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Abstract 

A phenomenological model for a measurement of “barrier traversal times” for particles is proposed. Two idealized 
detectors for passage and arrival provide entrance and exit times for the barrier traversal. The averaged traversal time is 
computed over the ensemble of particles detected twice, before and after the barrier. The “Hartman effect” can still be found 
when passage detectors that conserve the momen~m dis~~tion of the incident packet are used. @ 1997 Elsevier Science 
B-V. 

1. Introduction 

The temporal ch~t~~tion of qu~tum mechan- 
ical tunnelling traces back to early studies by McCall 
[ 11. More recently a paper by Btittiker and Landauer 
[ 21 and interest in the subject from various fields (as 
varied as nuclear and molecular physics, cosmology 
or semiconductor physics) have triggered a debate 
that has frequently dealt with the very fo~dations 
of quantum mechanics [ 31. The interpretation of the 
quantum mechanical formalism and the wave-particle 
duality, the quantization ambiguities, the relation be- 
tween classical and quantum mechanics, or the quan- 
tum “me~u~ment problem” are some of the ingre- 
dients of this research. These are all difficult and not 
completely understood matters so, not surprisingly, an- 
swering the question “How long does it take to cross 
a barrier?“, i.e. defining a quantum traversal time has 
been controversial. (We shall mainly discuss the g&t- 
eral concept of ‘traversal time” instead of a more re- 

strictive “tunelling time”. However, especial attention 
will be paid to tunnelling conditions in the calcula- 
tions.) 

In this problem the standard quantization proce- 
dures are difficult to apply since only a limited number 
of classical trajectories cross the selected region and 
“continuous observation” may be required for a mea- 
surement. Even so, many proposals exist that gener- 
alize in different formal or o~r~on~ ways the clas- 
sical concept of traversal time to the quantum case. 
The debate on the barrier traversal time is essentially 
a consequence of different conditionings and criteria, 
added to the bare original question, that privilege one 
quantum quantity versus the others. As long as the 
conditioning is made explicit, to make clear that dif- 
ferent versions of the original question are being an- 
swered, there is no fundamental conflict among seem- 
ingly irreconcilable proposals. (Part of the theoretical 
work - using path integrals [ 41 or a projector approach 
[ 5 ] - has been devoted to develop comp~hensive for- 
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malisms that allow one to classify and relate many of 
the possible characteristic quantities.) However, not 
all aspects have yet been investigated. Only the totality 
of conditionings or additional specifications exhausts 
the possible information about the barrier traversal in 
the temporal domain. Within this spirit we shall inves- 
tigate here a complementary aspect to those we have 
previously examined [S-10], and to ~~~rnents per- 
formed on electromagnetic waves to measure “I.armor 
times” [ Ill. The objective of this Letter is to exam- 
ine one o~e~atio~l de~ition of barrier traversal time 
for particles. By “operational” we mean “related to 
a specific experiment, possibly a “gedanken” experi- 
ment. We shall model an idealized experimental setup 
inspired by an elementary “classical” recipe: In order 
to measure the transit time trough a spatial region the 
first entrance tl and first exit times t2 are measured 
and their difference T = t2 - tl is evaluated fir each 
particle. In our case the spatial region includes a po- 
tential barrier and only the particles detected before 
and after the barrier will be taken into account. If the 
experiment is repeat& many times r can be averaged 
and its statistical properties examined. In a previous 
publication by Muga, Brouard and Sala [ 61 a related 
approach was proposed for the qu~tum case: An av- 
erage entrance instant (t)‘” at a and an average exit 
instant (t)‘“’ at b were defined in terms of incident and 
outgoing current densities, 

J: J(a)tdt 
b): = sd” J(a)t& ’ (1) 

with a traversal time rr E (t):” - {t)f given by the 
difference between the two averages. Here J is the cur- 
rent density and it is assumed that a is far from the bar- 
rier so that the packet passes rightwards through point 
a before tc, a time prior to the backwards reflected 
flow after the collision. rr is in principle measurable 
but it has a clear drawback since it is not the average 
of transit times for ~~ivid~l particles. It is instead 
the difference between two averages of different na- 
ture. This is better understood in classical terms: The 
average entrance instant (t)‘” is operationally defined 
for the ensemble of particles that arrive at the first de- 
tector while the exit time is only defined for a smaller 

set (those that arrive at the final detector). This def- 
inition in fact may lead to negative values of rr in 
the classical and quantum cases [ 12,7] Classically the 
average entrance time may be dominated by trajecto- 
ries that are eventually reflected so that {t)‘” can be 
very different from typical entrance times of the tra- 
jectories that eventually pass the barrier. In this Letter 
this inconsistency with the classical limit is overcome 
by restricting the averaging to those particles that are 
detected before and after the barrier. In general this 
approach implies a “‘back reaction” of the first detec- 
tor that modifies the state. We accept this perturbation 
as a fact and investigate the outcome of the described 
operational procedure, and the effect of different de- 
tectors, in particular of those that minimize the back 
reaction so that the momentum distribution of the ini- 
tial packet is preserved. 

In general the particle + detector system involves 
many degrees of freedom and it is rarely modelled ac- 
curately. The objective of a phenomenologic~ model 
is to retain its essential aspects with the aid of some 
adjustable set of parameters and in agreement with ex- 
periential facts. Our model does not specify the partic- 
ular features of the detection at a detailed experimen- 
tal level but we have in mind ~a~icle tracks similar to 
the ones produced in a bubble chamber or by means of 
photographic plates. These tracks are characterized by 
a discrete set of macroscopic spots (two in our case) 
originated at certain times (“clicks”) considered as 
“classical events” that result from the quantum parti- 
cle passage or arrival. The particle is restricted to one- 
dimensional spatial motion. Specifically the effect of 
the detector associated with a given spot is simulated 
according to a track fo~ation model proposed by Jad- 
czyk and Blanchard using two basic elements [ 131: 
An effective oneself-of-scorn H~ltoni~ and 
a modified projection postulate for the particle state 
after the first detection. 

2. Model description 

The initial state of the particle is given by a wave- 
function + associated with a preparation procedure. 
In operational terms, an ensemble of noninte~ting 
particles, represented sym~lic~ly as { &}, is sent to- 
wards the barrier - one particle at a time - from the 
left with identical s~i~c~ons. (In our calculations 
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the initial state at t = 0 is a minimum-uncertainty- 
product Gaussian centered at position x = 20, momen- 
tum p = 8 and spatial variance 9/4, all quantities in 
atomic units. The potential barrier is a square barrier 
with “height” & = 50 from x = 80 to x = 80 + d and 
the particle has mass m = 1.) 

Two particle detectors A and B are located on both 
sides of a barrier potential, at x = a and x = b. The 
first one is a passage detector that does not destroy 
the particle. The second one is an arrival detector. The 
translational degree of freedom of the particle, x, is 
the only one represented explicitly. A simplifying as- 
sumption is that only one of the two detectors is work- 
ing at a time: When the particle is sent to the barrier 
only A is active. Detection of the particle at A discon- 
nects this detector and activates the second, B. 

2. I. First detector: Probability of detection 

It can be proved using multichannel scattering the- 
ory techniques that the incident channel amplitude 
(corresponding to translational motion of the parti- 
cle and the detector A in its lower state) can be rep- 
resented by an effective Schrodinger equation with a 
complex potential [ 151. (In “event enhanced quantum 
theory” as described in Ref. [ 131 the imaginary part of 
the potential is deduced rigorously from the Lindblad 
form of the Liouville equation that describes a cou- 
pling of the quantum system with a classical detector.) 
Here the effective S&r&linger equation is written as 

W(x, t) = -g&x, t) 

+ [V(x) +A(x)l+l(x,t), (3) 

where V(x) represents the potential barrier and the 
A, is written as complex potential, 

A(x) = +x; a 

with 

)V (4) 

g(x,a) = ~e-(X-a)2/2d. (5) 

The “intensity”, s, and “width”, cr. of the detector are 
adjustable parameters. 

The norm of the incident channel, 

N(t) = m+*b,t)WfNx, J 
--oo 

(6) 

decreases, due to the detector presence, from the ini- 
tial value N(0) = 1. The total absorption 1 - N( 00) 
is the eflciency of the detector. It is not necessarily 
equal to one so the ensemble of particles detected at A, 
{Ea}, is generally smaller than {Es}. The normalized 
probability density for triggering the detector at time 
t, is proportional to the absorption rate -dN/dt], . 
Normalizing with respect to the ensemble {E,} it is 
given by 

dWa)/dta 
P(ta’Eu) = so” dtdN(t)/dt ’ 

2.2. Effect of detection on the wavefunctions 

(7) 

It will be assumed, within the spirit of a simpli- 
fied phenomenological model, that after each detec- 
tion (a “click”) the state of the particle can be effec- 
tively represented by a modified wavefunction. The 
true final states should be determined by a detailed 
analysis of the interaction between the system and the 
detector. Instead we shall later assume a physically 
motivated functional form. The ensemble of detected 
particles can be represented by a statistical mixture 
of such states. This is of course reminiscent of Von 
Neumman’s projection postulate. However, an impor- 
tant feature of a bubble chamber track is that it does 
not look like a random walk. This cannot be explained 
with a naive projection localizing the particle posi- 
tion by means of position eigenstates, since a posi- 
tion eigenstate has equal probability to expand in any 
direction (erasing the memory of the state previous 
to the measurement) so there would be no tendency 
to ionize atoms in the direction of the dominant inci- 
dent momentum [ 161. A modified projection postulate 
correcting this fact has been derived by Jadczyk and 
Blanchard. The wavefunction resulting from a click 
at time to and consistent with track formation has a 
memory of the previous state and reflects also the de- 
tector properties. A simple expression satisfying these 
two conditions is [ 131 

g(xhvx, t(l) 
‘ho(x) = [~_q$g*(x)~~(x,t,)~*dx]'/* ’ (8) 
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where +(x, to) is the wavefunction evolved with the 
Schriidinger equation (3). 

To determine the effect of the detector we have ex- 
amined the momentum average and its variance for 
the ensembles {Ec} and {E,}. Averages over {E,} 
require some care since they imply a double average: 
The first one (represented as Q) is a quantum me- 
chanical average using each wave packet I+%~, ; the sec- 
ond (D) is an average over the times of detection ta 
weighted by P ( to II?,), 

(PJE, = DQP - J P(talEa) (th.liW.) dt,. (9) 

Since there are two types of average different “vari- 
ances” are possible [ 17,181. For the ensemble {E,} 
the important one is A& E DQ [p* - (DQp)*] . 
(This is a variance computed over detected particles 
regardless of their detection time [ 171.) The aver- 
age momentum is conserved well (especially by weak 
detectors) except for very narrow detector widths. 
For all detectors used in this work DQp x (p)& 
better than 0.2%. However, the “momentum widths” 
Anp (square root of variance) may change drastically 
with respect to the momentum width A,, of the orig- 
inal packet. Fig. 1 shows that wider detectors tend to 
keep the variance of the original state while narrow 
detectors give very large variances. Weak detectors 
(small s) conserve the variance better than strong de- 
tectors (large s) . In summary, in our model weak and 
wide detectors are the best as far as conservation of 
the momentum distribution of the original packet is 
concerned. They are, however, not very efficient, for 
s = 1 the absorbed norm goes from 0.05 to 0.6 in the 
a-interval of Fig. 1. In comparison the full norm is 
absorbed for s = 10. 

2.3. The second (arrival) detector 

The second detector is assumed to be a perfect one 
as described in Ref. [B], so that the full transmitted 
packet is absorbed. It is located at the right edge of 
the barrier. Let {Eb} be the ensemble of particles that 
produce two clicks at times ta and lb and P( &It,) 
the transmittance of I++,, i.e. the fraction of the norm 
of $,. that will be transmitted and therefore detected 
at B [ 191. The probability for being detected at B 
conditioned to having been detected at A is 

00 
0 1 2 3 4 

CT 

Fig. 1. Square root of the momentum variance after detection, ADQ , 
for s = 1 (solid line) and s = 10 (dashed line). The dashed-dotted 

line is the reference value of the momentum variance for the 

original ensemble { Eo} . 

p(EblEa) = 
J 

P(&.lta)f’(~al&) dta. (10) 

Instead of using an expression similar to (7) the dis- 
tribution of arrival times tb for a perfect absorber can 
be approximated accurately by the (normalized) flux 
without absorber [ 81. In particular, for a wave packet 
@,. (x; tn), the detection probability density at tb in 
B, conditioned to having been detected at ta in A and 
restricted to the ensemble {Eb}, is given by 

P(tblEb,t,) = s;;;;;;)drb 9 (11) 

where J,, is the flux for the state era. Using Bayes’ 
rule the joint probability density for detection at to in 
A and tb at B restricted to the ensemble {Eb} is given 

by 

P(tb, 4zlEb) = 
P(tblEb,ta)P(Eblt=)P(t~IEa) 

~P(Ebltd’(t,ll&) dt, 

(12) 

Finally, the probability distribution of r E tb - ta is 
computed, for the ensemble {&}, by integrating over 
tb and t, with the delta function & tb - t, - 71, 
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(13) 

We have calculated average traversal times (T)~* z 
s P (r]Eb)r dr versus the barrier width d for two dif- 
ferent weak detectors at a, both with s = 1. One of 
them, Al, is a wide one and conserves well the mo- 
mentum distribution of {E(J). The other one, AZ, is a 
narrow detector, and produces a momentum variance 
which is approximately ten times the initial one. The 
detector before the barrier is always put far from the 
barrier (a = 50) to compare with the type of gedanken 
experiment performed in Ref. [ 61, so that the initial 
packet may pass through a before interacting signif- 
icantly with the barrier, and b is located at the right 
barrier edge. Let ~1 and 72 be the averages corre- 
sponding to using the two initial detectors AI and AZ. 
Fig. 2 shows that the Hartman effect, i.e. the fact that 
the average traversal time does not grow with d (ac- 
tually it decreases slowly [7]) can still be seen with 
Al until a critical barrier width d, where the “classi- 
cal passage” of momenta “above” the barrier starts to 
dominate [ 5,9] When the narrow detector A:! is used 
the momentum variance is so large that the transmis- 
sion is always dominated by fast momenta well above 
the barrier (we have inde~ndently checked this fact 
by calculating the ratio between transmission due to 
energies above and below the barrier energy), so that 
the behaviour is the one expected classically, i.e. a lin- 
ear growth of 72 with d. Fig. 2 also shows rr, which 
is qu~itatively very similar to rr. The relation rr < 
rr is due to the two different ways the average is 
performed in the initial detector and can be also un- 
derstood on classical grounds. The right front of the 
incident packet is dominated by faster momenta and 
it contributes with more particles to the transmitted 
ensemble. For computing the latter, no distinction is 
made at a between particles to be transmitted or not. 
(The effect grows with d until it saturates when the 
transmission is purely above the barrier.) Note that 
rr could be negative while the times defined in the 
present work are always, by construction, strictly pos- 
itive. The “displ~ment” of the curve ra with respect 
to rr (note the difference in the value of the critical 
barrier) is due to the slight difference in the momen- 
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Fig. 2. Average traversal times versus barrier width d evaluated 
for (a) s = 1, (r = 4.5 (dashed line); (b) s = 1, (r = 0.2 
(dashed-dotted line). The average time rr is also represented 
(solid line). 

tum variances. 
In summary a two detector measurement of a par- 

ticle traversal time has been modelled. Passage de- 
tectors conserving the initial wave packet momentum 
distribution still show the Hartman effect. 
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