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Abstract. Let G be a compact group of transformation (global symmetry 
group) of a manifold E (multidimensional universe) with all orbits of the same 
type (one stratum). We study G invariant metries on E and show that there is 
one-to-one correspondence between those metrics and triples (9I'v, A:. hop), 
where 91'v is a (pseudo-) Riemannian metric on the space of orbits (space-time), 
A! is a Yang-Mills field for the gauge greup NIH, where N is the normalizer of 
the isotropy group H in G, and h,p are certain scalar fields characterizing 
geometry of the orbits (internal spaces). The scalar curvature of E is expressed 
in terms of the component fields on M. Examples and model building recipes 
are also given. The results generalize those of non-abelian Kaluza-Klein 
theories to the case where internal spaces are not necessarily group manifolds. 

1. Introduction 

First special, and later general, theories of relativity invoked a picture of the 
universe as being modelled on a four-dimensional space-time manifold. On the 
other hand, in order to describe regularities of discrete quantum numbers 
characterizing elementary particles, a concept of "internal" (as opposed to 
"external", i.e., space-time) symmetry, and with it that of internal space, was 
introduced. The idea behind what we call a "multidimensional universe" (denote it 
by E) is that external and internal spaces are nothing but two aspects of one 
geometrical entity E, and all elementary forces in nature should be but a reflection 
of a unique geometry. By some, not yet fully understood, mechanism, certain 
configurations of a simple, multidimensional field theory are distinguished, and 
give rise to a "spontaneous compactification" of extra dimensions (see [1] and 
references therein). This idea is at the root of the so-called "dimensional 

* On leave of absence from Centre de Physique Thc!orique, F-13288 Luminy, Marseille, France 
** On leave of absence from Institute of Theoretical Physics, University ofWroclaw, Cybulskiego 36, 

PL·50-205 Wroc!aw, Poland 
*** Work done in the framework of the Project MRI. 7. of the Polish Ministry of Science, Higher 
Education and Technology 



1\.. \...uyuereaux anu t\. JauczyK 

reduction." As a result, the multidimensional universe splits into a four­
dimensional space-time M and a compact internal space S. At the same time, the 
original simple field(s) on E split(s) into components which are identified with the 
conventional fields on M, like scalars, tensors, Yang-Mills fields (in supergravity, 
also spinors), etc. In theories of the Kaluza-Klein type, the "simple theory" is a 
multidimensional gravitation, and the "distinguished configurations" are those 
Riemannian metrics on E which admit a given compact group G ofisometries. The 
case where the internal space S is a group manifold itself has been studied in many 
papers (see, e.g., [2-8]) and the geometrical structure of this kind of dimensional 
reduction is by now well understood. A G-invariant metric gAB splits into a 
gravitational field gl'" on M, Yang-Mills field A~ with G as the gauge group, and 
scalar fields hij(x) describing the metric in the internal space (these are generali­
zations of lordan-Thierry-Brans-Dicke scalars (see [4,6, 7]). Recently, attempts 
have been made [9- 13] to generalize these results to a case where S is not 
necessarily a group manifold, but rather a homogeneous space of the type GI H. No 
straightforward generalization of the original Kaluza-Klein idea has, however, 
been obtained (in particular, E of [12] is the associated bundle so that it hardly 
evcn makes sensc to consider G invariance) and the construction given in the 
present paper may be thought of as an alternative to those of [12, 13]. 
Homogeneous spaces have also been used (see [14] and references therein) to 
provide solutions to supergravity theories (where there are matter fields besides 
the metric); however, the so-called "Kaluza-Klein ansatz" used in these papers is 
not, in general, G invariant. 

In the present paper we solve the following general problem: what are the most 
general algebraic and geometric properties of an extended universe E under the 
only requirement that G (a compact group) be a group of internal (global) 
symmetries? In Sect. 2 we show that E can be written locally as the product M x S 
with S = G\H, and that a local symmetry group K Nj H arises in a natural way, 
N being the normalizer of H in G. In Sect. 3, we characterize all G invariant 
metrics on E and show that the local symmetry group K is at the same time the 
gauge group; we prove that there is one-to-one correspondence between G 
invariant metrics on E and triples (gil" A!, h./J)' where gllv is a metric on M, A: are 
Yang-Mills fields corresponding to the gauge group K=NjH, and haP are scalar 
fields. We also express the scalar curvature of E in terms of these fields [formulae 
(3.5.7) and (3.5.8)]. Examples (see Tables 1 and 2) are given in Sect. 4. We want to 
stress the fact that a principal bundle structure, so characteristic in mathematical 
descriptions of gauge fields, arises automatically and naturally in the present 
approach - the principal bundle emerges as a specific submanifold of the extended 
universe E (see Fig. 2). 

Besides its physical aspects and motivations this paper contains, uses, or refers 
to quite a number of mathematical techniques and results. Most of them are either 
standard or are simple exercises in differential geometry. However, we believe that 
the main results of Sect. 3 are new. The reader who is not interested in a 
"mathematical balast" may get the idea of the present paper by reading the 
summaries in Sects. 2.6 and 3.6, and also Sect. 4, where examples and model 
building recipes are discussed. 
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2. Bundle Structure of the Extended Space-Time 

2.1. Bundle Structure of E 
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Let G be a compact group of transformations of a manifold E. For each UE E, let 
G(u) denote the orbit of G through u: 

G(u) {ua: aEG}. 

Then G(u) is a compact submanifold of E, called also a fibre or an "internal space." 
When uland u

2 
belong to the same orbit, then their isotropy groups ("little 

groups"), denoted by HUI and H u , respectively, are conjugate. But isotropy groups 
associated to points in different orbits need not be conjugate - then E decomposes 
into "strata." By the "principal orbit theorem" [15, 16] the stratum consisting of 
orbits with maximal dimension is an open dense submanifold of E. In our case it is 
natural to assume from the very beginning that E, being a model of an extended 
space-time, consists of one stratum only, i.e., that all isotropy groups H u (UE E) are 
mutually conjugate. With the above in mind, we state a theorem that we will 
comment on and explain later in this section: 

Let E be a manifold with a right action of a compact Lie group G, and suppose 
that all isotropy groups Hu (UE E) are conjugate to a standard one, say Huo = H. Let 
M be the set of all orbits, G\H the coset space of right classes Ha along H, and let N 
be the normalizer of H in G. Then M is a manifold and E(M, G\H) is an associated 
bundle with base M, fibre G\H and group NI H. 

This statement can be found, without proof, in [17, p. 276, Excercise 4.1 ] 
(see also [18, Chap. XII] and [19, p. 93J). Because of its importance for us we shall 
give some more information about several ingredients of the above result. 

2.2. The Normalizer and the Local Symmetry Group 

First of all we shall comment on the definition and meaning of N, the normalizer 
of H in G. It is defined as the largest subgroup of G in which H is norma] [or 
invariant, or distingue (in French)] or, equivalently, 

N={aEGjaH Ha}. 

Since H is normal in N, it is clear that NIH is a group (right and left cosets 
coincide). What is relevant for us it is that NIH can be identified with the 
automorphism group of the homogeneous space G\H. Here by an automorphism 
of G\H we mean an invertible mapping a: G\H --+G\H, which commutes with the 
right action of G: 

a([a]b) = a([a])b, 

where [a] HaE G\H and bEG. 
To see the relation between NIH and the automorphism group of GIH, 

observe that for every nE N the mapping an: G\H --+G\H, defined by 

an([a]),: [na] , 

commutes with the right action of G on G\H, and depends on the equivalence class 
en] of n in NI H only. Conversely, given an automorphism !l of G\H, let nE G be 
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such that a(H)=Hn. Then a(Ha)=a(H)a=Hna for all aeG. In particular for 
a = he H we get Hnh = Hn, i.e., ne N. It follows that a is of the form an' as above. It 
is precisely because of this identification of elements of NIH with automorphism of 
G\H that NIH plays the role of local symmetry group (local gauge group) in our 
framework. 

2.3. Construction of an Associated Bundle E(G\H, M) 

Let us consider a principle bundle P(NIH, M) with a base M and structure group 
NIH. We shall discuss here the geometry involved in the constructions of the 
associated bundle E(G\H, M). The procedure described is nothing but a particular 
case of the standard construction of an associated bundle from a principal one (see, 
e.g., [20, Chap. XVI.l4]). 

In the direct product P x G\H, define the following relation 

(p,[a])-(p',[d]) ¢> 3[n]eNIH so that p'=p[n], [a'] [n-1][a], 

where pEn] is obtained from p by using the right action of [n]eNIH on the 
principal bundle P, and [n-1][a] [n-1al In other words, NIH acts on the 
typical fibre G\H by automorphisms, those discussed above: [a] = anCEd]). It is 
easy to see that the above relation is an equivalence relation. We shall denote an 
equivalence class by the symbol P' [a]. Let us recall what is the intuitive meaning 
of this: writing up' [a] means that the "geometrical object" u has "co-ordinate" 
[a] in the "frame" p. Of course, u=p'[a]=(p[n-1]Hln][a]), so that the group 
NIH plays the role of the group of transformations of "frames". The space of 
equivalence classes [quotient of (P x G\H) by the equivalence relation] is, by 
definition, the associated fibre bundle E = E(M, G\H) with "geometrical objects" u 
in the fibre, M in the basis and transition functions valued in NI H. The situation is 
schematically described in Fig. 1. 
In a local trivialization determined by a local cross-section (J (gauge), the element p 
of P can be represented as p En]) (i.e., P=(J(x)[n]), where xeM and [n]eNIH. 
The element ueE can be written as (x,y), where y=[a]eG\H and u=(J(x)·[a]' 

2.4. Global Action of G on E( G\H, M) 

Let us ask what are the transformations p: G\H...,. G\H of the typical fibre which 
pass through the equivalence relation defining E to induce transformations of E 
itself. If u y) and we want to define P(u) as (x, P(y», we must check that this 
definition is gauge independent, i.e., that p·p[a] IJp([n] [a]) or p([n] [a]) 
= [n]p([a]). In other words, the left action of the structure group must commute 
with p. Since the structure group is, in general, non-abelian, it is clear that P 
cannot be the left multiplication by N I H. But it can well be the right multiplication 
by an element of G so that ug=(p·[a])g=(p·[ag]), since we have shown in 
Sect. 2.2 that NIH is precisely the set of all transformations of G\H which 
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commute with such P - s. The situation is now the following: we have a (non­
principal) fibre bundle E(G\H,M) with structure group NIH, with G acting on E 
from the right and operating transitively on each fibre, so that the fibres of E 
coincide with the orbits of G. However, this action is not free; indeed, if 
u == p . [a] e E, then the isotropy group of u is H" = a - I H a. In particular, all isotropy 
subgroups are mutually conjugate. Here and below e denotes the identity of G. 

We will now show how P can be identified with a submanifold of E. For each pe P, 
let u(p)e E be defined by u(p) = p' [e], i.e., u(p) is the geometrical object uniquely 
defined by the requirement that it has "co-ordinates" [e] in the "frame" p. It is easy 
to see that the mapping p-u(p) from Pinto E is an embedding, which also satisfies 
u(p[n])=u(p)·[n] for all peP, neN. In particular ueE is of the form u u(p) for 
some pE P if and only if the isotropy group Hy of u is precisely H. 

2.5. Bundle Structure of E (cont.) 

Let us summarize the discussion given in Sects. 2.2-2.4: given a compact Lie 
group, G and a subgroup He G, we started with a principal bundle P(NIH. M), 
N being the normalizer of H in G, and showed that on the associated bundle 
E(G\H, M) the group G operates from the right in a natural way. All isotropy 
groups of G in E are mutually conjugate and P can be identified with a subset 
(immersed submanifold) of E on which all isotropy groups are exactly H. With the 
above construction in mind, it is now easy to understand why the theorem stated 
in Sect. 2.1 holds true. Suppose that E is a manifold with right action of G, and in 
such a way that all the isotro~y groups Hy are conjugate to a standard one H = H

uD
' 

Let M be the space of all orbIts, and let P be defined as the set of all ue E such that 
Hy H: P={peElpH=p}. Observe that if peP, aeG, then paeP if and only if 
ae N and, since H acts trivially on the points of P, it is the quotient group NIH 
which freely acts on the fibres of P. Therefore P has the algebraic structure of the 
principal bundle with base M and structure group NIH. It is also clear that E can 
be identified with the bundle associated to P via the natural action of NIH on 
G\H. Indeed, we have a natural surjection P x G\H - E given by 

(p,[a])l--+p·[a]=pa, pePCE, aeG. 

Analytically one needs the so-called "slice theorem" [18, Chap. VIII] (see also [21J 
for the non-compact case). 

The resulting structure is represented in Fig. 2. 

2.6. Summary 

We shall now summarize the main ideas of this section in plain terms. We started 
with an extended space-time E with a fixed, global, compact. internal symmetry 
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(classification) group G. The orbits of G are internal spaces of E. They are 
homogeneous spaces of G and, under very mild assumptions, one can locally 
represent E as a product M x G\H. The group G operates on E just by right 
translations: if p=(x,[yJ} is a point in MxG\H, then a group element (lEG 
transforms p into (x, [yaJ). Here [y J denotes the right coset [y J = H y. yE G. We 
have also introduced local transformations (x, [y J) ...... (x,J(x, [yJ) characterized by 
the fact that they commute with the global ones. We have shown that every local 
transformation is described by a function x ...... n(x), where nIx) belong to the group 
NI H, N being the normalizer (see the definition in Sect. 2.2) of H in G. In a 
particular, well understood, case where the internal space is a group manifold (i.e., 
H = {e} and G\H G) the global and local symmetry groups happen to be 
isomorphic, the first acting on the internal space from the right and the second 
from the left. If the internal space is a homogeneous space G\H with a non-trivial 
isotropy group H, then the situation becomes more complicated and the resulting 
local symmetry group is no longer isomorphic to the global one. Examples are 
given in Sect. 4. It will be seen in the next section that the local symmetry group. 
identified here as NI H for geometrical reasons, will play the role of a gauge group, 
both kinematically and dynamically. 

3. Metric and Curvature 

3. f. Decomposition of ~i} 

We first introduce convenient decompositions of the Lie algebra '§ = Lie (G). To 
make the discussion simple, both Hand G are assumed to be compact, connected 
Lie groups, with H C G. Since G is compact, we can choose a bi-invariant 
Riemannian metric on G or, equivalently. an Ad G invariant p-definite scalar 
product « .» in <§ (if G is simple then «.» is unique up to a multiplication by a 
positive constant). Let Yf = Lie (H) and denote by [I' the orthogonal complement 
of ..If in '§. Since «.» is, in particular, Ad H invariant, we get what is called a 
reductive pair [22, VoL II, Chap. X.2J 

(3.1.1) 

It is then possible to identify [1', endowed with the above linear action of H, with 
the vector space tangent to the homogeneous space S == G\H at the origin. For a 
given homogeneous space, the above reductive decomposition need not be unique, 
however. this non-uniqueness will not cause any trouble in the following. 

With A =. Lie (N) being the Lie algebra of the normalizer N of H in G, we 
decompose JV into 

(3.1.2) 

where (3.1.3 ) 

is the orthogonal complement of .tt in AI'. Again we have a reductive pair 
(AdH)(.ff) X, but now, since H is normal in N, we also have [ff, AI] ex, what 
implies [x, xJ e Yf. Since .ff nX we get 

[Yf.XJ=O. (3.1.4) 

UC;VllICl1) UJ lY1UtUUIlJlvU;>lVUUS '-'Ill ~ .... J ... J 

It is useful at this point to introduce the centralizer (or com mutant) of ,Yt' in '§: 

(3.1.5 ) 

The centralizer contains, in particular, the centre C€ H of ,Yt : 

C€H==:!l'Hn:if'. (3.1.6) 

It follows from (3.1.3) and (3.1.4) that %cfl'n.3lH , and it is easy to see (compare 
also [23, Sect. 3.2.44, Theorem 2J) that in fact 

(3.1.7) 

In other words .x is composed of those vectors which are tangent to GR at the 
origin and are invariant under H. (This remark will be important in Sect. 4, when 
we shall count the scalar lields.) Actually X, being an orthogonal complement 
(with respect to a bi-invariant metric) of the ideal Yr, is itself an ideal and. 
a fortiori, Lie subalgebra of v'V. We can therefore identify, .:[ with the Lie algebra 
Lie (NIH), and for obvious notational reasons we call 

K NIH. (3.1.8) 

Finally. we observe that 

(3.1.9) 

Indeed, it follows from (3.1.1)-(J.1.7) that % +C€IlC:!l'H' so that it is enough to 
show that ::!tHex +C€w Let XE::!tH and decompose x xH+Xs with xHE:if' and 
xsE[I'. Then, for every yE:if', we have [xH,,,J =[x,yJ- [xs,y]. where the first term 
vanishes (since XEYH), and, by (3.1.1), the second term is in Y'. On the other hand, 
since Yf is an algebra, [xH,yJ is in:if'. and so [XH,yJE,KnY'=O. It follows that 
XHEC(;H and therefore Xs x-xHE[I'n:!lH=.x. In a particular case. if H is 
semisimple [i. e., if H contains no direct U(1) factorsJ then the Lie algebras of 
K = NI H and of the centralizer of H are isomorphic. 

Finally, we introduce 2, the orthogonal complement of, V in '§: 

(3.1.10) 

In particular. 

fI' = X' + 2, (AdH)2 = (3.1.11) 

and it should be noticed [compare also the discussion in 3.3 AdOJ that, in fact. 
2 is orthogonal to X with respect to any Ad H invariant scalar product on .. C!'. 
This follows from the fact, that according to (3.1.7), the representation of II on 2 
does not contain the trivial representation. 

In practice, in particular in model-building as discussed in Sect. 4, one often 
starts with a direct product H . K of two subgroups Hand K of G and the question 
arises whether H . K is the normalizer N of H in G or not. From Eqs. (3.1.7) and 
(3.1.2) one can deduce the following criterion:.f"" .tt +.x, [Yf, X] =0, is the 
normalizer of Yf in '§ if and only if 

(3.1.12) 



where .!l' is defined as the orthogonal complement of % in ~. In particular, if the 
present representation of H· K on .!l' is faithful and irreducible, then 
% = Lie(H . K) is the normalizer of X in ~; the normalizer N of H in G is in that 
case equal to H . K modulo a discrete group (indeed N is very often not connected). 

The whole story can be visualized and summarized as follows: 

~ = XEB X EB.!l' 
'--v--' 

1/ 
[X, X] ex 
[X,X]CX 
[X, X] =0 
[X, .!l'] C .!l' 
[ X, .!l'J c .!l' 

~=Lie(G) 

X Lie (H) 
%=Lie(N) 
X~Lie(NIH) 

1/= To(S=G\H) 
!l'H = centralizer of X in ~ 
~.>t' = centre of X 

3.2. Adapted Basis 

Fig. 3 

N is locally a direct product of two 
normal subgroups: N~HK (it may be 
disconnected) 

We fix once and for all a basis ~ in ~, with [~, 7jJ = C~T,., adapted to the 
decompositions 

(3.2.1 ) 

and introduce notation 

(3.2.2) 

distinguishing between basis vectors in the different components of~. For each 
aE G. let A(a)~ denote the matrix of the adjoint representation of G: 

(Ada)~=a~a-l=A(a){7j. (3.2.3) 

It should be noticed that for nE N the matrix .1(n) has the foHowing structure 

A(n)= [A,(n} 0 J o Ap(n) . (3.2.4) 

Indeed, if nE N, then nHn - 1 H and, infinitesimally n7jn - 1 = A(n)~Tp, in particu­
lar A(n): =0. 

This implies that the submatrices 

(A(n)p) == lR(n) 

form a representation of N in ,'/" = X + If. 
(3.2.5) 

3.3. Vertical Moving Frame 

Let ei be the fundamental vector fields on E corresponding to infinitesimal 
transformations of E generated by ~: 

ei(u) = :c (uetT')I,; 0' UE E. (3.3.1) 

(These vectors are Killing vector fields of every G invariant metric.) Since G acts on 
E from the right, we have 

[ei,ejJ(u)=C~lk(U), uEE. (3.3.2) 

It should be noticed that, at any given uE E, the family "i(U) is overcomplete in the 
vertical tangent space at u. Something special happens, however, on the sub­
manifold peE: the vector fields ea, inclueded in the family {e;l, vanish on P, 
whereas the lOa S are linearly independent at every point of P. (We remind the 
reader that the principal bundle P was defined in Sect. 2.5 as the set of all points 
invariant under H.) 

Now, since the vector fields fa are linearly independent on P, they are also 
independent in some neighbourhood U of Pin E. In particular, the commutator of 
two vertical fields being again vertical, we have 

(3.3.3) 

where the f:'fj are the structure functions of the vertical moving frame e,: notice 
that they depend generally on the point u at which they are calculated. However, 
they are constant on P: 

(3.3.4) 

Notice also that the property for ea to constitute a moving frame in the vertical 
space fails if one goes too far from P: the vectors fa may become linearly 
dependent there. 

From the Definition (3.3.1), and taking into account that f,.:i(z) =0 for zE P, we 
get the relation 

PEP, nEN, (3.3.5) 

which will be used in (3.4.4). 
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For calculation purposes, one also needs the expression of elr;y) in terms of 
the structure constants C7j of the group G. Indeed, when one wants to compute 
geometrical quantities [such as, e.g., scalar curvature of a homogeneous space 
(3.5.8)J, one performs the calculation at a point ZE P, but what is needed are the 
values of the structure functions and their derivatives in the directions transversal 
to P. To obtain such a formula we first observe that, from (3.3.2) and (3.3.3), we 

have " . C i () f py(lI)e,,(II) = pli II . (3.3.6) 

Then, taking the commutator of both sides with e. and using (3.3.4), we get 

c.(jty)(p)=C~)'C~$' pEP. (3.3.7) 

In particular, owing to (3.1.4), we get ctlf;y)(p) =0 in agreement with (3.3.4). 

3.4. Characterization of G Invariant Metrics on E 

Let 9 now be a G invariant metric on E. We are going to show that it determines 
and is determined by 

i) a G invariant metric hx on every fibre Ex of E; 
ii) a G invariant horizontal distribution (Zu)u"E on E(G\H, M) or, equivalently, 

a principal connection in P(N I H, M); 
iii) a metric y on AI. 
A given manifold may not always admit a non-degenerate pseudo-Riemannian 

metric of given signature. In the following we shall always assume that problems of 
this type do not arise. 

In subparagraphs Ad i)-Ad iii) we prove the direct proposition, while in Ad iv) 
we will show the converse, 

Ad i) 9 being a metric on E. we know, a fortiori, how to compute the scalar 
product of two vertical vectors. Since 9 is G invariant, we obtain a G invariant 
metric hx on every fibre E~ of E. 

Notice that a co-ordinate representation of h" is obtained as follows: choose a 
local cross-section (gauge) of P, a: M ....... P such a section "marks the origin" on 
each fibre then define h>lb:)=ga~(a(x)), where g;x~(p)=gie;x(p),e~(p)), pEP, are 
numerical functions on P. The matrix h = (haP)' being associated with a G 
invariant metric on a space isomorphic to G\H is automatically AdH invariant 
[22, Vol. II, Chap. X, Proposition 3.1 J, and therefore satisfies the constraints, 

(3.4.1 ) 

where lR(a), [IE HeN, is given by (3.2.5). 
According to (3.4.1) the matrix lh(x) defines an AdH invariant scalar product 

in Y. In (3.1.11) we have defined a splitting of Y into the direct sum of two 
subspaces x' and using an auxiliary bi-invariant metric on G. We now realize 
that .x and !.f are also orthogonal with respect to the scalar product induced by 
hap(x). Indeed, .x and !.f carry disjoint representations of H and therefore they are 
orthogonal with respect to every AdH invariant scalar product (see, e.g., [24, 
Chap. VIII, Sect. 3]) (h 0 \ 

Ih = liS, I ' (3.4.2) 
0, habl 

UCUIUCUY UI lVIU:ltJUllllcrl~lU(Jdl UIIIVl;;I:"!C:> 

Owing to the formulae (3.2.5) and (3.1.4), we also have 

Ibt 0 \ 
lR(a) = \ 0 R~) , 

so that the constraints (3.4.1) are effective on hob only. 

(3.4.3) 

The field x ....... h of G invariant metrics on fibres of E can be identified with a 
cross-section of a bundle associated to P. Actually, by (3.3.5) we find 

,. P' 
O.p(pn) = R(n), R(n)p g,p(p). nEN, (34.4) 

and 

(3.4.5) 

so that the numerical functions gaP(z) on P can indeed be identified with sections of 
an appropriate associated bundle [22, Vol. I, Chap. II, Example 5.2]. The relations 
(3.4.4) and (3.4.5) define the type of transformations of these scalar fields under 
NIH gauge transformations. 

Notice that it is enough to know the functions h.p(x) g.p(a(x)), where 
a: M ....... P is a local gauge, Using G invariance and the constraints (3.4.11, h.~ can 
be then unambiguously propagated allover the bundle E. 

Ad ii) For every liE E, let v.. denote the internal, or vertical. tangent space, i.e., 
subspace of T,,(E} consisting of all vectors tangent to the fibre at u. Let Zu be the 
orthogonal complement of Vu in T,,(E) with respect to our given G invariant 
metric g. Since 9 is G invariant. we have (Z)a ZU"' QEG, i,e., we have a G 
invariant horizontal distribution on E. In order to show that the distribution 
determines a principal connection, we must prove that at pE p.~ p is tangent to P. 
This follows by observing that Zp is orthogonal to the vectors f)p) which span the 
orthogonal complement to P at p. Now, (Zp)PEP is an N and therefore also an 
NIH invariant horizontal distribution on P, i,e" a principal connection [22. Vol. L 
Chap. II.1]. 

Ad iii) The scalar product w) of two vectors, tangent to JH at a point x, is 
obtained as follows: choose an arbitrary point II in the orbit labelled by x. and let 
v* and w* be the vectors in Zu which project onto rand w respectively. Then define 
r,(v, w)= gu(v*, w*). The result is independent of the choice u on the orbit hecause 
of G invariance of the metric g. 

Ad iv) Conversely, it is easy to see that given a metric i' on l'v!. rrincipal 
connection (Zp)PEP' and G invariant metrics hx on the fibres of E. one constructs a 
G invariant metric on E, Indeed, given ~, I1E T"E, let pE P be such that u = pa for 
some aE G, and let n:W and n:(I1) denote the projections of ~ and 11 on AI. Denote hy 
~* and r/* the horizontal lifts of n(~) and n(l1) to Zp. Then the vectors ~ and 
11- r/*a are vertical, and the scalar product of ~ and r/ in E can be defined as 

(3.4.6) 

3.5, Curvature 

Let XU be a co-ordinate system on M, and let ell be the horizontal lift of the vector 
fields au from M to E. The vectors e A c.) then form a basis at every point 
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UE U, where U is an appropriate neighbourhood of P. By their very definition the 
vector fields e!, are orthogonal to e., and the metric takes the form 

(
g!,V(X), 0 ) 

gA8= , 
0, g .. p(x, y) 

(3.5.1) 

where (x, Y)E M x G\H is a local product representation of E in a given gauge 
a: M -+ P. For p a(x) = g)E P, the connection form can be written 

w(p) g-IA!,(x)dx!'g+g-ldg with A!'{x) A:(x)~, 

and the horizontal lift e!'(p) can be written 

e!'(p) (0 !')p - A!(x, g)e,,(g), (3.5.2) 

where 

Ajx,g) 

Therefore the inverse metric in P can be written as 

g - 1= y!'V(x)(oll- A:(x, g)e,s(g»®(o, - A~(x, g)et.(g» + ha"(x, g)(e,;{g)®Bb(g)). 

It is enlightening although unnecessary to express g-I in P in terms of the 
vector fields e,M) \j(g)g (which are only defined through the choice of a 
gauge, and satisfy [B",eb](g)=O). These vector fields eo can be thought of as right 
invariant vector fields in the copy of K = NIH above x. Then one obtains on P 

g - I = yII"(x)(01' - A:(x)e,;(g»®(ov - At(x)eb(g)) + hab(x)(e,;{g)®ef,(g». 

This writing clearly exhibits the G invariance (but destroys the explicit gauge 
invariance). 

The commutation relations of the basis e A are 

[el',e .. ] =0, 

[Ea. Bp] f:pBy, 

with 

(3.5.3) 

(3.5.4) 

(3.5.5) 

(3.5.6) 

where F:v are the components of the curvature two-form of the connection DI" 
Information about the structure functions f:p on P is given by (3.3.4) and (3.3.7). 
These are the necessary ingredients for calculation of the scalar curvature R of the 
Levi-Civita connection of gAB' Taking also into account the fact that E. are Killing 
vector fields for gaP' the result is 

R(E)=R(M)+R(G',H)-l.F" Fl'v-l.h"f!hY~(D h Dl'h 
4 II V a If I'.y p~ 

+ D IIh.pDl'hy~) - VI'(haf! D I'h.p) : (3.5.7) 

Here R(M) is the scalar curvature of the Levi-Civita connection VII of gllv' DII and 
Pare. resnectivelv. the c:ovilriilnt rlerivative and the curvature of the principal 
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connection A:, and R(G\H) is given by 

R(G\H) =h/if!'(!C~pCL-:haa'hYY'C~ilC~:f!' + C~fJCP"- C:pC;p')' (3.5.8) 

The indices Il, v are lowered with the metric gllv' while the indices ct, P (respectively 
a, b) are lowered with the help of the matrix haP (respectively hab) given by (3.4.2). 
When G is unimodular (in particular when G is compact), the last term in (3.5.8) 
vanishes. If H is trivial (H = {e}), the third term of (3.5.8) vanishes and if G\H is a 
symmetric space ([Y, Y] CJt"), the first two terms of (3.5.8) vanish. The last term in 

(3.5.7) gives rise to a total derivative in the Lagrangian R V g(M) and can be 
neglected. While varying this Lagrangian the constraints (3.4.1) are to be taken 
into account. 

Expression (3.5.4) agrees with the scalar curvature given in [4], where the 
group case is treated (H trivial) although it is not written in the same way: 
however, we believe that there is an erroneous sign inside the kinetic term of the 
scalar fields in [13]. 

3.6. Summary 

We summarize the results given in this section. We have considered an extended 
space-time E having a local product structure E:o:: M x G\H, with global symmetry 
group G acting on E from the right. We have shown that there is one-to-one 
correspondence between G invariant Riemannian metrics g4.B on E and triples 
(gllv, A:, hocp), where guv is a Riemannian metric on M, A: are gauge potentials 
corresponding to the local symmetry group NIH, and hail are certain scalar fields 
determining an AdH invariant metric on rtl\Jt. The curvature R(E) of the metric 
gAB splits into 

a) R(M) - the curvature of space-time metric gl'v' 
b) R(G\H) - the curvature of the G invariant metric on G\H which gives the 

potential term for scalars haP' 
c) Yang-Mills Lagrangian of A~, 
d) kinetic term for the scalars hail' 

[see the formulae (3.5.7) and (3.5.8)]. When varying the scalars haP' the constraints 
(3.4.1) have to be taken into account. To make the discussion given in this paper as 
simple as possible, we have considered Riemannian metrics instead of vielbeins. In 
many cases, especially when spinors are taken into account, the vielbein formalism 
is a necessity. In such a case we would have h(x) = <>.p!pa(x)®1Jl(x), with !p'(x) being 
the soldering forms (vielbein) on the internal space at x. Taking into account the 
fact that Ba can be thought of as an orthogonal basis on G\H with respect to a fixed 
metric «, », induced by a bi-invariant metric on G, it is natural to write !p"(x) 
= oa(x) + 4>a(x), where O· are the duals of ea' The {!pa} constitute a set of 
s = dim(G\H) one-forms, orthogonal with respect to h, and their deviations 4>' play 
the role of Higgs fields. 

4. Comments and Examples 

4.1. Counting the Number of Scalar Fields 

The set of all G invariant metrics which can be defined on a given homogeneous 
snace 51 G\ H is itself a (connected) manifold, which we shall caU R( G ; S). The 



reader should be aware of the fact that a given manifold S may admit several 
homogeneous structures [for example, the homogeneous spaces SO(8)/SO(7), 
SU(4)/SU(3), Spin7/G 2 , USp(4)/USp(2) are all diffeomorphic to the standard 
seven-sphere S7]; therefore we stress the fact that, in the following, we will 
consider a manifold S with a given homogeneous structure G\H, and we shall 
consider those metrics on S which are invariant with respect to the action of G 
on S. Both G and H are assumed to be compact and connected. 

It is well known [22] that G invariant metrics on G\H are in one-to-one 
correspondence with AdH invariant bilinear symmetric forms on the tangent 
space g at the origin of S = G\H. Indeed, owing to the transitivity of G action, one 
can transport such a scalar product from the origin to any point of S, and the 
transport is unambiguous because of the assumed AdH invariance. In order to 
find the dimension d of the manifold R(G, S), one has therefore to decompose the 
representation AdH on the vector space g into irreducible ones: 

(4.1.1) 

where the index i runs over inequivalent irreducible representations of H on V;, 
and r i is the multiplicity with which V; occurs in S. Since the dimension d of R( G; S) 
is equal to the dimension of the space of symmetric operators on g commuting 
with the representation AdH, it follows that 

(4.1.2) 

From the formula (3. 1.7) it follows that the dimension k of the gauge group K 
coincides with "0' where i = 0 denotes the trivial representation of H 

k=dimX=ro ' ( 4.1.3) 

It is sometimes natural to restrict the attention to G invariant metrics on S with a 
fixed volume element. We shall denote by do the dimension of the manifold of 
conformal equivalence classes of G invariant metrics on G\H (do = d - 1). 

In ordcr to find out the decomposition (4.1.1), one can use tables [25] - in 
practice one looks at the branching rule of Ad G'into N = H K. However, one has 
to remember that what we need are decompositions into real-irreducible repre­
sentations, while the tables (and most papers on the subject) give the branching 
rules in terms of complex-irreducible ones. Special care has to be taken if H or K is 
one of the groups SU(n), Spin(4n + 2) or E6 . Indeed, these groups admit some 
representations (Q) which are not self-conjugate. In such cases Q and Q will appear 
simultaneously in the reduction of the adjoint representation of G, and one has to 
collect together such pairs to build R-irreducible representations. 

4.2. A Class of Almost Trivial Examples 

a) S = G/{e}, i.e., H = {e}. Now S itself is a group, and the number of scalars is 
the number of right invariant metrics on G. The isotropy group H = {e} is trivial 
and its irreducible representations are one-dimensional. We have g = ~ = % = X 
and Yf = 05[' = O. The number of gauge potentials (i. e., the dimension of the gauge 

group) is k=g=dim(G). The number of scalars is d=g(g+ l)/2. In that case 
do = dim SL(g)/SO(g). 

b) G=G 1 xGI' H=diagG={(a,a)laEG 1 }. The homogeneous space S=G\H 
can be naturally identified with G l' the action of G on S being given by x->a - 1 xb, 
(a,b)EG

I 
xG

1
. In particular H acts on S by x->a-1xa, so that the number of 

scalars is equal to the number of bi-invariant metrics 011 G I' This can be 
determined by decomposing the adjoint representation of G into irreducible 
representations and applying the formula (4.1.2). The gauge group K = NIH is 
easily seen to be isomorphic to the centre of G 1 . In particular if G 1 is simple, then 
d= 1 and k=O. 

c) S = G\H is an irreducible symmetric space. In that case we have a reductive 
decomposition ~ = Yf + g with [g, g] C Yf, and the adjoint representation of 
AdH on g is irreducible. It follows that X = 0 and g = 05[', so that the gauge 
group is at most discrete (k=O) and only one scalar field is present (d= 1). All 
irreducible symmetric spaces have been thoroughly studied and classified [26]. 
Example: S7 = SO(8)\SO(7) is a symmetric space admitting. up to a scale, only one 
SO(8) invariant metric. 

d) S = G\H is an isotropy-irreducible homogeneous space. The cases discussed 
in c) fall into this category but there are many isotropy-irreducible homogeneous 
spaces which are not symmetric. They are classified in [27]. Here again d = 1 and 
NIH are discrete. Example: S7 = Spin 7\G 2 is a simply connected isotropy­
irreducible, but non-symmetric space. It admits, up to a scale, only one Spin 7 
invariant metric (n.b. the same as the one in b) [28]). 

Another example of this type: G=Spin8, H=SU(3)/Z3' S=G\H is isotropy 
irreducible (not symmdric) with N:::::: H and a discrete gauge group K. The 
decomposition of AdG into real irreducible representations of H reads: 
28=8EB[lO+1O]. Notice (see the end remark of Sect. 4.l) that 10+10 is to be 
understood as IR-irreducible and therefore the number of scalars (i.e., Spin 8 
invariant metrics on S) is d= 1 (and not 1 + 1). The 8 in the decomposition is of 
course :It itself. 

e) S = G\H is normal space. Any metric on S which is induced by a bi-invariant 
metric on G is G-invariant. Such metrics on S are called normal. 111 a sense normal 
metrics are the "most natural" G-invariant mctrics on S. A homogeneous space 
S = G\H is called normal if every G invariant metric on S is normal. Noticc that 
isotropy irreducible spaces are normal, but they are not the only spaces of normal 
type [29]. 

4.2. Model Buildino 

To build a model one has to choose a global group G together with two subgrou[ls 
Hand K so that N = H x K is the normalizer of H in G. Then S = G\H is the 
internal space and K=NIH is the gauge group. We can notice that S itself admits 
a principal bundle structure with basis L = G\N and structure group K = NIH [18. 
Chap. XII] schematically. 

K=N/H I 5=G\H 

Fig. 5 L=G\N 
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Table t. SImply .::onnected irreducible symmetric spaces L=C\N, where N is not a simple Lie 
group. In column 51), the real irreducible representation AdIN) on !iI' is expressed in terms of reducible 
complex representations. Decompositions not appearing in this column should he computed for given 
values of p. 'I (or n) 

C N Remarks 51' 

SU(4) SO(4) 303 
SLip +'1) SIV p xV.) 1'";>;2. 'I I 
SOlplq) SOl,,) xSOlq) I' ";>;2, q";>;2 
SOl41<11 SO(4) xSOlq) 1'=4,'1";>;2 
SOI2n) U(n) n 3 
USp(2nJ U(n) n";>;1 
USpI2Ip+q)) LSp(2pl x USp(2q) p~ l.q";>; I 

t:" S U(6) xSL(2) 2002 
E h SOIIO) xU(I) 4501 +116+ i6101 + 101 
£ SO(12) xSU(2) 3202 +3202 
E· E" xU/I) 2701+1701 
E. E7 xSU(2) 5602 
F. USp(6) x SlJ(2) 1402 
G1 SO(4) (2 cases) 402 

In thiS table. USp(2n) denotes USp(2n.(f) = Vln, Boo\) a!ld S(Ulp) xU(q)) (Ulpl xU(q))nSU(p+l!l. 
Notice the followi!lg local Isomorphism SO(4) -SUr:!) xSUI::!) StU I' xU.) - Slip) xSUIlO x L\ II 

Table 2, Same as 111 I but L = G\N are simply connected irreducible a!1d Isotropy-irreducible (but 'lot 
symmetrlcl spaces where N is !lOI a simple l.ie group 

G N Remarks ~ 

S U(pq), Z,,, [SU(pl,ZI'} x [SUlq)jZ.J p ?o q ?o 2. pq > 4 
In I.e. m(p.q) 

F. SOI3) '<G 1 507 
F. [SL(3l XSUI3)}!Z3 306 x30il 
E,,iZ, [SL(31!Z31 xC2 8014 

E"iZ, 
SL(3) xSU(3) xSU(3) 

30303+30'i03 .. -

ZJ x2 J 
£,,21 (USpf61/Z1 ) xCi1 14014 
E·:21 SO(3) xF. 3026 
£,/2, {SUO) XSU(6)I!Z" 3015+3013 
Eo G, xF. 140952 
E. (SUm x E"lIZ, 3027 + 

Given Hand K it is natural to restrict oneself to those cases where the 
representation of N =H' K on '!IlvY is faithful and irreducible. As it was 
mentioned in Sect. 3.1, N is then, modulo a discrete group, the normalizer of H 
in G. Symmetric irreducible spaces are listed in [26, 30] and the non-symmetric 
ones can be found in [27]. When one goes through these lists one realizes that N is 
often a simple Lie group, In such a case either H = N (in which case the gauge 
group K is trivial) or H = {e} (modulo discrete groups), so that S is a group 
manifold itself, S N K = G. The G\N simply connected with non-simple N are 
very rare and are all listed in Tables 1 and 2. Table 1 is extracted from [30] and 

Table 3. In order to simplify the reading ofl'ables I and 2, Table 3 recalls the uSl1al Cartan dassifi­
catio'l of Lie groups 

G 

A",=SL(m-l-\, en 
B,,, =Spin(2m+ L lR) 
C.,=U(m, IH) 
D", =spi!l(2m, lR) 

Dimension 

m(m+2) 
m(2m+l) 
m(2m+ \) 
m(2m I) 

14 
52 
78 

133 
248 

G' Simple, compact. simply connected real Lie group. 
The usual isomorphisms are: 
A,=B,=C"B, C,.A 3=D"D,=A, XA,. 
Usual notatIOns are: 
U(m. IH) USp12m. tr) = Spl2m. (f) n S U(2m, (fl, 
Notice that SpJn(n) is the two-fold covering ofSO(n) 

Ce!ltre 

Zm"'! 

Z, 
2, 
Z. ifm 21+ I 
Z, xZ, Ifm=2f 
1 

Complex extenS10'l 

Sflm ~ l. (f) 
Spin(2m + I. en 
Sp(2m. (f) 
Spl!l(2m. ef) 

Table 2 is extracted from [27} We also give the reduction X (over the reals) of 
AdG with respect to N H, K. Examples with reducible representations of Non ff 
can be obtained by taking products of irreducible ones. Table 3, recalling the usual 
Cartan classification, is also given in order to ease the reading of Tables 1 and 2, 

Let us now analyze in some detail several cases from the tables. 
a) G=Es,N (EoxSU(3»)/ZyH=E6' 
S G\H is of dimension 170, L G\N is isotropy irreducible but not sym­

metric. The connected component of the identity of the gauge group is K NIH 
= SU(3)/Z 3' The reduction of Ad G with respect to real irreducible representations 
of N H·K is 

[248J = [78(8) 1] + [1 (8)8] + [27(8)3 + 27(8)3] 
'----v--' ~ , , 

.Yf % ff 
The reduction of the subspace Y' K + ff with respect to H is 

Y' 8[1]+3[27+77]. 

The dimension of the space of G invariant metrics on S is therefore 

8x9 3x4 
d= 2 +2-=42, 

b) G=SO(lO), N=SU(5)x U(1), H=U(l). 
S = G\H is of dimension 20, L G\N is a Hermitian symmetric space, The 

gauge group is SU(5), and the reduction of Ad G with respect to N H ,K reads 

[45] = [1 (8)1] + [1(8)24] +[1(8) 10 + T (8)10]. 

The reduction of !:I' with respect to H is 

Y' =24[1] + lOll + 1] . 



(Observe that in the real domain an Abelian group may have two-dimensional 
irreducible representations.) Therefore 

24 x 25 10 x 11 
d= + 355. 

c) G = U(q + 1, IH), N U(q, IH) x SU(2), H U(q, IH) ( USp(2q, It)). 
S = G\H S4q 3 (spheres), L G\N = IHPq is a quaternionic projective space 

(G\N is symmetric). The gauge group is SU(2). The reduction of AdG with respect 
to H· K reads 

[(q + 1)(2q + 3)J [q(2q + 1)(8) IJ + [1 (8)3J + [2q(8)2J, 

and the reduction of /I' with respect to H is 

y= 3[IJ + 1[4qJ. 

Therefore 3x4 lx2 
-~- + 

2 2 
d 7. 

Notice that for q= 1 (U(2, 1H)~SO(5)) we obtain the SU(2) foliation of S7 over 
IHp J S4. i.e .. the usual k 1 instanton bundle [3 L 32]. 

d) G=SU(4). N=SU(3)x U(1), H=SU(3). 
S G\H=S' L SU(4)\SU(3)x U(i) is an irreducible Hermitian symmetric 

space. The gauge group is C(1 l and the reduction of Ad G with respect to H· K is 

[15J [1(8)8J+[I(8)I]+[3(8)1+3(8)1]. 

The H-reduction of:l reads. 

/:I = 1 + 1 [3 + j1, 

and therefore 
d=2. 

4.3. Comments 

Here we collect various comments, remarks and information which are not used in 
the present paper but are closely related to the subject: 

On the Sign oj Scalar CUlTature r ill the Internal Space S. If S is a compact. non­
Abelian group G then. according to [33J: 

there exis\ right invariant metrics on S so that r 0, r 0.1'>0; 
for a bi-Invariant metric on G, I' is positive. 
If S is a homogpncous space G.lI with G compact non-Abelian then, according 

to [34J' 
if S is of normal type, then every G invariant metric on S has r >0; 
if S is not normal, then there exist G invariant metrics on S with r < 0, r 0, and 

r>O. 

On the (Un)boundedness of the Scalar Curvature of the Internal Space. If the scalar 
curvature of E is considered as a possible Lagrangian then, writing formally 
"Lagrangian = kinetic term - potential." it is clear that the scalar curvature r(x) of 

the internal space at x is to be interpreted as "minus the potential." It is natural to 
freeze the volume of the internal space and to allow only for squashing 
deformations of S. The space of all G invariant metrics on S with a fixed volume is 
denoted by Ro( G; S), and has the dimension do d - I. Except in very special cases 
[for example G = SO(3) or G = SL(2, R) non-compact] the scalar curvature I' 

considered as a function on Ro is still unbounded from above [35]. For 
homogeneous spaces little is known, see however [36]. An interesting possibility is 
to allow for solvable (non-compact) groups, in which case r as a function on Ro is 
always non-positive [35] (Sect. 6) (see also Ref. [6] for a discussion of "flat" 
groups). 

On the Critical Points of the Scalar Cllrrature ill S. Consider the space of 
Riemannian metries of a given fixed volume form dr on a compact manifold S. It is 
known [37J that the critical points of the functional 

A[gJ J r[gJ dl' 
s 

are precisely the Einstein metrics on S. If S = G\H is a homogeneous space. then 
r[gJ is constant on Sand A[g] = r[g]· Yo' It is shown in [35J that every compact 
simple Lie group G, except for SO(3) and possibly G1 and USp(4n+2l admits at 
least two conformally inequivalent right invariant Einstein metrics. Notice that 
these critical points are usually saddle points of the functional A on Ro' and not 
always local extrema. The results of [35] ha'ie been extended to a class of 
homogeneous spaces in [38]. A classification of homogeneous spaces admitting 
Einstein metrics and the structure of moduli of such metrics is a difficult problem, 
still unsolved. For a recent account see [39.40]. (Notice that an isotropy 
irreducible homogeneous space is always an Einstein space with respect to its 
unique invariant metric [:::!7].) It is clear that these problems are relevant f,)r a 
semi-classical approximation of a quantum theory contaillmg the scalars h'/J' 
Notice that making an expansion of h'/1 around some non-trivial critical point 
(Einstein metric 011 S) amounts to give a "non-zero expectation value" to the Higgs 
fields <1>,(x) so that. because of the minimal coupling of the gauge fields of N III to 
the scalars, we have a spontaneous symmetry breaking and some of the range 
fields may acquire masses. 

structure group K (Fig. 5). If L is isotropy irreducible, the 11 -t 
\ 

family of G invariant metrics on S is given by 

where -Ilu is the Killing form on G. In particular, when L G'JV is symmetric, 
JJ.2 = 1 and 1j)~ = tb~, then (3.5.7) gives 

R(G\H) = R(L)+ R(K)- i C~bC~b, 
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where R(L) =± i/2, R(K) = ck/4t2 and C~b can be considered as the curvature of the 
canonical connection on S. In the above formula k=dimK, l=dimL and c is 
defined by -rJai,=c- 1 x (the Killing form of K) or, equivalently 
c index(AdK)/index(AdG). Notice that by replacing hop by (t 2 )-k/shafJ, s=dimS, 
we obtain a one-parameter family of metrics with a fixed volume, the scalar 
curvature being given by 

R(G\H;t)=t2kfS[~+ ::2 +~(C-l)t2]. 
In particular for S7 = USp(4)\SU(2), we get, using c 2/3 

~] 4 ' 

R(S7; t)= - 9 t- 15f7(t2 2)(t2 2/5). 

The condition R 0 is a necessary condition for obtaining an Einstein metric. The 
two Einstein metrics on S7 corresponding to t 2 = 2 and (2 = 2/5 have been found in 
[38] by computing the Ricci tensor. Notice that t 2 2 is the SOtS) invariant metric 
and t2 has symmetry USp(4) x SU(2). Notice finally that t2 = 1 the normal 
metric on USp(4)\SU(2) is not Einstein [which should not be surprising since 
USp(4)\SU(2) is not isotropy irreducible]. The scalar curvature R(S7; t) as a 
function of t is given in Fig. 6. The t 2 = 2/5 Einstein metric on S7 have recently 
been used for providing a new vacuum for d = 1l supergra vitity [41]. 

R(s'. tl 

Fig. 6 

Spinors. Introducing spinor fields in the extended space-time E is an obvious 
necessity (and can be achieved, for example, by replacing multidimensional 
gravitation by supergravity). By studying the Dirac equation on E, one would be 
led naturally to a system of spinor fields coupled to gauge fields and to the scalar 
fields. To make a link with the previous comment, notice that zero modes of the 
Dirac operator on the typical compact internal space S (endowed with a G 
invariant metric) exist only if the scalar curva ture in negative. 

Geometry of Multidimensional Umverses 
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