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Abstract. We describe the action of the symplectic group on the homogeneous space
of squeezed states (quantum blobs) and extend this action to the semigroup. We then
extend the metaplectic representation to the metaplectic (or oscillator) semigroup and
study the properties of such an extension using Bargmann-Fock space. The shape geometry
of squeezing is analyzed and noncommuting elements from the symplectic semigroup are
proposed to be used in simultaneous monitoring of noncommuting quantum variables —
which should lead to fractal patterns on the manifold of squeezed states.
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1. Introduction

While the manifold of all quantum states of a mechanical system is infi-
nite dimensional, it contains a finite-dimensional manifold of special states
— quantum blobs, as Maurice de Gosson termed them in [1, 2]. They are
“minimal uncertainty states” — up to phase space rotation. Other authors,
having mainly the geometrical properties in mind, research closely related
Siegel-Jacobi manifolds [3, 4, 5]. These are manifolds of states that can be
obtained from the ground state of the standard multidimensional harmonic
oscillator by applying squeezing and phase space translations.

The manifold of squeezed states is transformed into itself under quantum
mechanical unitary evolutions stemming from quadratic hamiltonians. That
is one of the important reasons why it is of interest. But, what is even
more important for us: it is also preserved under quantum measurements
of gaussian type phase space variables. Recently physicists are paying more
and more attention to quantum phenomena during a continuous monitoring
of several noncommuting variables, cf., e.g. [6, 7]. Quantum jumps caused
by such monitoring lead to fractal patterns on the Bloch sphere — quantum
fractals. The generation mechanism and properties have been described in
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the monograph [8]. In the present work we move from simple qubits to
infinite dimensional Hilbert spaces, but restricting our attention to the, still
manageable, finite dimensional manifold of squeezed states.

Here we will not be concerned with phase space translations, we will con-
centrate our discussion on squeezed states centered at the origin of the phase
space. In Sect. 2 we define the symplectic group, first in its real realization,
then the isomorphic complex version that is so useful for understanding the
geometric properties of squeezing (cf. Sect. 6) and for the metaplectic repre-
sentation (cf. Sect. 4.3) in the Bargmann-Fock space (cf. Sect. 4). Unitary
operators from the metaplectic representation can be used in quantum state
monitoring, they lead to quantum fractal patterns, but only at the boundary
of the unit disk that parametrizes squeezed states for one degree of freedom
(cf. Sect. 7). Using unitary operators has the additional disadvantage that
probabilities of different quantum jumps are state independent, therefore ob-
servation of the detectors give no information about the quantum state. For
quantum state monitoring it is therefore better to use the operators repre-
senting the symplectic semigroup. These can be formally obtained as analytic
continuation of unitary operators for quadratic Hamiltonians. For example
the operator eitP

2
is unitary for real t, but is a bounded positive operator

for t = iκ, κ > 0. The operator e−κP
2

can be considered as approximating
delta function at the momentum p = 0, it can be used for the (fuzzy) mon-
itoring of the momentum of the particle as it detects when the particle has
the momentum close to zero.

At the matrix level these operations on squeezed states are described
by a semigroup. Semigroup extensions of the symplectic group have been
discussed in the past by various authors and in Sect. 2 we provide a short
review. For us it is important to know how semigroup elements operate on
the manifold of squeezed states. At the end of Sect. 3 we propose to use the
natural linear fractional transformation. This is justified later when we derive
the formula for operation of the operators from the oscillator semigroup on
Hilbert space squeezed states in Sect. 5.1. We are merely touching the tip of
the iceberg there and this part of the theory poses open questions and is in
need of further development.

In Sect. 6 we introduce the Wigner distribution for the study of the shape
of squeezed states in the phase space. The parametrization of squeezed states
by complex symmetric matrices of norm less than 1 is the most convenient
here. We use the symmetric singular value decomposition theorem there
and justify this way the statement that squeezing can be decomposed into
rotation and shrinking–expanding.

At the end of this paper we provide somewhat disorganized preliminary
results of simulation of quantum fractals resulting from random walk on
squeezed states parametrized by points of the interior of the Poincaré disk.
Random application of several noncommuting elements of the symplectic
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group lead to a chaotic pattern with Cantor set-like angular distribution.
The points tend quickly to the boundary — the unit circle.

In order to get fractal patterns inside the disk — semigroup rather than
group elements are needed. These elements map the disk into but not onto,
even if they are injections. An example of the pattern (a movie with a contin-
uously varying squeezing parameter) obtained by using four noncommuting
contractions from the oscillator semigroup can be perused online [23].

2. The Symplectic Group and Semigroup

In quantum theory of a mechanical system with n degrees of freedom the
canonical quantization is accomplished by selecting selfadjoint position and
momentum operators Qα = Q∗α and Pα = P ∗α satisfying the canonical com-
mutation relationsa:

[Qα, Qβ] = [Pα, Pβ] = 0 , [Qα, Pβ] = iδαβ, α, β = 1, . . . , n . (1)

It is convenient to introduce a vector Z of 2n selfadjoint components Zk = Z∗k ,
k = 1, . . . , 2n:

Z =



Q1

. . .
Qn
P1

. . .
Pn

 . (2)

The canonical commutation relations (1) can then be written as

[Zk, Zl] = iJkl, k, l = 1, . . . , 2n , (3)

where

J =

[
0 In
−In 0

]
(4)

and In is the n × n identity matrix. In the future we will simply write I
instead of In.

We can make a new vector Z̃k with selfadjoint components by taking real
linear combinations of Zk :

Z̃k =

2n∑
l=1

SklZl . (5)

Then, as it is easy to see, Z̃ satisfy also the canonical commutation relations
if and only if the matrix S is symplectic, i.e., SJST = J , where ST denotes
the matrix transposed to S.

aWe are assuming the system of units in which the (numerical value of) the Planck
constant ~ = 1.
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2.1. The symplectic group

We denote by Mn(R) (resp. Mn(C)) the algebra of all real (resp. complex) n×
n matrices, and by Sp(2n,R) (resp. Sp(2n,C)) the group of real (resp. com-
plex) symplectic matrices

Sp(2n,R) = {S ∈ M2n(R) : STJS = SJST = J} , (6)

Sp(2n,C) = {S ∈ M2n(C) : STJS = SJST = J} . (7)

We are mainly interested in the group of real symplectic matrices, but com-
plex symplectic matrices will also appear. For a real or complex block matrix

S =

[
λ µ
ν ρ

]
the conditions (6) or (7) read

λρT − µνT = I (or ρλT − νµT = I), (8)

λµT = µλT and νρT = ρνT , (9)

or, equivalently

λTρ− νTµ = I (or ρTλ− µT ν = I) , (10)

λT ν = νTλ and ρTµ = µTρ . (11)

Later on, when examining the action of the oscillator semigroup on squeezed
states, we will need the following lemma

LEMMA 1 Let

S =

[
λ µ
ν ρ

]
∈ Sp(2n,C)

and let A be n × n complex symmetric matrix. If λ + µA is invertible, then
A′ = (ν + ρA)(λ+ µA)−1 is also symmetric.

Proof. Assuming A = AT and λ+ µA invertible, we have

A′T = (AµT + λT )−1(AρT + νT ) .

The condition A′ = A′T reads then as

(AµT + λT )−1(AρT + νT ) = (ν + ρA)(λ+ µA)−1 ,

or, equivalently:

(AρT + νT )(λ+ µA) = (AµT + λT )(ν + ρA) .
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But the last equation is automatically satisfied taking into account (10) and
(11). �

We will use the following matrices C and C−1 that define the Cayley trans-
formation and its inverse

C =
1√
2

[
I iI
I −iI

]
, C−1 = C∗ =

1√
2

[
I I
−iI iI

]
.

For the image M2n(R)c of M2n(R) under the Cayley map we have

M2n(R)c = CM2n(R) C−1 =

{[
λ µ
µ̄ λ̄

]
: λ, µ ∈ Mn(C)

}
.

Defining

K =

[
I 0
0 −I

]
, (12)

Spc = C Sp(2n,R) C−1, (13)

the following proposition lists the important properties of the matrices of the
complex realization Spc of the symplectic group Sp(2n,R).

PROPOSITION 1 (Folland [14, pp. 175-176]) If

S =

[
λ µ
µ̄ λ̄

]
∈ M2n(R)c ,

then the following are equivalent

(i) S ∈ Spc.

(ii) S∗KS = K.
(iii) λλ∗ − µµ∗ = I and λµT = µλT .

(iv) λ∗λ− µT µ̄ = I, and λT µ̄ = µ∗λ.

In particular, as it follows from (ii), Spc = M2n ∩U(n, n). Moreover, if

S =

[
λ µ
µ̄ λ̄

]
∈ Spc,

then

(v) λ is invertible and ||λ|| ≥ 1.

(vi) ||λ−1µ||2 = ||µ̄λ−1||2 = 1− ||λ||2.

(vii) λ−1µ = (λ−1µ)T and µ̄λ−1 = (µ̄λ−1)T .
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(viii) Denoting U (n) = C Sp(2n,R) ∩ (O(2n)) C−1, we have

U (n) =

{[
λ 0
0 λ̄

]
: λ ∈ U(n)

}
=

{[
λ µ
µ̄ λ̄

]
∈ Spc : µ = 0

}
,

and U (n) is a maximal compact subgroup of Spc.

Remark 1 While most of the statements in the proposition above are rather
straightforward to prove, the equivalence of (iii) and (iv) is less evident. It
comes from the realization that they express the conditions S−1S = I and
SS−1 = I, while

S−1 = KS∗K =

[
λ∗ −µT
−µ∗ λT

]
according to (ii).

Remark 2 For a general, not necessarily symplectic, block matrix

S =

[
λ µ
ν ρ

]
the conditions S∗KS = K of being in U(n, n) are

λ∗λ− ν∗ν = ρ∗ρ− µ∗µ = I , λ∗µ− ν∗ρ = µ∗λ− ρ∗ν = 0 . (14)

2.2. The symplectic semigroup

We follow here, with slight changes, the exposition given in the monograph
[18] and the references therein, in particular [12, 13, 11, 22, 16, 17], and also
Ch. 5 in Folland [14]. As there are several semigroups involved it is not
always clear what is the exact definition of the oscillator or symplectic, or
metaplectic, semigroup. First of all we have semigroups at the level of sym-
plectic matrices, then we have their projective representations by their kernel
operators in the Bargmann space. We start with matrices.

We consider the space C2n equipped with the pseudo-Hermitian form
defined by the matrix K — cf. (12). We set K(v) = v∗Kv. Vectors v ∈ C2n

with K(v) > 0 we call positive. Symplectic matrices from Sp(2n,C) which
maps positive vectors into positive vectors form a semigroup. We denote this
semigroup S+

K :

S+
K = {S ∈ Sp(2n,C) : K(v) > 0 implies K(Sv) > 0 ∀ v ∈ C2n} . (15)

A smaller semigroup consists of complex symplectic matrices S for which
K(Sv) ≥ K(v) for all v ∈ C2n. We denote this semigroup by SK,

S+
K ⊇ SK = {S ∈ Sp(2n,C) : K(Sv) ≥ K(v) ∀ v ∈ C2n}. (16)
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Its interior, that is the set of all complex symplectic matrices with K(Sv) >
K(v) for all 0 6= v ∈ C2n is denoted SoK :

SoK = {S ∈ Sp(2n,C) : K(Sv) > K(v) ∀ 0 6= v ∈ C2n} .

Thus we have SoK ⊂ SK ⊆ S
+
K .

b The group Spc is a subset of SK and it is a
part of the boundary (Shilov boundary, cf. [17]) of SoK.

Later on we will need the following Lemma

LEMMA 2 If

S =

[
λ µ
ν ρ

]
is in S+

K , then λ is invertible, νλ−1 is symmetric with ||νλ−1|| < 1, and

ρ = (I + νµT )λ−1T = λ−1T (1 + νTµ) = λ−1T + νλ−1µ . (17)

Proof. Invertibility of λ follows by specializing the result of Lemma 3 to the

case of A = 0. If u ∈ Cn, u 6= 0, then the vector

[
u
0

]
is positive. Therefore,

the vector

[
λu
νu

]
= S

[
u
0

]
should be also positive, i.e., ||λu||2 − ||νu||2 >

0. Setting, in particular, u = λ−1v, we get ||νλ−1v||2 < ||v||2. Therefore,
||νλ−1|| < 1. Finally, (17) follows from (8)–(11). �

3. The Homogeneous Domain Dn Parametrizing the Squeezed
Coherent States

Within the framework of quantum mechanics the symplectic group acts on
the Hilbert space of quantum states via the so called metaplectic representa-
tion. Among its orbits there is an important orbit of squeezed coherent states.
Geometrically the manifold of squeezed coherent states can be realized as a
bounded complex homogeneous domain that we will describe now.

Using Proposition 1, (vi) and (vii) we can associate to each matrix S =[
λ µ
µ̄ λ̄

]
the complex symmetric matrix h(S) = A = µ̄λ−1, with ||A||2 =

||A∗A|| = ||AA∗|| < 1. Let Dn denote the space of all such matrices

Dn =
{
A ∈ Mn(C) : A = AT and ||A|| < 1

}
.

bThe semigroup S+
K , though natural in the present context, is not being discussed in the

quoted references. I do not know if it is indeed essentially larger than SK. In the quoted
literature K is often replaced by −K, so that one can talk about contractions rather than
expansions as in K(Sv) > K(v).
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Thus we have the following map h : Spc → Dn

h : Spc 3
[
λ µ
µ̄ λ̄

]
7−→ A = µ̄λ−1 ∈ Dn .

The following results summarize the important properties of Dn.

LEMMA 3 For every A ∈ Dn and every S =

[
λ µ
ν ρ

]
∈ S+

K the matrix

A′ = λ+ µA is invertible.

Proof. With the assumptions as in the statement of the lemma suppose, to
the contrary, that there exists v 6= 0 in Cn such that (λ + µA)v = 0. From

A∗A < 1 we have that K
([

v
Av

])
= v∗(I −A∗A)v > 0. But

S

[
v
Av

]
=

[
λ µ
ν ρ

] [
v
Av

]
=

[
0

νv + ρAv

]
,

with K
(
S

[
v
Av

])
≤ 0, contrary to the assumption that S maps positive

vectors into positive vectors. �

PROPOSITION 2 For S,S ′ ∈ Spc, h(S) = h(S ′) iff S ′ = SU , where U ∈
U (n). Moreover, the map h is onto; in fact, if A ∈ Dn, then ι(A) defined by

ι(A) =

[
Λ A∗Λ̄
AΛ Λ̄

]
, Λ = (I −A∗A)−1/2, Λ̄ = (I −AA∗)−1/2 (18)

is in Spc and, for all A ∈ Dn, we have h(ι(A)) = A. For S =

[
λ µ
µ̄ λ̄

]
∈ Spc

we have

Sι(A) = ι(S ·A) , where S ·A = (λ̄A+ µ̄)(µA+ λ)−1. (19)

Proof. Let S =

[
λ µ
µ̄ λ̄

]
, S ′ =

[
λ′ µ′

µ̄′ λ̄′

]
∈ Spc, and assume that h(S) =

h(S ′), that is we have:

µ̄λ−1 = µ̄′λ′
−1
. (20)

Using the above we have that

[
λ′ µ′

µ̄′ λ̄′

]
=

[
λ µ
µ̄ λ̄

] [
λ−1λ′ 0

0 λ̄λ̄′

]
, i.e.,

S = S ′U, where U =

[
λ−1λ′ 0

0 λ̄λ̄′

]
. Since, U = S′−1S, we have that

U ∈ Spc, and it follows from Proposition 1, (viii) that U ∈ U(n).
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For A = AT we have A∗A = AA∗. Therefore, with Λ defined as the
inverse of positive square root of I − A∗A > 0, we have Λ̄ = (I − AA∗)−1/2.
Moreover, for every nonnegative integer p we have A(A∗A)p = (AA∗)pA
and A∗(AA∗)p = (A∗A)pA∗, therefore for any analytic function f we have
Af(A∗A) = f(AA∗)A. In particular Λ = Λ̄A∗ and AΛ̄ = ΛA∗. Then it easily
follows that ι(A) ∈ Spc, while h(ι(A)) = A and (19) follow from the very
definitions of ι and h. �

Thus Dn is a homogeneous space for Spc that can be identified with the
quotient Spc/U(n).

We will see in Sect. 4.3 that the semigroup S+
K acts on Dn using the

natural extension of (19). For S =

[
λ µ
ν ρ

]
we set

S ·A = (ρA+ ν)(µA+ λ)−1. (21)

If A = 0, we get S · 0 = νλ−1, and we know that νλ−1 is in Dn from Lemma
2. For a general A ∈ Dn we can write A = ι(A) · 0, and, since ι(A) is an
isometry, Sι(A) is again in S+

K . Therefore, S ·A = (S · ι(A)) · 0 has norm less
than 1, thus S ·A is in Dn for every S ∈ S+

K and every A ∈ Dn.

4. The Bargmann-Fock Space

The discussion of the coherent squeezed states, the metaplectic representation
of the symplectic group, and the oscillator semigroup is most conveniently
done in the Bargmann-Fock space of holomorphic functions. That is why we
choose the Bargmann-Fock rather than the Schrödinger representation here.
The Bargmann-Fock space Fn is the space of entire functions of the variable
z ∈ Cn, square integrable with respect to the measure

dµ(z) = π−n exp(−|z|2)dλ(z) , (22)

where dλ(z) is the Lebesgue measure on Cn.
The space Fn has the remarkable property of already being a complete

Hilbert space (thus no completion is needed). Bargmann [10] defines the
isometry B from the standard Schrödinger representation space L2(Rn) to
Fn by

(Bψ)(z) = π−n/4 exp{−z2/2}
∫

exp{−x′2/2 +
√

2z · x′}ψ(x′) dnx′ . (23)

The inverse transform is given by

ψ(x) = π−n/4e−
x·x
2

∫
e−

z̄·z̄
2

+
√

2z̄·xf(z) dµ(z) , (24)
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for f(z) = (Bψ)(z).
In particular, if φ0(x) is the standard Gaussian function, the ground state

of the n-dimensional harmonic oscillator

φ0(x) = π−n/4e−|x|
2/2 ,

then Bφ0(z) = 1(z) = 1. The quantum mechanical canonical position and
momentum operator qk and pk in the Bargmann-Fock space are given by

qk = 2−1/2(zk + dk) , pk = i2−1/2(zk − dk) ,

where

(zkf)(z) = zkf(z) , (dkf)(z) =
∂f(z)

∂zk
,

and zk, dk correspond to harmonic oscillator creation and annihilation oper-
ators (assuming units in which ~ = ω = m = 1.)

4.1. Gaussian kernels composition

Bounded operators in Fn are realized as integral kernels. A kernel K(z, w)
defines the operator TK

(TKf)(z) =

∫
K(z, w)f(w)dµ(w) .

With Λ = (A,B,C), A,B,C ∈Mn(C), we are interested in Gaussian kernels
of the form

KΛ(z, w) = exp
{1

2
z ·Az +

1

2
w̄ ·Bw̄ + z · Cw̄

}
,

where A,B are symmetric matrices. Brunet and Kramer [13, p. 211], using
the Itzykson integral formula (cf. Appendix A) calculate explicitly the result
of the composition TΛ1TΛ2 of two operators TΛ1 and TΛ2 determined by such
kernels, where Λi = (Ai, Bi, Ci), i = 1, 2. The result is then represented by
the kernel KΛ1 ·KΛ2 given by

KΛ1 ·KΛ2 = κ(Λ1,Λ2)KΛ , Λ = (A,B,C) ,

with

A = A1 + [C1(I −A2B1)−1A2C
T
1 ]s, (25)

B = B2 + [CT2 B1(I −A2B1)−1C2]s, (26)

C = C1(I −A2B1)−1C2, (27)

and
κ(Λ1,Λ2) = det(I −A2B1)−1/2,
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where Xs = 1
2(X + XT ). When using the above formula special attention

should be paid to the possible ambiguity in sign when taking the square
root. It is this ambiguity that is responsible for the projectivity property
of the metaplectic representation. In quantum theory proportional vectors
define the same quantum state, therefore this ambiguity is of no concern in
physical applications we are concerned with.

4.2. Unnormalized coherent states and reproducing kernel

For each w ∈ Cn let

ew(z) = ew·z. (28)

In particular e0 = 1. Then {ew : w ∈ Cn} is a total set in Fn with

(ew, ew′) = ew·w
′
.

We have the reproducing kernel property: for every f ∈ Fn

f(z) =

∫
ew(z)f(w) dµ(w) .

The main advantage of using the space Fn is in the following: every bounded
linear operator A on Fn is represented by its kernel A(z, w) = Aew(z). We
have

Af(z) =

∫
A(z, w)f(w) dµ(w) .

4.3. The metaplectic representation and oscillator semigroup

Bargmann [10] defines the projective unitary U representation of the sym-
plectic group Sp(2n,R) in Fn using the following kernels for the operators

US , S =

[
λ µ
µ̄ λ̄

]
∈ Spc

US(z, w) = (detλ)−1/2 exp
{1

2
z · µ̄λ−1z − 1

2
w̄ · λ−1µw̄ + z · λ−1T w̄

}
. (29)

We then have US · US′ = ±U(SS′). The mapping S 7→ US above is one
way of defining the metaplectic representation.c Analytic continuation of
this representation leads to the representation of the symplectic semigroup
introduced in Sect. 2.2. We will use the notation close to that used in [13].

cThe metaplectic representation is not irreducible. It is the direct sum of two unitary
highest weight modules of the double cover of the symplectic group.
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Let S =

[
λ µ
ν ρ

]
be an element of the semigroup S+

K . From Lemma 3

we know that then λ is invertible, therefore the following integral kernel in
the Bargmann space Fn is well defined:

KS(z, w) = (detλ)−1/2 exp
{1

2
z · νλ−1z − 1

2
w̄ · λ−1µw̄ + λ−1z · w̄

}
. (30)

If S is in Spc, then the formula above reduces to (29), therefore it defines a
unitary operator. On the other hand, if S ∈ S+

K , then, as it is shown in [16,
Lemma 5.1], the formula defines a Hilbert-Schmidt operator (the kernel is
square integrable). While I do not know when exactly the operator defined
by the kernel KS is bounded, it is possible to calculate explicitly its action
on squeezed states — which is important in applications.

We can now specialize the results in section 4.1 in order to calculate the
result of the composition of two kernels KS1 ,KS2 corresponding to two ele-

ments Si =

[
λi µi
νi ρi

]
of the semigroup S+

K . Brunet and Kramer [13, p. 212]

calculate the result for kernels of the type KS , but without the numerical
determinant factor. Taking into account these factors, as in (30) simplifies
the result. After simple algebra we get KS1 ·KS2 = ±KS1S2 .

5. Squeezed States

We define coherent squeezed states parametrized by the complex symmetric
matrices A ∈ Dn using the embedding ι : Dn → Spc defined in Eq. (18) and
the metaplectic representation (29) as follows

eA = Uι(A)1 ∈ Fn .

Taking into account this definition and using the integration formula (A.1)
we obtain the explicit formula for squeezed states in the Bargmann represen-
tation:

eA(z) = det(I −A∗A)1/4 ez·Az/2. (31)

Making use of the inverse Bargmann transform (24) and (A.1) we obtain the
expression for the squeezed states, denoted ψA, in the Schrödinger represen-
tation:

ψZ(x) = c
(detX

πn

)1/4
e−x·Zx/2 ,

where

Z = Z(A) =
I −A
I +A

= X + iY , (X,Y ) ∈ Matsym(n,R) , X > 0 ,
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and c ∈ C, |c| = 1, is the phase factor:

c =
det(I + Z)1/2

|det(I + Z)|1/2
.

As it is shown in [16] one can simply say that the squeezed states are Gaus-
sian functions (or “gaussons”). In the Schrödinger representation they are

functions of the form f(x) = e−
1
2
x·Zx, where Z is a complex symmetric matrix

with positive definite real part. The Bargmann transform of such a function
is

(Bf)(z) = πn/4
(

det
X + 1

2

)− 1
2
e−

1
2
z·X−I
X+I

z.

The operator Cayley transform X 7→ X−I
X+1 is a bijection between complex

symmetric matrices X with positive definite real part and complex symmetric
matrices Z = X−I

X+1 with Z∗Z < I.

5.1. Action of the symplectic semigroup on squeezed states

As described in Sect. 4.3 every element S =

[
λ µ
ν ρ

]
in S+

K determines a

kernel KS of the form

KS(z, w) = (detλ)−1/2 exp
{1

2
z · νλ−1z − 1

2
w̄ · λ−1µw̄ + λ−1z · w̄

}
.

We can now use the formulas (25)–(27) to calculate the action of operators
KS on squeezed states eA defined in (31). To this order we set A1 = νΛ−1,
B1 = −λ−1µ, C1 = λ−1T , A2 = A, B2 = C2 = 0. The result is then
proportional to the squeezed state eA′ , where, from (25),

A′ = νλ−1 + [λ−1T (I +Aλ−1µ)−1Aλ−1]s. (32)

We first notice that the term in the square brackets is already symmetric, that
is it does not need the symmetrization. Indeed, its symmetry is equivalent to
the symmetry of (I +Aλ−1µ)−1A. Since A and λ−1µ are both symmetric, it
means the condition (I + Aλ−1µ)−1A = A(I + λ−1µA)−1 must be satisfied.
But the last condition is equivalent to A(I+λ−1µA) = (I+Aλ−1µ)A, which
evidently holds. Therefore, we can write (32) as

A′ = νλ−1 + λ−1T (I +Aλ−1µ)−1Aλ−1 .

We want to show that

A′ = (ρA+ ν)(µA+ λ)−1,
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as in (21). To this end we calculate A′(µA+λ), we will show that A′(µA+λ) =
(ρA+ ν), which will prove our statement. We have

A′(µA+ λ) = (νλ−1 + λ−1T (I +Aλ−1µ)−1Aλ−1)(λ+ µA)

= ν + λ−1T (I +Aλ−1µ)−1A

+ νλ−1µA+ λ−1T (I +Aλ−1µ)−1Aλ−1µAν

+ νλ−1µA+ λ−1T (I +Aλ−1µ)−1(I +Aλ−1µ)A

= ν + (νλ−1µ+ λ−1T )A = ν + ρA ,

where we have used (17) in the last equality. It remains to find the propor-
tionality constant. Denoting TS the operator defined by the kernel KS we
know that

TSeA = c(S,A)eA′ , where A′ = (ρA+ ν)(µA+ λ)−1 .

From the formulas above we can easily find that

|c(S,A)|2 =
det(I −A∗A)1/2

|det (A∗(µ∗µ− ρ∗ρ)A+ δ + δ∗ + λ∗λ− ν∗ν)) |1/2
, (33)

where δ = A∗(µ∗λ−ρ∗ν). For S ∈ Spc we have |c(S,A)| = 1 owing to the re-
lations (14). In general, for nontrivial semigroup elements, the formulas (33)
are important since they determine state-dependent probabilities of exciting
monitoring devices whose action on quantum states is reflected by quantum
jumps implemented by the semigroup operators.

5.2. The case of n = 1

Consider the simplest case of n = 1. The domain D1 is the open unit disk in
C. Let A ∈ D1, that is |A| < 1. Writing A ∈ C in a polar form A = reiφ, the
squeezed state eA in the Bargmann representation is (cf. (31))

eA(z) = (1− |r|2)1/4eAz
2/2.

The symmetric singular value decomposition (B.1) takes the form

A = UΣUT = eiφ/2reiφ/2.

The matrices Q and D (equations (38)–(39)) are

Q =

[
cos φ2 − sin φ

2

sin φ
2 cos φ2

]
,

D =

[ 1−r
1+r 0

0 1+r
1−r

]
.
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Fig. 1: Density plot of the Wigner distribution for n = 1, r = 1/2, φ = π/4.

In variables p, q,

q̃ = q cos
φ

2
− p sin

φ

2
,

p̃ = q sin
φ

2
+ p cos

φ

2
,

the ellipse semi-axes in the Wigner distribution (40) for the squeezed state
are

a =

√
1 + r

1− r
, b =

√
1− r
1 + r

.

Fig. 1 shows the density plot of the Wigner distribution for r = 1/2 and
φ = π/4.

6. The Shape of Squeezed States

Quantization is conveniently defined in terms of Heisenberg-Weyl operators
implementing noncommuting “phase space translations”. For z0 = (q0, p0)
we write z0 = q0+ip0. In the Schrödinger representation the Heisenberg-Weyl
operators T̂ (z0) are given by (see e.g. [1, Ch. 6.1.2])

(T̂ (z0)ψ)(x) = ei(p0·x− 1
2
p0·x0)ψ(x− x0) . (34)
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We have

T̂ (z0)T̂ (z1) = eiσ(z0,z1)T̂ (z1)T̂ (z0) ,

T̂ (z0 + z1) = e−
i
2
σ(z0,z1)T̂ (z0)T̂ (z1) ,

where σ(z0, z1) = i=(z0z̄1). From (23) and (34) we derive the action of phase
space translations on Bargmann’s representation of wave functionsd:

T̂ (z0)F (z) = e−
1
4
|z0|2e

1√
2
z0·zF

(
z − z0√

2

)
.

With ew defined in (28) we have

T̂ (z)ew = e
− |z|

2

4
−w·z̄√

2 ew+ z√
2
.

Therefore, up to numerical factors, the Heisenberg-Weyl operators T̂ (z) in-
deed act as translations within the family of coherent states ew.

6.1. Grossmann-Royer operators

One way of looking at the quantization procedure is by associating operators
to functions on the phase space. The standard Weyl quantization can be
most conveniently described with the help of Grossmann-Royer operators
T̃ (z) defined as (see [1, pp. 156–157])

T̃ (z0) = T̂ (z0)T̃ (0)T̂ (−z0) ,

where T̃ (0) is the parity operator

(T̃ (0)ψ)(x) = ψ(−x) .

Explicitly, in the Schrödinger representation

T̃ (z0)ψ(x) = e2i p0·(x−x0)ψ(2x0 − x) .

In the Bargmann representation we obtain

T̃ (z0)F (z) = e−|z0|
2+
√

2z0·zF (
√

2 z0 − z) .

The Weyl quantization reduces then to integration: if a(z) is a complex func-
tion on the phase space, then the associated quantum mechanical operator
Â is given by (see [1, Corrollary 6.13])

Â = π−n
∫
a(z)T̃ (z)d2nz .

dHall [15] defines phase space translations as TaF (z) = exp(−|a|2/4 + ā · z)F (z − a).

Thus we have T̂ (z0) = Tz0/
√

2.

2250013-16



Random Walk on Quantum Blobs

6.2. Wigner distribution

See e.g. [1, p. 187], [19, p. 456, Proposition 8.6-5]

W (ψ, φ)(z) = π−n(T̃ (z)ψ, φ)L2(Rnx).

One defines Wψ = W (ψ,ψ).

Remark 3 It should be noted that the operators T̃ (z) are all unitary equiva-
lent to the inversion operator, in particular they are self-adjoint with T̃ (z)2 =
I. Therefore, each of them is a difference of two complementary orthogonal
projection operators:

T̃ (z) = E+(z)− E−(z) ,

where
E+(z) = (I + T̃ (z))/2 , E−(z) = (I − T̃ (z))/2 .

The part −E−(z) is responsible for the possible negative values in the Wigner
quasi-probability distribution.

We have

(W (ψ, φ),W (ψ′, φ′))L2(R2n
x ) = (2π)−n(ψ,ψ′)L2Rnx)(φ, φ

′)L2Rnx) .∫
Wψ(z)dnz = ||ψ||2L2(Rnx) .

In the Schrödinger representation

W (ψ, φ)(z) =
( 1

2π

)n ∫
e−ip·yψ

(
x+

y

2

)
φ
(
x− y

2

)
dny .

In the Bargmann representation

W (ψ, φ)(z) = π−ne−|z|
2

∫
e
√

2z·wBψ(
√

2z̄ − w)Bφ(w) dµ(w)

= π−ne−|z|
2

∫
e
√

2z̄·w̄Bψ(w)Bφ(
√

2z̄ − w) dµ(w) .

The Wigner distribution of squeezed states can be easily calculated using the
integral formula (A.1):

WeA(z) = π−nez·Ā(I−AĀ)−1z+z̄·(I−AĀ)−1Az̄−z̄·(I+AĀ)(I−AĀ)−1z ,

where z = q + ip. We can rewrite the last formula as

WeA(z) = π−ne−z
′.z′ ,
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where
z′ = (I −AĀ)−1/2z − (I −AĀ)−1/2Az̄ . (35)

Using the symmetric singular value decomposition (B.1) we can write (35)
as

z′ = U
I√

I − Σ2
U−1 z − U Σ√

I − Σ2
UT z̄ .

We can rewrite the above equation in a matrix form as follows:[
z′

z′

]
=

[
U 0
0 Ū

] [ I√
I−Σ2

− Σ√
I−Σ2

− Σ√
I−Σ2

I√
I−Σ2

] [
U 0
0 Ū

]−1 [
z
z

]
. (36)

Using the Cayley transform X 7→ cXc−1, where

c = 2−1/2

[
1 1
−i i

]
, c−1 = 2−1/2

[
1 i
1 −i

]
we can rewrite (36) in terms of real variables z = (q, p) as z′ = Hz, where

H = QDQ−1 , (37)

Q =

[
<U −=U
=U <U

]
, (38)

D =

 √ I−Σ
I+Σ 0

0
√

I+Σ
I−Σ

 . (39)

The matrix Q is orthogonal symplectic, the matrix D is nonnegative diagonal
and symplectic. Introducing orthogonally rotated variables z̃ = QT z we can,
symbolically, write

WeA(z) = π−n exp
{
−
( q̃2

a2
+
q̃2

b2

)}
, (40)

where a and b are diagonal squeezing matrices:

a =

√
I + Σ

I − Σ
, b = a−1 =

√
I − Σ

I + Σ
.

7. Fractal Patterns with Quantum Blobs

7.1. Hyperbolic symplectic transformations

For one degree of freedom the transformations of squeezed state parameter
a, |a| < 1 under symplectic transformations takes the form

a′ =
λ̄a+ µ̄

µa+ λ
. (41)
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Notice that

1− |a′|2 =
1− |a|2

|µa+ λ|2
. (42)

Consider the following repulsive analogue of the harmonic oscillator Hamil-
tonian (inverted oscillator) H = p2 − q2 represented by the matrix h =[
−1 0
0 1

]
. It generates one-parameter group of symplectic transformations

S(τ)

S(τ) = exp τJh =
e−τ

2

[
e2τ + 1 e2τ − 1
e2τ − 1 e2τ + 1

]
.

It is convenient to introduce the parameter β = arctanh τ, 0 ≤ β < 1. Then

S(β) =
1√

1− β2

[
1 β
β 1

]
. (43)

Using the Cayley transform (13) we transform the symplectic matrices S(β)
into complex matrices

A(β) = CS(β)C−1 =
1√

1− β2

[
1 iβ
−iβ 1

]
.

Since detA(β) = 1 and, for β > 0, trA(β) > 2, the transformations A(β),
β > 0 are hyperbolic [9, p. 88, Exercise 2]. We have that A(β) ∈ SU(1, 1),
therefore, being conformal, A(β) preserve the non-Euclidean distance on the
unit disk, but they do not preserve its Euclidean geometry, as can be seen in
Fig. 2. There are two fixed points i,−i on the circular boundary of the disk.
They correspond to the infinitely elongated quantum blobs. While they do
not correspond to normalized space vectors, apart from their normalization,
they are represented by well defined holomorphic functions in the Bargmann
representation.

In addition to S(β) we introduce three other families of symplectic trans-
formations successively rotating by π/2. Thus we get

S1(β) =
1√

1− β2

[
1 β
β 1

]
, S2(β) =

1√
1− β2

[
1− β 0

0 1 + β

]
,

S3(β) =
1√

1− β2

[
1 −β
−β 1

]
, S4(β) =

1√
1− β2

[
1 + β 0

0 1− β

]
.

We have S3(β) = S1(β)−1 and S4(β) = S2(β)−1. But the matrices S1(β) and
S2(β) do not commute with each, which will give rise, as we shall see, to
a symmetric fractal pattern generated by a random walk over the family of
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Fig. 2: Deformation of the Euclidean polar grid by the linear fractional trans-
formation defined by the SU(1, 1) matrix A(0.7).

four transformations. The corresponding SU(1, 1) matrices are

A1(β) =
1√

1− β2

[
1 −iβ
iβ 1

]
, A2(β) =

1√
1− β2

[
1 −β
−β 1

]
,

A3(β) =
1√

1− β2

[
1 iβ
−iβ 1

]
, A4(β) =

1√
1− β2

[
1 β
β 1

]
.

Given β the four matrices Ai define an iterated function system (through
the “chaos game”) of Möbius transformations on the disk, where we use the
linear fractional transformations as in (41). Figs. 3 and 4 show the resulting
pattern for 106 random iterations, starting with a randomly chosen initial
point. It is seen that the points in the disk are quickly driven towards the
boundary. For β = 0.75 the angular arguments of the complex parameter
show a fractal pattern similar to the one known as the Cantor set, except
that here it is located on the unit circle — see Fig. 5.

7.2. The parabolic case

This time we start with the free evolution Hamiltonian H = p2 represented

by the matrix h =

[
0 0
0 1

]
. It generates one-parameter group of symplectic

transformations S(τ)

S(τ) = exp τJh =

[
1 τ
0 1

]
.
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Fig. 3: 105 points in the disk from the chaos game for β = 0.1.

-0.5

-0.5

0.5

0.5

Fig. 4: 106 points in the disk from the chaos game for β = 0.75.

The same way as before we obtain SU(1, 1) matrices

A1(τ) =
1

2

[
2− iτ iτ
−iτ 2 + iτ

]
, A2(τ) =

1

2

[
2− iτ −τ
−τ 2 + iτ

]
,

A3(τ) =
1

2

[
2− iτ −iτ
iτ 2 + iτ

]
, A4(τ) =

1

2

[
2− iτ τ
τ 2 + iτ

]
.

All these matrices have trace equal 2, they define parabolic Möbius transfor-
mations. Each of them has just one fixed point on the boundary of the disk.
Fig. 6 shows the deformation of the Euclidean polar grid for A1(5). The fixed

2250013-21



A. Jadczyk

-3 -2 -1 1 2 3

2

4

6

8

10

Fig. 5: Arguments of 106 points in the disk from the chaos game for β = 0.75.
Vertical logarithmic scale.
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Fig. 6: Deformation of the Euclidean polar grid by the linear fractional trans-
formation defined by the SU(1, 1) parabolic matrix A1(4). The thick semicir-
cle is the image of the segment −1 < x < 1, y = 0.

point on the boundary, for this matrix is z = 1 + 0i.

In order to obtain the symmetry of the resulting pattern we will use in
the chaos game also the inverse matrices Ai(τ) = Ai−4(τ)−1, (i = 5, . . . , 8).
Figs. 7 and 8 show the resulting patterns for the chaos game (with equal

probabilities 1/8) for τ = 2 and τ = 5. Fig. 9 shows the angular distribution
of points for τ = 5.

2250013-22



Random Walk on Quantum Blobs

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Fig. 7: 103 points in the disk from the chaos game with eight parabolic
matrices for τ = 2.
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Fig. 8: 103 points in the disk from the chaos game with eight parabolic
matrices for τ = 5.
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Fig. 9: Angular distribution 106 points in the disk from the parabolic chaos
game for τ = 0.75. Vertical logarithmic scale.

Appendix A: The Itzykson integral

Let dµ(w) = exp(−|w|2)dλ(w), where dλ(w) is the Lebesgue measure on Cn.
With γ, δ symmetric complex n× n matrices and a, b ∈ Cn let

g(w) = exp
(1

2
w · γw +

1

2
w̄ · δ̄w̄ + a · w + b̄ · w̄

)
, (A.1)

and I =
∫
g(w)dµ(w). Then, assuming integrability,

I = det(1− γδ̄)−1/2 exp
(1

2
a · δ̄(1− γδ̄)−1a

+ b̄ · (1− γδ̄)−1a+
1

2
b̄ · (1− γδ̄)−1γb̄

)
.

Appendix B: Symmetric Singular Value Decomposition

The following symmetric singular value decomposition theorem [21, p. 136]
is often referred to as Takagi’s factorization or Autonne decomposition [20,
Corollary 4.4.4].

THEOREM B.1 Let A be a complex symmetric matrix. There exists a uni-
tary matrix U and a real nonnegative diagonal matrix Σ such that

A = UΣUT . (B.1)

The columns of U are an orthonormal set of eigenvectors for AĀ, and the
corresponding diagonal entries of Σ are nonnegative square roots of the cor-
responding eigenvalues of ĀA.
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