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role being that of providing a finite Q-module basis if such a basis is, at some
step, convenient to use. Section 7, where geometrical structure of supersymmetric
superspaces is described, may seem unnecessarily complicated but it was written
so as to illustrate this point of view. When we talk there about vertical and hori-
zontal subspaces, they are really two complementary subspaces of the tangent
space, one having a finite Q,-module basis while the second not. When we talk
about principal or affine connections we do mean integral transport along path.
And when we discuss symmetries, we mean diffeomorphisms of the manifold
which transport fibers into fibers, preserve scalar products, preserve Qo-module
structure of tangent spaces etc.

We do not discuss problems of supergravity here, but from our discussion
of supersymmetric superspaces a local geometrical meaning of supergravity
theories should be clear: a curved superspace is a superspace of which each
tangent space has exactly the same structure as a typical tangent space of the
supersymmetric one. Although we do not touch global questions in this paper
(Proposition 5.5 being the only one related to global problems), one should bear
in mind that even unquantized supergravity can produce effects which are far
from being purely classical ones: there can be regions of superspace where, owing
to curvature effects (here by “curvature” we mean a general nonintegrability
of vertical and horizontal distributions), a quotient real four-dimensional mani-
fold of General Relativity fails to exist. Equivalently, one can meet singularities
in space-time which are not at all singularities in superspace.

2. Algebraic Preliminaries

This section consists mostly of definitions and statements which are immediate
consequences of these definitions. We deal here with graded Banach modules
over graded-commutative Banach algebras. All gradings of this paper are Z,

gradings, and we simply use the term “graded” to mean “Z,-graded”. The indices

r, s always run over Z, = {0, 1}, and sums like r + ... +r, are always understood
mod (2). '

A Banach space F over K(K = R or C) is called graded if two complementary
subspaces F, F, = F are distinguished so that F = F @ F, as a vector space,
and such that the canonical projections P,:F — F, are continuous.

For each graded Banach space F the canonical involution J : F — F is defined
by J =P, — P, so that aeF, if and only if J(a) = ( — 1)a.

If F1, ..., F? are graded Banach spaces, then the canonical involutions J1, ... J?
determine the involutive linear map J=J'®...®J? of the algebraic
tensor product F'®...© FF. If F' is also a graded Banach space, and if
fiF' x ... x FP - F'is a p-linear map, then f can be considered as a linear map
fF' O ... © F? - F'. One defines then two maps 2 =f.=f+(=1yJfJr=0,1),
where J' is the canonical involution of F', so that f'=f, + f,. The map f'is called
even (resp. odd) if f=f, (resp.f=f,). It follows that a p-linear map f is
even (resp. odd) if and only if

S, ... 02 )eF,

ri+..rp+r?

e
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where v} €Fi(i=1,...,p), and r =O(resp. r = 1).
A p-linear map f:F X ... x F - F' is graded symmetric (resp. graded skew-sym-
metric) if
f(v;[l sy v'lfk, vi(k-tll yeees Ufp) .= ( __ )rkrk+1.+’f(z)r11, very U"f:;ll 5 Ufk, ceny Uf;),
where v} €Fi(i=1,...,p k=1,...,p—1, and r=O(resp. r = 1).
A graded-commutative Banach algebra is a Banach algebra Q (with, or without
unit) which is at the same time a graded Banach space Q = Q,® Q, such that

(1) arasz(_)rsasareQr+s" arEQr’asEQs’
(i) |ay+a,|= a,€0,.

The canonical involution J is then an isometric automorphism of Q.
Let Q be a graded-commutative Banach algebra, and let F be a graded Banach
space. If F is also a left and right Q-module such that

av,=(—1)"vaceF,

for a €Q,,v eF_, and if the map Q x Fa(a, v)+> aveF is continuous, then F is
called graded Banach Q-module. Observe that if F is initially endowed only with
right (resp. left) Q-module structure, then the above formula can be con51dered
as a definition of the left (resp. right) action of Q on F.

It should be noticed that every Q-module can be always considered as a
Q,-module. The most important @ -modules we shall deal with are

00,0, 0™ =(Q)"® (@), Q™" =(Q)"D(Q,)-

The elements of Q™"(resp. Q™") are sequences (a”) 4
(aﬂ a),u 1,...ma=1,..,
is given by la] = Z

—1...m4ne WIitten also as
. With a*eQ, and a*eQ, (resp. a*€Q,, a*€Q,). The norm
|a*||. The symbol | 4| means O for 4 =y, 1 for 4 =a. The

most important graded Banach Q-modules are the modules Q™" graded by

(Qm-i-n)o = an (Qm+n) =~ Qm L7
The elements of Q™" are represented by sequences (a?) a=t...men With a®€Q.
The group of invertible Q -linear maps Q™" — Q™" is denoted by GL(m, n).
Let F!,...,F?, F' be graded Banach Q-modules, and let f:F' x ... x FF — F'
be a continuous p-linear map. Then f is called left p-Q-linear if
[, a k. 08)=(~ )"”"“"""’a,f )55 U s O,
where %EFL(l: L...,phk=1,..,p, and dreQr‘ The space of all continuous
left p-Q-linear maps, denoted by L,(F?, ..., F?;F’) and graded
L (F',...,FP;Fy=L, (F,... P F) @ L (FY, ... ,FP; F),
according to whether a map is even or odd, is a graded Banach Q—module with
its @-module structure given by

(fa)@',...,0") = f(0*, ..., 07)a,
for aeQ, v'eFi(i=1,...,p). Similarly the space L (F', ..., F?;F’) of all continuous
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right p-Q-linear maps g:F! x ... x FP— F' is a graded Banach Q-module w1th
its Q-module structure defmed by

(ag)(@, ..., ") = ag(v', ..., vP).

Iff ELL(R)(FI, ..., FP;F), then f' defined by (1) = (J') of, where J' is the canonical
involution in F’, is an element of the space L, L)(Fl , F?;F'). In particular
L, (F',...,F?;F)y = Lg(F',...,F*; F) = L, (F', ..., F"; F’)O

Let EY,...,EP be Banach Qo-modules (ungraded) and let F be a Banach
graded Q-module Then L(E',...,EP;F) is the graded Banach Q-module of all
continuous p-Q,-linear maps from E' x ... x EP to F. The grading is given by
L(E',...,EP;F), = L(E',...,E?;F,). If E is a Banach Q,-module, then the graded
Banach Q-module I(E;Q) is denoted by E'. If E, E’ are Banach Qo—modules and
if feL(E;E), then fTeL, ((E";E"), is defined by

(M) @) = o(f (), weE", veE.

The mapf+> fT from L(E;E) to L, (E" ; E'), is Q,-linear and || /' || < Hf” The
graded Banach Q-module L(E"; Q) of all continuous right Q-linear maps w:E" — Q
is denoted by E''. Each element ve E determines the element v'' e EIf given by

() = @), weE!.

The map v+ o' from E to E' is Q,-linear and o' < |v|. The above
construction is analogous to that of complexification of a real vector space.
One starts there with a real vector space E and considers the space E' of all real
linear maps from E to C. The space E' carries then already complex structure,
so that E' is naturally defined as the space of complex linear maps from E' to C.

3. BanachéGrassmann Algebras

Let Q be a graded-commutative Banach algebra, and consider @ as a Banach -

graded Q-module. The product map (a,b)> ab can be then interpreted as a
graded symmetric element of LiR(Q ;Q),- In other words @ is endowed with a
canonical, even, Q-valued bi-Q-linear form. One may therefore ask whether Q

is selfdual ox not. Selfduality is one of the two requirements each Banach-

Grassmann algebra should satisfy (see Definition 3.1a and Proposition 3.1 ii). The
second important property we require is that the odd elements of Q generate
all the algebra except of its scalar part. &

Definition 3.1 A graded-commutative Banach algebra Q over K(K =R or C)

is called Banach-Grassmann algebra (BG-algebra, in short) if

(a) For each continuous Q-linear map f:Q, — Q, there exists a unique element
u€Q, ., such that |[u| = f| and f(a) = au (equwalently, f(a) = ua) for all
aeQ,.

(b) Qo =K@ @y, with | A+ s| = || A]| + || 5] for 2eK, s€Q),, where Q;) denotes the
Banach subalgebra of Q, generated by even powers of elements of Q,.

Remark. Tt follows already from a) that K = 0... We do not know to what extent
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a) implies b). One can prove (see [2]) that the graded Banach algebra B cons-
tructed in [1] is a BG-algebra.

The following Proposition points out the most 1mportant properties of any
BG-algebra.

Proposition 3.1 The followmg properties hold for any BG-algebra Q.
(i) For each aeQ,

lal =sup{llay]:veQ,, [y =1} =sup{|ya] :yeQ,. |y =1},

in particular if ay = O(resp. ya = 0) for all yeQ, , then a = 0.
(i) For each feL,(Q;Q), (resp. f ELR(Q 0),) there exists a unique element ueQ,
such that

f(a) = au(resp. f(a) =ua), acQ.

(iti) For each element aeQ’ = Q, @ Q,, and for each 0 <0< 1, there exists > 0
such that '

Ja"| Kb forn=1,2,.

(iv) The spectrum of every element a€Q consists exactly of one point o(a)eK :
and the map ¢:Q — K is a unique non-zero character of Q.
(v) An element aeQ is invertible if and only if o(a) # 0. Then

a~'=oa(a)"" Z(* 1)"(s(a)/0(a)
where s(a) = a — o(a)eQ’.
(vi) For each Q-linear, not necessarily continuous, map f: 0, —Q one has
o(f(») =0 and f(y)z +f(z)y =0 for all y,zeQ,.

Proof. (i) is just an explicit expression of the fact that the norm of f:a> au is
[u]. To prove (ii) observe that since fis in partlcular Q,-linear, (a) implies that
there exist two elements u ueQ such that f(a)) = a, ufor a €0, . But fis assumed
to be also left Q-linear. Therefore for every yeQ, we have

vagi=yf(a)=f(ya)=(ya)'u' = ya'i',

and (i) implies that # = °%;". The property (iii) follows by observing that Q" has a
dense subspace of nilpotents (owing to b), and then the proof of Lemma 2.7b of
[1] can be applied verbatim. The map ¢:Q — K is uniquely defined by a = olay +
s(a), with a(a)e K, s(a)eQ’, and ¢ is evidently a non-zero character of Q. It follows
that if a~* exists, then o(a) # 0. Conversely, if o(a) # O then the series in (iv) con-
verges by (iii), and therefore a™* exists. Thus o(a) is the only point of the spectrum
of a. If ¢’ is a continuous multiplicative linear map from Q to K, then ¢ annihilates
all nilpotents and consequently it annihilates Q. Being non-zero it has to coincide
with ¢. Finally, if f:Q, — Q is a Q-linear map, then for every y, z, xeQ 1, we have
JW)zx =f(yzx) = — f(z)yx, and (i) implies f (y)z + f(z)y = 0. In particular f(y)y =0.
If o(f(y)) # 0, then by (v) f(y) is 1nvert1ble and consequently y =10 which is a
contradiction. Therefore o(f(y)) = m
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4. Vector Superspaces

Vector superspace is essentially ™" (or Q™" resp. O™ with understanding
that two elements related by a transformation from GL(m, n) represent the same
abstract vector but in two different coordinate systems. Since Q™" is a Q,-module
which is not finitely generated, we are forced to use coordinate systems rather
than bases. However, as we shall see, a general method of imbedding a vector
superspace of the type Q™" into a vector superspace of the type Q™*" exists.
Since Q™*" is finitely generated Q-module with m + n generators, a difference
between bases and coordinate systems is not an important one. Our reason for
investigating vector superspaces of the type Q™" is of geometrical nature: tangent
spaces to supermanifolds are of this type, and although one can always construct
the graded tangent space of the type Q™*", the “odd tangent vectors” are not
tangent any longer (a more adequate intuition should picture them as being
orthogonal to supermanifold). The main objective of this section is to show a
mechanism by which every vector superspace acquires its odd counterpart.

Definition 4.1. An (m, n) (resp. (1, i), resp. (m + n))-dimensional vector superspace

is a pair (E, @), where E is a set and @ is a non-empty family of bijections (called
coordinate maps) ¢ E — Q™" (resp. Q™" resp. Q™ *"), such that for every pair
¢, ¢'e P we have ¢'o¢d~ e GL(m, n). If (E, ) and (F, P) are vector superspaces of
the same dimension, then an isoniorphism between (E, @) and (F, W) is defined as a
pair (i, j) of bijections i:E — F and j:® — ¥, such that j(@)ci = ¢ for all peo.
The simplest examples of superspaces are ™", Q™" and Q™*". They will always
be endowed with just one coordinate map—the identity map. In the following
- the term “vector superspace” will denote a vector superspace of some finite
dimension. Observe that a vector superspace of dimension (%, 1) can be also
considered as having dimension (n, m), and vector superspace of dimension (m + n)
can be also thought of as having dimension (m + n, m + n) and a restricted family

of coordinate maps. A distinction between the three types is, however, convenient

when one deals with different superspaces constructed out of a given one.
If (E, ®) is a vector superspace, then & can be uniquely completed to & > &

so that for each A€ GL(m, n) there exist ¢, ¢'e @ such that ¢'oc¢~! = A. Although

such a completion is always possible, we shall not demand of @ to be complete.
If E is endowed with an additional geometrical structure (like metric and/or
torsion tensor), then natural restrictions on coordinate systems can be imposed.
Usually, however, the set {¢'o¢ 1 : ¢, '€} is a subgroup of GL(m, n).

Let (E, P) be a vector superspace. Each element ¢e@® induces on E the Q-
module structure: av = ¢~ *(ap(v)), acQ,, veE. It also induces the Banach norm
[v] = | ¢@)]. If ¢ is replaced with ¢’ ®, then the induced Q -module structures
coincide, and the induced Banach norms are equivalent. In this sense each:vector
superspace will be considered as a Banach Q,-module. If (E, @) and (F, Y’) are
vector superspaces of the same dimension, and if j:P—-» ¥ iS a bljectlon such

that j(¢")j(¢) "t =¢'¢p~ ! for all ¢, ¢’e®, then i=j(p) ‘o¢ is independent of -

¢€®, and is a Q,-linear bicontinuous bijection from E to F. The pair (z, J) is then
an isomorphism between (E, ®) and (F, ¥P).
Let {E. @) be a vector sunersnace of dimension (m. n) and let ET be the dual of
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the Banach Q,-module E. Given ¢pe® and weE' , the map wed™':Q™" - Q, is
continuous Q,-linear. Therefore there exists a unique element (@ A)e(Q"f*"),
such that

(wop™ Y (a) = a? cuA, asQm™".

It is evident that the map (,‘bT toe (@ ) from (E"), to (Q™*"), is an isomorphism
of Banach Q,-modules. Moreover, given ¢, ¢’ €®, we have

B @y =4eg

. s} :
on (Q"*"),. Let &' = {¢'® (%T :pe®). Then (E', d') is a vector superspace of
dimension m + n, and every coordinate map ¢':E' — Q™*" is an isomorphism
of graded Banach right @-modules.

We note here the following isomorphisms which follow 1mmed1ately from
Corollary 3.1 and Proposition 3.3.

Proposition 4.1. Let E, F be vector superspaces of dimension (m,n) and (m’ n')
respectively. Then the following Banach Q,-modules are isomorphic (we denote
by the same letter f two maps related by the iSomorphism).

(i) L(E;F) = Ly(F';E"), = L(F} ;E{), the isomorphism being given by
o(f®) = (f@)@), weF', vek,
(i) I(E;Q,) = L(E;E",), the isomorphism being given by ’
| S, w)=(f0)@), v weE,
(iii) LZ(E F ) L(F',;L(E, E'))), the 1somorphlsm being given by |
o(f (0, W) =((f@)W)®), vweE, weFly. 0O

Let (E, ®) be a vector superspace of dimension (m, n), and consider the second

~ dual E' of E. Every coordinate map ¢ € @ defines the coordinate map ¢' :w > (w4)

from E'™ to (Q™")!t = o™*" by
w(w) =w'¢'(w),, weE", weE!

If ¢,¢'e®, then ¢ 1o~ = ¢'opp™1, and if veE, then ¢! (1) = @(v). It follows
that E'" = E" @ E™ is a superspace of dimension (m + n), and E can be canoni-
cally identified with E'' . The vector superspace E'', of dimension (i, i) will be
denoted by E and called the odd complement of E. The second dual E'' under-
stood as E® E will be denoted by E.

Proposition 4.2. Let E be a vector superspace of dimension (m,n), and let
weL(E, Q,). There exists a unique map ®eL(E;Q, ) such that @ =0 ® oe
L,(E, Q). » ;

Proof. Choose a coordinate map ¢, and identify E with Q™" and E with Q™"

‘Then w is represented by (w,)€(Q™""), so that

olv)=rw,, (©@HeO™".
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Define
a(0) = v'w,, vek.

It is then easy to see that @ satisfies the statements in the Proposition. |
The following important Corollary is an easy twofold generalization of the
above result.

Corollary 4.1. Let E', ... E?, F be vector superspaces, and let fe [P(E, ... ,EP; F).
Fc?r each subset x {1_Z ..., p} there exists a unique w, € L(E", ..., E” ;F')—where
E¥ = E* if kex, E¥ = E* if k¢ x, and F' = F, with r =1(1 — (— 1)»7%)—such that

w=@wel (E',... ,E?;F),. If E'=...=E” and o is symmetric (resp. skew-
symmetric), then @ = @ » 1 skew-symmetric (resp. symmetric), and & is graded
symmetric (resp. graded skew-symmetric).

It is important to notice that while a vector superspace E of dimension (m, n),
with n # 0, do not admit a finite Q,-module basis, its second dual E is a finitely
generated free Q-module. Namely, given a coordinate map ¢:E— Q™" the

vectors e, E(u = 1,...,m) defined by ¢(e ! =34, and the vectors e e E(e = 1,...,n) -

defined by ¢(e,)* = 52, form up a finite (left) 0-module basis for E. This fact is an
important technical advantage of exploiting the odd complements of vector
superspaces. ‘ :

We shall define now the underlying vector space of a vector superspace. Let
(E, ®) be a vector superspace of dimension (m, n) (resp.(m; 7)), and let & be the
closed subspace of E consisting of all vectors veE for which o(¢(v)) = 0 for all
(equivalently: for at least one) ¢pe®. The quotient space E =E/¢ is then an m-
dimensional (resp. n-dimensional) vector space over K called the body of E. The
canonical projection E — E will be again denoted by ¢. Each coordinate map
$€® defines the isomorphism @ of £ onto K™(resp. K"). If (E, &) and (F, ¥) are
vector superspaces of dimensions (m, n) and (w7, n') respectively, and if fe L(E ;F),
then o f annihilates ¢ and therefore defines a linear map f: E — F such that gof =
Joo. The K-linear map f is called the even body of f. The odd body of f is defined

as f; and is a K-linear map from o(E) to o(F). In coordinates f is represented by
the matrix o(f") while fis represented by the matrix o(f*).

5. Supersmooth Functions

In this section we introduce the concept of supersmoothness of functions from
Q™" to 0. Our discussion of superdifferentiability is simpler than the one given
in [1]. In particular, knowing already that a function fis a C® map between
Banach spaces, we need only to look at its first derivative to know whether f is
supersmooth or not, while in [1] an investigation of all derivatives was necessary.
Nevertheless the two concepts, ours of supersmoothness, and G*-differentiability
of [1], are equivalent.

We take it for granted that the reader is acquired with elements of differential
calculus on Banach spaces (a useful reference text-book being [3]). For the
sake of convenience we recall that a function f:E — F from a Banach snace F

Superspaces and Supersymmetries 381

to another Banach space F is differentiable at x,€E if there exists a continuous
linear map (Df)(x,):h — (Df)(x,) h from E to F such that

Jxg +h) —f(xg) = (Df ) (x0) b + O(h),

where O(h)/|| k|| = 0 with h — 0. If f is differentiable at every point x in an open
neighbourhood of x,, then one considers the function x + (Df)(x) from E to the
Banach space #(E;F) of all bounded linear operators from E to F, and f'is sdid
to be twice differentiable at x,, if Df is differentiable at x,,. The second derivative
offat x,, is then defined as the first derivative of Df at x, and denoted by (D*f)(x,).
It follows that D% is a function from E to #(E;#(E;F)). One then identifies
P(E ;% (E;F)) with Z*(E;F) by writing ((D*f(a))-h)-h' = (D*f(a))-(h, h") much in
the same way as the second derivative of a function f: R" — R can be considered as
a bilinear map from R" to R given by :
(hK)— 0, fl@h*n™.

If D?f exists and is continuous in a neighbourhood of x,€E, then the bilinear
map D?f(x,) is symmetric (partial derivatives commute). If D"f(x) exists for all

xeUcEandn=1,2,..., then fis said to be C*(U). D"f(x) is then a symmetric

p-linear map from E x ... x E to F.

Definition 5.1. Let Q be a BG-algebra, and let U be an open subset of 0™". A
supersmooth function on U 1s a smooth (i.e. C®) map f:U — Q such that Df(x)e
L(Q™";0) for all xeU (i.e. Df(x) is required to be not only linear but also Q-
linear). : ;

.Observe that if fand g are two supersmooth functions on U, then f+ g, fg, and
Jof are also supersmooth. These operations make the set of all supersmooth
functions into a graded commutative algebra denoted by Q(U).. The algebra
Q(U) contains Q as the subalgebra of constant functions. Therefore Q(U) is also
a graded Q-module. » ‘ o -

A function f:U — Q™" is called supersmooth if all its components f* :
U= Q, ., are supersmooth. The set of all such functions is denoted by Q(U ;Q™"")
and is an Q(U),-module. -

Proposition 5.1. Let /:U — Q be a supersmooth function defined on an open
subset U < Q™" Then for each integer p=1,2,..., and for each xeU, we have
DPf(x)e LF(Q™" Q).

Proof. We prove it by induction. Suppose we already know that DP~f(x) is in
IP~YQ™";Q) for all xeU. Then, given x,€ U, we have D¥f(x,) = D(D?~'f)(x,),
and therefore D?f(x,) is a continuous linear map from Q™" to I~ '(Q™";Q).
Interpreted as a p-linear map from Q™" to Q it is Q -linear with respect to p—1
variables. Since DPf(x,) is symmetric, it follows that it is automatically Q -linear
in all of its p variables. ' ‘ - g

Definition 5.2. Let feQ(U) and xeU — Q™". We already know that Df(x)e
LAQ™" ;Q) and therefore (Proposition 3.2) there exists a unique family u, Ap(x)
of elements of Q such that

DPF(xXMt. . ...t Y=t t. 4. . (x)
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for all ¢, = (t,*)eQ™"(i = 1,2,..., p). We define then
_0f(x)

OxAoxAe
Proposition 5.2. If feQ(U) then the functions

: 0% (x)
aA,...A,,f:x = Ox A OxAr

4,(%)-

are also in Q(U), and

6‘41"“4?].: aAl(aAz...Apf)'
Moreover . -
®

- Yo ' »
aAl Adian., Apf_(_]')l Kl | k+1|6 PR A,,f- .

Proof. With 4,, ..., 4, fixed, the map g —g, Ay from I7(Q™";0) to Q defined

in Proposmon 3. 2 is Qo-lmear and continuous. Therefore the function ity

is also supersmooth. Then the statement follows by a standard apphcatlon of

the theorem on differentiability of compositions of differentiable mappings of

Banach spaces. The last formula is a direct consequence of commutativity of

partial derivatives. U
We note at this place a lemma which will be useful in the next section.

il

Lemma 5.1. Let U< Q™" be an open ball, and let x,€U. For every function
f€Q(U) there exist functions g ,€ QU)(A = 1,....,m+n) such that

a) S =1(xg) + (x* — x8)g 4(x)

b) gA(xo) = (agf)(xo) :
Proof Define '

94x) = f (@) + t(x - xo))dt

and apply the Taylor’s Theorem [3]. O Q)
Suppose now f'is a supersmooth function from Q™" to Q™ i.e. all the compo-
nentsf4:0™" Q.  are supersmooth. Then

[ =0, 1% (%)

is a matrix with entries f,%(x)e Q4+ 13- If g:0™" — Q™" is also supersmooth
then ,

0N =195
In particular, when m' = m, n' = n and f ~* exists and is supersmooth, then
fABI(f_ I)ch = 5?1

Proposition 5.3. (Inverse function theorem) Let V = Q™" be an open set, and
let feQ(V, Q™"). Suppose the matrix o(f,%(x,)) is invertible for some x,eV.
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Then there exists an open neighbourhood U = V of x, such that the restriction
of fto U is a homeomorphism of U onto an open neighbourhood of y, = f(x,).
Furthermore the inverse mapping g of f(U) onto U is also supersmooth.

Proof. By Corollary 3.1 the map (Df)(x,) is invertible and therefore the standard
inverse function Theorem [3] implies that (Df)(x) is invertible for xe U, that
geC=(f(U);U) exists, and (Df(x))°(Dg(f(x)))=idy(x). Then (Dg)(y), being
the inverse of a Q -linear map Df(x), is also Q,-linear, and therefore g is also
supersmooth. O

The rest of this section deals with the problem of natural domains of definition
of supersmooth functions and the following results, although important for
clarifying the structure of the sheaf U — Q(U ;Q™"™) of supersmooth maps will
not be used in Sects. 6 and 7.

Definition 5.3. For each subset W = Q™" let W~ denotes the set ¢~ '(a(W)) ie.

W= [ o™ 6r, 7)) < @,).

A set W Q™ is called d—convex (resp. o-connected) if for each acW the set
{a}~ nW is convex (resp. connected).

Proposition 5.4. Let U cQ"“' be open, o-connected, and let feQ(U; Q’” .
Then ‘

(i) if a, a'e U and o(a) = o(a), then o(f(a)) = o( f (a'))
(i) fadmits a unique extension f ~eQ(U ~ ;Q™"")
(iii) o(f~(U™))=0a(f(U)).

- To prove that above Proposition we shall first establish two Lemmas.

Lemma 5.2. Let U c Q™" be an open set. Then for each ae U~ there exists ceU
suchthat h* =a* — c* arenilpotentsfor A=1,...,m+n.

Proof. If ac U~ then there exists beU such that o@)=o(b*)(A=1,...,m+n).
Let 6 > 0 be such that the open ball centered at b and with radius & is contamed
in U. Since a? —b*eQ, for A=1,...,m, it follows that there exist nilpotents
h*eQ, such that [a?—b* — 1| < 5/m. Let c*=a*=h* for A=1,...,m, and
ct=b*for A=m+1,...,m+n. Since | ¢ — b|| < § it follows that ce U. O

Lemma 5.3. Let U = Q™" be open a-convex, and let fe Q(U ; Q™). Then f admits
a unique extension f e QU™ ;Q™ ™). If V< U is also open and a-convex, then

(flVY =f"|V~.Moreover a(f~(U"))=o(f(U)).

Proof. Take any aeU~ and let h*(A4 =1, -..,m+mn) be nilpotents such that
c=a—heU. Let

S (@)= Z(l/p')h‘“ b0, 4 f)a—h),

the series being finite since h“1 are nilpotents. It is easy to see (compare proof
of the Proposition 2.11.c in [1]) that £, (a) is independent of a choice of nilpotents
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at p. An even (resp. odd) derivation at p is an even (resp.odd) Q,-linear map
v:Q,) (M) — QO such that

o fg) = v()a®) + I f (p))lg) (6.2)

where |v| = O(resp. |v| = 1). The set D(M ;p) of all derivations at p is then a graded
left Q-module. If ve D(M ;p) and if ¢ = (x?) is a local coordinate system around
p, then the components v of v with respect to (x#) are defined by v* = 1(x*). The
maps (d,),:f— (0,,f)(p) satisfy the relations (6.2) so that (0,),e D(M ;p) ,.

- Proposition 6.1. For each local coordinate system ¢ = (x*) around peM the
derivatives (3,) form up a left Q-module basis for D(M ;p). Namely, for every
ve D(M ;p) we have v = v4(? ne .

Proof. We first show that every derivation ve D(M ;p) annihilates germs of cons-
tant functions at p. Since 1% =1, it is evident that »(1)=0 and Q-linearity of
v implies that v annihilates Q. Now for 4, beQ, we have abeQ,, and therefore

= v(ab) = v(a)b + J""(a)v(b) = v(a)b — v(b)a for all a, be Q.. On the other hand
Qo-hnearlty of v implies (Proposition 3.1, vi)) v(a)b = v(b)a so that v{a)b =0 and
by Proposition 3.1., i) we get v(a) = 0. Now we make use of Lemma 5.1 and write
in an open neighbourhood of x, = ¢(p) :

, f=(fo¢™ e f(p)+(x — x5 geod-
By applying v to both sides we get '
o f) = vlxt)g (xg) = V40, /)@). DO

Corollary 6.1. If (x*) and (x*') are local coordinate systems around peM , then

o =t 2 ()

()

for each ve D(M ;p). In particular- the graded left Q-modules D(M ;D) and T(M ; p)

are 1somorph1c

Proof. Apply the above Proposition to f= x* - O

The isomorphism of T(M ;p) and D(M ,p) have been shown by referring to
coordinate maps. Tt is of some interest to see how a coordinate free description
can be given. If ve T(M ;p) then v determines the even derivation v by

d
U'ﬂ_)'dt’(foc),__;o,
where c is a path through p to which v is tangent. Suppose now e T(M ;p) is an
odd tangent vector at p. Then, given ¢€Q,, we have e¢ve T(M ;p), and for each
f€Q,(M) there exists a unique element #(f)eQ such that (e0)(f) = &i( f) for all
ge Q1 The map f> &(f) so defined is then an odd derivation at p. Equivalently
one may consider classes of equivalence of supersmooth maps ¢:et> é(g) from
open neighbourhoods of 0€Q, to M, and define an odd tangent vector as such
an equivalence class, so that for 7 = [¢] we have 7 = (dc"/ds)E o- Such a point
of view is however of little use. The reason is that while an even vector superfield
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generates one-parameter group of local, supersmooth, diffeomorphisms of M,
an odd vector superfield can not be integrated even if one thinks about using an
anticommuting parameter ¢€Q, . The folk saying that one can integrate an odd
vector field with a help of an anticommuting parameter is misleading, and what
one usually does is an integration of an even vector field eV, e€Q, being fixed.
One may say that odd vectors point out in directions which are complementary
to M, what is precisely the case if M is mterpreted as the. zero submanifold of
the vector bundle T(M).

Having defined tangent bundle, the rest of differential geometry of super-
manifolds is straightforward to develop. An even differential form at p is an
element of T(M ;p)' ; and a graded differential form at p is an element of T(M ;p) =
L,(T(M;p);Q). Given a coordinate system. ¢ = (x*) around p, the differential
forms (dx‘)p defined by (dx*) L(v) = v, ve T(M ;p), form up a right Q-module basis
for T(M;p)!. The concepts of exterior derivative and -exterior product can be
defined, first for sections of T(M ;p)', evaluated on T(M;p), then the extension
procedure described in Sect. 4 can be applied at each pomt peM. The same
method applies to Lie derivatives, connectlons etc.

| 7. Supersymmemc Superspaces

Let (E, @) (resp.(F, ¥)) be a vector superspace of dimension (4, O)(resp 0, 4))
endowed with a complete family of coordinate maps ¢:E— (Q,)* (resp. ¥ :F —
(Q,)*), where Q is a fixed BG-algebra over R. Let g (resp. C) be an even symmetric
Q,-bilinear form on E(resp.on F). The form g(resp. C) considered as a map
g:E—~E' (resp. C:F — F' ) is assumed to be a bijection. The body of g (see
Sect. 4) is assumed to have signature (—1, 41, +1, +1). ,

The two structures (E, g) and (F, C) are soldered by requiring that there is

" also given a map yeL(E;L(F;F)) such that -

() Hohw) + 1whie) = 2w, wlgd1s, v weE,
(11) Cy(v)= —()'C for all veE.

‘The map o' b — Cy(g~ (")) from E', to L(F ;F',) can be also mterpreted as an
element Qe L*(F;E) (see Proposition 4 1. (iii)), so that

' Qy, 2)) = — (Cog ™' @NE@)B)

for all y,zeF,v'eE' . The relation (ii) implies then that Q is skewsymmetric.

Let S be an affine space over F. Each tangent space T(S;0,) is canonically
isomorphic to F and Q can be also interpreted as an E-valued 2-form on S. Let
M be a supersmooth principal bundle over S with (E, 4 ) as the structure group
and bundle projection IT:M — S. For each veElet T, denotes the translation
T,:M — M so that IT > T, = I1. The form Q is now 11fted to M by IT and denoted
w1th the same letter Q. It is horizontal (ie. Q(X, Y) =0 if dII(X) = 0) and closed
(i.e. dQ = 0). Since the structure group is Abelian, 2 can be considered as a curva-
ture 2-form of principal connection w.

Definition 7.1 Sunersvmmetric sunerspace M is a sunersmooth trivializable
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principal bundle (M, I1, S, E) equipped with a principal connection w such that
do = . A symmetry of M is a vector superfield X which preserves the structure
of M, ie.

(a) X is invariant vector field, i.e.

(@I)(X(T,p)) = dII(X(p))

for all pe M and veE. Equivalently, X preserves the fibering of M i.e. there exists
vector superfield X’ on S such that X < X".
(b) X generates isometries between the fibers of M, i..

X(KY, Z|g>) =< &Y, Z|g) + <Y, Z,Z|g>

for all vertical vector superfields Y Z:M — T(M), where g 19 the induced metric
on vertical subspaces.
(¢) X transforms horizontal subspaces into horizontal ones, i.e.

(LY |w>=0 if (Y|o)=0.

(d) X' is an isometry of S endowed with the induced metric C.

"To describe explicitly all symmetries (which have been defined without any
reference to coordinate systems) one has to decide which coordinate systems are
the convenient ones. A strategy of adapting a coordinate system can be described
as follows.

1. Chose a preferred set of real —matrlces 7, satisfying [y,,y ] v 2’7,,'v with
(n,)=diag(—1, + 1, + 1, + 1), (or use iy, if y ‘are chosen imaginary), and choose

areal skew- symmetnc matrix (C,,) (charge conjugatlon matrix) so that the matrix .

equation Cy C‘ = - ﬁuT holds. A straightforward argument shows that there
exist Qo-module bases e,€E,¢,eF such that <e,,e,|g)> =1,,.{&,,&|C>= C
‘and y(e,)e, =¢,7,”, The form QeLz(F ;E) can then be written as Q(¢,, &,)* = — vk,
where y}, = C " % .

2. Chcose 0,€S so that S can be 1dent1ﬁed with F, a;nd for every f€S one has
0=0,+ 9“9 with 6%€Q, . :

3. Havmg already chosen coordinate systems on the structure group E and on
the base manifold S, there remains to chose a supersmooth section of M. The
explicit form of the connection 1-form o will depend on this choice. A convenient
choice of such a section is the one in which @ can be written as

" = dx* + 5dO™t, 0,

and it is easy to see that such a choice is always poss1ble
Now in an adapted coordinate system the most general symmetry X can be
calculated. The result reads

X =bH0, + a0, +17,8090,) + 1b"(x,0, — x,0, — Z,,%,0%0,),

where b*, b** = —b™ are from Q,a*€Q,, and X, =1[7,.7,]-

There is a straightforward generalization of the above construction which
leads to an extended supersymmetry. The vector superspace F is to be replaced by
FM=RN®F, and C is replaced by C® = ® C so that CM:R"® F - RN @ F'
N e identified with ife dnal Conrdinatee in M gre now (¥®) and
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@ u=1,...,4;i=1,...,N), and in an adapted coordinate system curvature
and connection forms read

QW = — 140" A d6’“5 750,00
o™ = dx* + ;d@“’yaﬂé 08
The most general symmetry X takes the form

X =b"0, + a™(0,; +3Vis0;; 0‘“0)
1 bu(gakékz aj Gakék]am)

+ 45,0, — x,0, — Z,%0%0,),

with a®eQ, and b*, b*"'= — b, b= — b’ from Q0

In both cases (i.e. of simple and extended supersymmetry) a real manifold
M can be defined as the body of M. In both cases M is just an ordinary Minkowski
space. In the last example given below the quotient manifold will have a structure =
of a principal bundle Minkowski space with 0(2) as its structure group.

To describe superspace with central charge (see [5] and references there)

let R? be endowed with its canonical metric & = (4, i j= 1,2, and let T denote

the canonical representation of 0(2) on RZ. We define F,=R?*®F and equip

it with the metric C,=6® C as in the last example. S_is an affine space over

F.. Now the supergroup 0'(2) has to be defined. We defme 0'(2) as 0(2) X Q0 with

the group multiplication (g, a)(¢, @) = (g4, a + &) for g, q 60(2) a,de€Qy. .
Let for each ¢eR, T(¢) denotes the matrix

T(qb)é( cos ¢, smq‘))

—sing, cosd)

- Then, given ¢eR, we have a coordinate map with domain 0(2)\T(§) and range -

(0,27) = R given by T(¢ + ¢)+ ¢. We define the local coordmate map x° for
0'(2) with domain (02)\T()) x Q, and range o~ ((0, 2m)) = Q, by x° (T(q’)) a) [
¢ +a.

It is evident that with the above deﬁmtlon O’(2) isa superanaiytlc super-group
according to [6], with its Lie algebra isomorphic to Q. The representation T
of 0(2) on R? extends by analyticity to a representation of 0'(2) on F. '

Let now E° =0(2) x E so that E® is also a supergroup with its Lle algebra
¢5 isomorphic to Q;® E. On Q,@® E we have the invariant metric g° =1Dg.
M? is defined to be a principal fibre bundle over S, with E 5 as its structure group.

On F, we have now representation I' = T@y of E° and the derived repre-

'sentatmn A =dT @1, + 15, ®y of ¢5. The form Q is defined as in the first

example but with C, y, g replaced by C_, dI’, g°. In an adapted coordinate system
we then have

‘ 1 i j 4 a ‘ a
- 5 6% A dO¥ (’yiﬂaij Bxt + C“ﬁgij é;)’ .
‘ ot =dxt 4 %deaivgﬂgﬁjéij ?
@ = dx® +1d6%C, 0.
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Looking for the symmetries of M> which preserve all the relevant structure
(including the direct sum structure of vertical subspaces) we can find the followmg
generators:

W= e
1 a ‘ z, L a
.M v =X, 0 —xa *prgﬁ 59&’ B=¢p kékiagou’
d '1 6' J

Qau 69051 2y¢ﬁéugﬁ a i +2Cuﬁ81]8 6 Aust

The interesting com‘mutatlon relations are
1Qui> Qpi) =72p0,;P, + Cw .
[0, B] - 6,6™Q

| Remark 7 L If Qo—module bases e, €F, é,€F_ are chosen, then the global welbemi
on M? is defined by the horizontal lift of e,; —s, so that M> is endowed with a.
 teleparallelism. The affine connection coefficients can be easﬂy calculated, the ’

=(1/2)C e

Remark 7.2. Smce in all three examples the supersymmetrlc supersPaces are
prmmpal bundles endowed with principal connections, we have covariant deri-
Vat1ves D,_; which can act on differential forms on the bundle to produce horizontal

only non-vanishing being I'",; ;= (1/2)y",9; rs

apij* " aipi aﬂ ij*

“ones (see e. g. [7], Chap. VI, Sect. 4). Ini particular, when applied to functmns on" ‘
M, they coincide w1th the “covarlant denvatlves explmted by Salam and Strathdee‘ e
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