum technologies [5] — therefore “quantum time” becomes important
not only as an object interest for mathematical physicists. Dowling also speculates
that [6]:

“. . . there is some ur-theory, likely a phenomenological one, which
unifies non-relativistic quantum theory and non-quantum relati-
vity theory. (. . .) some intermediate unified theory between quan-
tum gravity and what we have now and that this theory in certain
limits produces non-relativistic quantum theory and non-quantum
relativity theory.”

Diosi and Lukacs [7, 8] suggested the need to create a unified theory of Newtonian
quantum mechanics and gravity.

An elegant, pure geometrical, formulation of Newton–Galilei general relativis-
tic quantum mechanics was pioneered by Modugno (with the participation of the
present author) in 1993 [9, 10].

1.2. Geometry of Galilei–Newton relativity

Space-time, in this formulation, is a refined version of that of Galilei and of Newton,
i.e. space-time with absolute simultaneity. In particular, four-dimensional space-
time manifold E of events is fibrated over one-dimensional time B. The fibers Et

of E are three-dimensional Riemannian manifolds, while the basis B is an affine
space over R. Coordinate systems xµ = (x0, xi), i = 1, 2, 3, on E are adapted to
the fibration. In adapted coordinates, any two events with the same coordinate x0

are simultaneous, i.e. they are in the same fiber of E.
Coordinate transformations between any two adapted coordinate systems are of

the form:

x0′
= x0 + const.,

xi′ = xi′(x0, xi).
(1)

Let β be the time form:

β = dx0.

In adapted coordinates, we have β0 = 1, βi = 0. E is equipped with a
contravariant degenerate metric tensor which, in adapted coordinates, takes the
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form 


0 0 0 0
0 g11 g12 g13

0 g21 g22 g23

0 g31 g32 g33


, (2)

where gij (i, j = 1, 2, 3) is of signature (+ + +). We denote by gij the inverse 3× 3
matrix. It defines Riemannian metric on the three-dimensional fibers of E.

Let us consider torsion-free affine connection Γ in E, together with the associated
covariant derivative ∇, that preserves gµν and β:

(∇g)µν = 0, (3)

(∇β)µ = 0. (4)

What is the freedom in choosing such a connection?
The condition (4) is equivalent to the condition

Γ0
µν = 0, (5)

on the connection coefficients. Let us introduce the notation

Γµν,i = gijΓj
µν . (6)

Then the condition (3) is equivalent to the equations:

∂µgij = Γµi,j + Γµj,i. (7)

Now, because of the assumed zero torsion, the space part of the connection can
be expressed in terms of the three-dimensional space metric in the Levi-Civita form:

Γij,k =
1
2
(∂igjk + ∂jgik − ∂kgij). (8)

From the remaining equations:

∂0gij = Γ0i,j + Γ0j,i, (9)

we find that the symmetric part of Γ0i,j is equal to 1
2∂0gij , otherwise the connection

is undetermined. We can write it as:

Γi0,j =
1
2
(∂0gij + Φij), (10)

Γ00,j = Φ0j , (11)

where Φµν = −Φµν is an arbitrary antisymmetric object. It is then natural to
introduce quantities E,B defined by

Ei = Φ0i, Bi = εijkΦjk (i = 1, 2, 3). (12)
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Assuming that the fibers of the space-time manifold E are flat, that is in some
adapted coordinates we have gij = δij , and performing special Galilei transforma-
tion:

x′ = x − vt, (13)

t′ = t, (14)

we easily find that

E′ = E + v × B, (15)

B′ = B. (16)

There are now two ways of interpreting these degrees of freedom in the connec-
tion. First, we may notice that the transformation laws (16) are the same as in the
“electric limit” of Galilean electromagnetism [11, 12]. Therefore, it is tempting to
interpret E and B as proportional to the electric and magnetic fields in Galilean
electrodynamics. But such an interpretation would force us to choose different con-
nections for particles with different ratios of e/m. There is however a different
interpretation: E and B belong to the universal force of gravitation in gravitoelec-
tromagnetism, as it is discussed, for instance, in [13, 14]. This second interpretation
seems to be more natural.

Let J1E be the affine jet bundle J1E
π−→ E.a We can parametrize J1E by

coordinates (xµ, yi). J1E carries the canonical form θ given by

θi = dxi − yidx0. (17)

The connection Γ induces, in a natural way, an affine connection in J1E, there-
fore it defines a one-form νΓ on J1E with values in the vector bundle VE of vectors
tangent to the fibers of E. We can define then the two-form Ω on J1E:

Ω = gmnν
m
Γ ∧ θn. (18)

One can show that the form Ω is closed, dΩ = 0, if and only if the curvature tensor
R of Γ satisfies additional requirements:

Rµ σ
ν ρ = Rσ µ

ρ ν , (19)

where

Rµ σ
ν ρ = gµλR σ

λν ρ. (20)

This happens to be equivalent to the condition on Φ of being closed:

∂[µΦνσ] = 0. (21)

It can be verified by a direct calculation that the condition (21) is covariant with
respect to the transformations (1) between adapted frames, even though Φµν is not
a tensor.

aJets at x ∈ E can be, in this case, identified with tangent vector yµ = (y0, yi) at x for which
y0 = 1.
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1.3. Quantization

With space-time geometry encoded as above, quantization procedure is straight-
forward. The arena for quantization is a principal U(1) bundle Q over E and its
pullback Q† to J1E. Among principal connections on Q† there is a special class of
connections, namely those whose connection forms vanish on vectors tangent to the
fibers of Q† → Q. Quantization is accomplished by selecting a connection ω in this
class for which the curvature form is iΩ. In coordinates, such a connection is of the
form:

ω = i(dφ+ aµdx
µ), (22)

where 0 ≤ φ ≤ 2π parametrizes the fibers of Q,

a0 = −1
2
gijy

iyj +A0,

ai = gijy
j +Ai

and Aν = (A0, Ai) a local potential for Φ:

Φµν = ∂µAν − ∂νAµ. (23)

Schrödinger’s equation can then be interpreted in terms of the parallel transport
(over time) with respect to the induced connection in the bundle of Hilbert spaces
over the fibers of E. Details and extensions can be found in the comprehensive
review [15] and references therein.

1.4. Time of events

The above geometrical formulation of quantization is well-adapted for describing the
continuous evolution in time of wave functions and expectation values of physical
observables. But already in 1913, that is long before quantum theory as we know it
today was invented, Niels Bohr suggested that there are discontinuous transitions
between stationary states of electrons in atoms — in other words: quantum jumps.
While we cannot see electrons jumping from one orbit to another, we can register
photons emitted as a result of these jumps. These registration acts are events,
and we can record their time. Therefore, in quantum theory events, together with
their timing, are important observational data. Events are being recorded also in
nuclear decays. Yet timing of the events was escaping precise quantum mechanical
formulation, mainly because in the mathematical formalism of quantum mechanics
time is a parameter, not an operator. There are good reasons for this: we never
measure time, we measure time of events. But in order to do it, we need to specify
first what kind of events we are looking at. They should be physical events of some
kind, not just abstract mathematical points of space-time continuum.

In 1972, Wigner addressed this problem in his paper “On the time-energy uncer-
tainty relation” [16]. There he introduced the concept of time of arrival at a state.
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However, Wigner did not solve the problem, and, after careful examination, we can
easily notice mathematical and logical errors in his expressions.b

In 1974, two papers appeared addressing the problem of measuring time of
events in quantum theory.

One possible solution to this annoying problem was proposed by Olkhovsky,
Recami and Gerasimchuk in their 1974 paper “Time operator in quantum mechan-
ics” [18], where the authors wrote:

“. . . The fact that the operator 〈〈time〉〉 seems to have pecu-
liar (even if not exceptional) features (∗) led to its unjustified
neglect. As a consequence, the Heisenberg uncertainty correlations
for energy and time got particular obscurity as compared to other
ones.
(∗) We shall see that it does not admit a spectral decomposition, in
nonrelativistic quantum mechanics . . .”

While this approach, via Hermitian but non-self-adjoint operators, is still being
actively pursued (see e.g. the review paper [19]), it is not the approach I will elab-
orate upon in this paper.

1.5. Kijowski appears in time

In the same year, 1974, another classical paper on the subject of time in quan-
tum mechanics was published by Kijowski [20]. Let us demonstrate the essence
of Kijowski’s time operator on a simple toy model: free Schrödinger’s particle in
one-space dimension. Using atomic units in which mass of the particle m = 1 and
Planck’s constant � = 1 Schrödinger’s equation reads:

Ψ ∈ L2(R), i∂Ψt/∂t = HΨt, (24)

with

(HΨ)(x) = −1
2
∂2Ψ(x)
∂x2

. (25)

Then H = H∗, and the equation has a formal solution

Ψt = eiHtΨ0, ‖Ψt‖ = const. (26)

Kijowski considered the event of particle crossing the point x = 0, and proposed
a solution that he also proved to be a unique one under a number of natural
geometrical conditions. Kijowski’s solution goes as follows.

bBut, quoting from Good, a British brilliant mathematician, who worked as a cryptologist with
Alan Turing: “It is often better to be stimulating and wrong than boring and right.” See [17, p. 1].

1460019-6

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 2

01
4.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 Y

A
L

E
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/0
1/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 6, 2014 15:52 WSPC/S0219-8878 IJGMMP-J043 1460019

What is time in quantum mechanics?

Let ψ̃(k) be the Fourier transform of Ψ0(x):

ψ̃(k) =
1√
2π

∫ ∞

−∞
Ψ0(x)e−ikxdx. (27)

Define:

ψ+(τ) =
1√
2π

∫ ∞

0

√
kψ̃(k)e

−ik2τ
2 dk, (28)

ψ−(τ) =
1√
2π

∫ 0

−∞

√−kψ̃(k)e
ik2τ

2 dk. (29)

Then the probability of the event of crossing x = 0 at time τ is given by the formula:

p(τ) = |ψ+(τ)|2 + |ψ−(τ)|2. (30)

The two terms in the above formula correspond to particles arriving at x = 0 from
the left and from the right, respectively.

1.5.1. Example: Free Gaussian packet

Consider the following Gaussian wave packet

Ψ(0, x) = 4

√
2
π
e−(x+4)2+4ix+16i. (31)

It is centered at x = −4 and its center moves with velocity v = 4 to the right. We
can write the solution of the free Schrödinger’s equation with this initial condition
explicitly:

Ψ(t, x) =
4

√
2
π exp

(
−8t+i(x+4)2+4(x+4)

2t−i

)
√

1 + 2it
. (32)

The center of this wave packet moves at time t = 1 to the origin x = 0 (Fig. 1). Its
Fourier transform Ψ̃ defined by

Ψ̃(t, k) =
1√
2π

∫ ∞

−∞
Ψ(t, x)e−ikxdx, (33)

keeps its shape constant in time. Only its phase (not shown in Fig. 2) oscillates. For
a Gaussian wave packet, Kijowski’s amplitudes ψ+(τ) and ψ−(τ) can be computed
explicitly in terms of Bessel functions. However, these explicit expressions are rather
complicated and do not give us any insight into their behavior. It is better to
represent them graphically. From Figs. 3 and 4, one can see that ψ+(τ) behaves in
an expected way: it has its maximum around τ = 1. Indeed, it would take τ = 1
for a classical particle with velocity v = 4 to move from x = −4 to x = 0. The
amplitude of the probability distribution from ψ−(τ) is so small that it can be
neglected (it mainly comes from the part of the Gaussian distribution that is on
the right of x = 0 and has negative momentum component).
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Fig. 1. Free motion of the Gaussian wave packet Ψ(t, x).

Fig. 2. Fourier transformed evolution Ψ̃(t, k).

1.5.2. Critics and replies

Kijowski proved that his “Time of Arrival” is unique under certain well-defined
mathematical conditions. His solution, though generally accepted as mathemati-
cally sound, was criticized on other grounds. Grot, Tate and Rovelli [21] criticized
Kijowski’s solution in these words:

“Kijowski [20] obtained a probability distribution, but not on the
usual Hilbert space; thus the interpretation of the wave function in
terms of familiar quantities is obscure.”
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Fig. 3. Right mover time of arrival distribution.

Fig. 4. Left mover time of arrival distribution.

Delgado and Muga [22] repeated much the same:

“Our results turn out to be similar to those previously obtained by
Kijowski [20]. However, the approach by Kijowski was based on the
definition of a nonconventional wave function . . .”

Kijowski countered in [23]:

“. . . I want to stress that the classification nonconventional wave
function . . . whose relation to the conventional wave function is
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unclear could only be conceived by somebody who did not read my
paper carefully . . .”

More serious objections came from Mielnik [24],c who summarized the situation
as follows:

“It thus seems, that the axioms about the time of arrival omit quite
a number of physical aspects. It brings little comfort that they give
a unique probability. On the contrary, it brings new difficulties.”

Kijowski, in reply [26], essentially agreed with Mielnik:

“. . . My construction of ‘arrival time’ is indeed mathematically

unique and final within the conceptual framework of the standard
interpretation of quantum mechanics. But I always considered it
as an argument for further analysis of the conceptual framework of
quantum theory. . . .
Unfortunately at the moment there is no measurement theory,
which could replace this (naive and very unsatisfactory!) picture. I
wish Bogdan Mielnik to find one.”

Apart from the seriously motivated objection raised by Mielnik, there is also another
issue here, related to the subject of this paper: Kijowski’s “time of arrival” heavily
depends on the fact that we are dealing with free propagation in flat space and
does not seem to be directly applicable in the presence of external potentials —
cf. [27, p. 10] and references therein. Moreover, it essentially depends on Fourier
transform, and Fourier transforms do not translate easily from flat spaces to curved
manifolds. Therefore, it is rather improbable that Kijowski’s time of arrival can be
adjusted to a geometrical framework of quantum mechanics in general Galilei–
Newton space-times outlined in Sec. 1.2.

If so, what other options do we have?

2. Event Enhanced Quantum Theory: Time of Events

True “geometrical quantization” must join two branches of mathematics: geometry
and probability. While geometrical part is well-developed, the probabilistic part is,
till now, mostly neglected. Quantum theory is a theory of measurements, and mea-
surements are irreversible processes that do not necessarily destroy objects. Quan-
tum mechanics, therefore, must include irreversibility. Quoting from Prigogine [29]:

“I believe that we are at an important turning point in the history
of science. We have come to the end of the road paved by Galileo
and Newton, which presented us with an image of time-reversible,

cIn 1994, Mielnik stated and analyzed a more general “Screen Problem” in quantum mechan-
ics [25].
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deterministic universe. We now see the erosion of determinism and
the emergence of a new formulation of laws of physics.”

In this section, I will propose a way of including irreversibility and measure-
ments into a geometrical formulation of quantum mechanics in a Galilei–Newton
space-time. My suggestion is based on “event enhanced quantum theory” (EEQT)
described, for instance, in [30].

2.1. Main concepts of EEQT

EEQT preserves a general algebraic scheme of quantum mechanics (Hilbert spaces,
algebras of operators, states), but without its a priori physical interpretation. Phys-
ical interpretation follows there from dynamics. Dynamics is irreversible. It can be
described mathematically at two different (but equivalent) levels. Either proba-
bilistically, on the level of single systems, or, statistically, on the level of ensembles
of systems. For single systems, the Schrödinger equation is modified if measure-
ments are taking place. We have stochastic quantum jumps separating periods of
a continuous evolution. Jumps are accompanied by changes of pointer positions on
measuring devices. This description requires the machinery of stochastic processes
and it does not constitute an easy entry point for geometrization.

The alternative description, on the statistical ensemble level, along the ideas
championed by Prigogine, requires, I believe, only adding to the present repertoire of
geometrical tools, a few other tools that have already been developed in differential
geometry, although for a different reason.

2.2. Time of arrival according to EEQT

In EEQT, a detector is characterized by a sensitivity parameter κ > 0. Here, let
us compare time of arrival obtained from EEQT with that of Kijowski. With the
same configuration as in Sec. 1.5.1, and with the idealized Dirac’s delta detector
at x = 0, using the formulas from [28] (cf. also [31, 32]), we obtain (numerically)
probability distributions shown in Fig. 5: these are unnormalized probabilities —
the probability P (∞) that the particle will be detected in finite time is smaller than
one. Some particles (wave packets) will pass the screen without being detected, some
will be reflected without triggering the detector. The value of P (∞) depends on
the sensitivity parameter κ, as can be seen in Fig. 6. It is then natural to normalize
the probability curves — they will then represent the probability curves of those
particle only that trigger a detection event. The normalized probability densities
are shown in Fig. 7. It can be seen from Fig. 6 that there is an optimal value of
κ for which P (∞) ≈ 0.5. This value, for our Dirac delta detector, happens to be
(numerically) twice the velocity of the Gaussian wave packet, in our case κ = 8.0.
Comparing now the optimal EEQT time of arrival normalized probability curve
with that of Kijowski’s we can see that they are almost indistinguishable. Perhaps
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Fig. 5. Time of arrival according to EEQT.

Fig. 6. Total probability of detection.

they are exactly the same, and the small difference shown in Fig. 8 is the result of
numerical approximation? This question needs further research.

2.3. Geometrization of the Liouville equation?

Quantum theory is a statistical theory, therefore certain elements of probabilistic
machinery are necessary whenever models are to be compared with experiment.
Usually this is done via Born’s interpretation of quantum probability amplitudes,
but Born’s interpretation is an additional axiom that does not follow from the
dynamics. Also, if we want to take into account measurement processes, additional
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Fig. 7. Normalized arrival times for different κ.

Fig. 8. Is the difference between the two curves only due to the numerical approximation?

problems appear. Prigogine advocated what he called a “Unified Formulation of
Quantum Theory” that would take into account, from the very beginning, the
inherent irreversibility of event creation which is the basis of any observation, in
particular observation of time of arrival.

Following Prigogine’s ideas the fundamental mathematical object is the “den-
sity matrix” and the fundamental differential equation is the Liouville equation.
Schrödinger’s equation does not describe quantum jumps, one has to use a separate
stochastic mechanism for that. But Liouville’s equation can take into account the
presence of measuring devices. It is a differential equation, and it should be possible
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to give a geometric meaning for Liouville’s equation in a general Galilei–Newton
geometrical background. I will now provide few ideas about how this can be done.

2.3.1. Liouville’s equation

In the standard flat space formulation of quantum mechanics, a particle detector is
described by an operator F, which can explicitly depend on time t. In the simplest
case, F is an operator of multiplication by a non-negative function of space-point:

(FtΨ)(x) = ft(x)Ψ(x). (34)

Quantum mechanical statistical state is described by a “density matrix” (or “mixed
state”) ρt. ρ, at each time t, is a positive operator of trace one. The relation between
wave functions and density matrices is such that to each wave function (quantum
state) we can associate a density matrix — the orthogonal projection operator onto
this state. Such density matrices describe pure states. In general, however, a density
matrix does not correspond to a pure state. Without any measurements, when the
dynamics is reversible and described by a self-adjoint Hamilton operator H (for
simplicity let us assume that H does not depend explicitly on time), Schrödinger’s
equation can be equivalently written in terms of the time-dependent density matrix
as follows:

dρt

dt
= −i[H, ρt]. (35)

Equation (35) is known as the Liouville form of the quantum mechanical state evo-
lution. One can easily check that such an evolution preserves the purity of states. It
is completely equivalent to the Schrödinger equation except for one fact: quantum
mechanical effects such as, for instance, Aharanov–Bohm effect, or even simple dou-
ble slit experiment, are harder to “explain” in the density matrix formalism, where
the phase of the wave function is not explicitly represented. Feynman’s method of
superposition of amplitudes leads to the results much easier.

When there are measuring devices around, quantum dynamics becomes irre-
versible. Time evolution is no longer given in the form (35), pure states evolve, in
general, into mixed states. For the case of one detector described by an operator Ft

(not necessarily Hermitian), the Liouville equation has additional terms. It takes
the form

dρ

dt
= −i[H, ρ] + F †

t ρFt − 1
2
{F †

t Ft, ρ}, (36)

where the curly bracket stands for the anticommutator. One can easily check that
this equation preserves both positivity and trace of ρ. It is this form of the Liouville
equation that I propose as a good candidate for geometrization.d

dIn the case of the Dirac delta counter located at x = 0, discussed in Sec. 2.2, F is an “improper”
operator of “multiplication” by

√
κδ(x) and f2 is the “multiplication” by κδ(x). Of course, as it

stands, it does not make sense mathematically, but it does make sense with a proper approach
(limiting procedure) — the results are finite, as a physicist would expect.
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2.3.2. Geometrization of density matrices

The Hamiltonian operator and the detector operator are both local, therefore they
can be rather easily expressed in terms of local geometrical objects. It is not so
with a general density matrix. Assuming however that fibers of the Galilei–Newton
space-time E are compact Riemannian manifolds, we can assume that ρ at any
given time t is an integral operator defined by a kernel function ρ(x, y):

(ρΨ)(x) =
∫

Et

ρ(x, y)Ψ(y)dV (y), (37)

where dV is the volume form of the Riemannian metric on the fiber. In such a form
it should be now possible to express the dissipative quantum mechanics encoded in
Eq. (36) in purely geometrical terms.

Of course, we will have to deal now with two-point geometrical objects, but
the path here was marked out long ago. Einstein and Bargmann discussed two-
point tensor fields in [33, 34], while Synge [35, Chap. 2] derived many important
properties of the two-point “world function” in his formulation of general relativity
theory.

3. Conclusions

Paraphrasing Kijowski “Unfortunately at the moment there is no measurement
theory, which could replace this (naive and very unsatisfactory!) picture. I wish
Bogdan Mielnik to find one.” — I would rather say:

“Fortunately at the moment there are measurement theories which
could replace this naive and very unsatisfactory (orthodox) picture.
I wish more mathematicians and mathematical physicists would get
involved in this research.
Geometry is pretty. Probability, on the other hand, is exciting, and
it shows the way toward even prettier (conformal ) geometry, and
more satisfactory physics.”
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