next up previous
Next: First Postulate - Up: No Title Previous: Introduction

Time of Events

We start our discussion on quite a general and somewhat abstract level. Only later on, in examples, we will specialize both: our system and the monitoring device. We consider quantum system described using a Hilbert space .gif To answer the question "time of what?", we must select a property of the system that we are going to monitor. It must give only "yes-no", or one-zero answers. We denote this binary variable with the letter . In our case, starting at t=0, when the monitoring begins, we will get continuously reading on the scale, until at a certain time, say , the reading will change into "yes". Our aim is to get the statistics of these "first hitting times", and to find out its dependence of the initial state of the system and on its dynamics.
Speaking of the "time of events" one can also think that "events" are transitions which occur; sometimes the system is changing its state randomly - and these changes are registered. There are two kinds of probabilities in Quantum Mechanics the transition probabilities and other probabilities - those that tell us when the transitions occur. It is this second kind of probabilities that we will discuss now.




Arkadiusz Jadczyk
Thu Feb 22 09:58:31 MET 1996